11 Unitary spaces
Unitary spaces are the complex companions of Euclidean spaces. Much of the theory of Euclidean spaces also holds over to the complex numbers when we suitably adapt the notion of an inner product. In addition, almost all proofs carry over from the real case, hence we will only provide proofs when the arguments from the real case do not work.
11.1 Hermitian inner products
Naively one might define a “standard scalar product” on \(\mathbb{C}^n\) as in the case of \(\mathbb{R}^n,\) that is, for \(\vec{z}=(z_i)_{1\leqslant i\leqslant n}\) and \(\vec{w}=(w_i)_{1\leqslant i\leqslant n} \in \mathbb{C}^n\) we put \(\vec{z}\cdot \vec{w}=\sum_{i=1}^n z_iw_i.\) However, doing so, it is not true any more that \(\vec{z}\cdot \vec{z}=0\) only for the zero vector in \(\mathbb{C}^n.\) For instance, the vector \[\vec{z}=\begin{pmatrix} 1 \\ \mathrm{i}\end{pmatrix}\] satisfies \(\vec{z}\cdot\vec{z}=0,\) but \(\vec{z}\neq 0_{\mathbb{C}^2}.\) Instead of the above definition we define the Hermitian standard scalar product on \(\mathbb{C}^n\) by the rule \[\langle \vec{z},\vec{w}\rangle=\sum_{i=1}^n \overline{z}_iw_i,\] where \(\overline{z}\) denotes the complex conjugate of the complex number \(z \in \mathbb{C}.\) Recall that \(z\overline{z}=\operatorname{Re}(z)^2+\operatorname{Im}(z)^2\geqslant 0\) so that \(z\overline{z}=0\) if and only if \(z=0.\) The Hermitian standard scalar product is an example of a sesquilinear form:
Let \(V\) be a complex vector space. A sesquilinear form on \(V\) is a map \(\langle\cdot{,}\cdot\rangle: V \times V \to \mathbb{C}\) such that
\(\langle\cdot{,}\cdot\rangle\) is linear in the second variable, that is, \[\langle v,s_1w_1+s_2w_2\rangle=s_1\langle v,w_1\rangle+s_2\langle v,w_2\rangle\] for all \(s_1,s_2 \in \mathbb{C}\) and all \(v,w_1,w_2 \in V\);
\(\langle\cdot{,}\cdot\rangle\) is conjugate linear in the first variable, that is, \[\langle s_1w_1+s_2w_2,v\rangle=\overline{s_1}\langle w_1,v\rangle+\overline{s_2}\langle w_2,v\rangle\] for all \(s_1,s_2 \in \mathbb{C}\) and all \(v,w_1,w_2 \in V\);
Moreover, a sesquilinear form is called Hermitian if \[\langle v,w\rangle=\overline{\langle w,v\rangle}\] for all \(v,w \in V.\)
Sesquilinear forms correspond to bilinear forms in the real setting and Hermitian forms correspond to symmetric bilinear forms.
In our convention a sesquilinear form is conjugate linear in the first variable and linear in the second variable. The reader is warned that some authors use the opposite convention so that a sesquilinear form is linear in the first variable and conjugate linear in the second variable.
Let \(V\) be a finite dimensional \(\mathbb{C}\)-vector space and \(\mathbf{b}=(v_1,\ldots,v_n)\) an ordered basis of \(V.\) As in the case of bilinear forms over real vector spaces, we define the matrix representation of a sesquilinear form \(\langle\cdot{,}\cdot\rangle\) on \(V\) with respect to \(\mathbf{b}\) \[\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})=(\langle v_i,v_j\rangle)_{1\leqslant i,j\leqslant n}.\] Recall that in the real setting symmetric bilinear forms are represented by symmetric matrices. Similarly, sesquilinear Hermitian forms – usually just called Hermitian forms – are represented by so-called Hermitian matrices. For a precise definition, we need:
Let \(\mathbf{A}=(A_{ij})_{1\leqslant i\leqslant m,1\leqslant j\leqslant n}\in M_{m,n}(\mathbb{C}).\) The conjugate matrix of \(\mathbf{A}\) is the matrix \(\overline{\mathbf{A}}=(\overline{A_{ij}})_{1\leqslant i\leqslant m,1\leqslant j\leqslant n}\in M_{m,n}(\mathbb{C})\) whose entries are the complex conjugates of the entries of \(\mathbf{A}.\)
For all \(\mathbf{A},\mathbf{B}\in M_{m,n}(\mathbb{C})\) and all \(s,t\in \mathbb{C},\) we have \[\overline{s\mathbf{A}+t\mathbf{B}}=\overline{s}\,\overline{\mathbf{A}}+\overline{t}\overline{\mathbf{B}}, \qquad \overline{\overline{\mathbf{A}}}=\mathbf{A}, \qquad \overline{\mathbf{A}^T}=\overline{\mathbf{A}}^T.\]
For all \(\mathbf{A}\in M_{m,n}(\mathbb{C})\) and \(\mathbf{B}\in M_{n,p}(\mathbb{C}),\) we have \[\overline{\mathbf{A}\mathbf{B}}=\overline{\mathbf{A}}\,\overline{\mathbf{B}}.\] In particular, \(\mathbf{A}\in M_{n,n}(\mathbb{C})\) is invertible if and only if \(\overline{\mathbf{A}}\) is invertible and \(\left(\overline{\mathbf{A}}\right)^{-1}=\overline{\mathbf{A}^{-1}}.\)
For all \(\mathbf{A}\in M_{n,n}(\mathbb{C})\) we have \[\overline{\det \mathbf{A}}=\det(\overline{\mathbf{A}}).\]
Let \(n \in \mathbb{N}\) and \(\mathbf{A}=(A_{ij})_{1,\leqslant i,j\leqslant n} \in M_{n,n}(\mathbb{K}).\) Then we have \[\tag{5.8} \det(\mathbf{A}) =\sum_{\sigma \in S_n}\operatorname{sgn}(\sigma)\prod_{i=1}^n A_{\sigma(i)i}=\sum_{\pi \in S_n}\operatorname{sgn}(\pi)\prod_{j=1}^n A_{j\pi(j)}.\]
Hermitian matrices have the property that their transpose equals their conjugate matrix.
A matrix \(\mathbf{A}=(A_{ij})_{1\leqslant i,j\leqslant n} \in M_{n,n}(\mathbb{C})\) is called Hermitian if \[\mathbf{A}^T=\overline{\mathbf{A}}\quad \iff \quad \mathbf{A}=\overline{\mathbf{A}}^T \quad \iff \quad A_{ji}=\overline{A_{ij}}, \quad 1\leqslant i,j\leqslant n.\]
Notice that the diagonal entries of a Hermitian matrix \(\mathbf{A}=(A_{ij})_{1\leqslant i,j\leqslant n} \in M_{n,n}(\mathbb{C})\) satisfy \(A_{ii}=\overline{A_{ii}}\) for all \(1\leqslant i\leqslant n\) and hence must be real.
If we write \(\mathbf{A}\in M_{n,n}(\mathbb{C})\) as \(\mathbf{A}=\mathbf{B}+\mathrm{i}\mathbf{C}\) for \(\mathbf{B},\mathbf{C}\in M_{n,n}(\mathbb{R}),\) then \(\mathbf{A}\) is Hermitian if and only if \[\mathbf{A}^T=(\mathbf{B}+\mathrm{i}\mathbf{C})^T=\mathbf{B}^T+\mathrm{i}\mathbf{C}^T=\overline{\mathbf{A}}=\mathbf{B}-\mathrm{i}\mathbf{C}\] which is equivalent to \(\mathbf{B}\) being symmetric and \(\mathbf{C}\) being anti-symmetric.
\(2\times 2\) and \(3\times 3\) Hermitian matrices are of the form \[\begin{pmatrix} a & z \\ \overline{z} & b \end{pmatrix}, \qquad \begin{pmatrix} a & z & w \\ \overline{z} & b & u \\ \overline{w} & \overline{u} & c \end{pmatrix}\] for \(a,b,c \in \mathbb{R}\) and \(u,z,w \in \mathbb{C}.\)
Let \(V\) be a finite dimensional \(\mathbb{K}\)-vector space, \(\mathbf{b}=(v_1,\ldots,v_n)\) an ordered basis of \(V\) with associated linear coordinate system \(\boldsymbol{\beta}: V \to \mathbb{K}^n\) and \(\langle\cdot{,}\cdot\rangle\) a bilinear form on \(V.\) Then
for all \(w_1,w_2 \in V\) we have \[\langle w_1,w_2\rangle=(\boldsymbol{\beta}(w_1))^T\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\boldsymbol{\beta}(w_2).\]
\(\langle\cdot{,}\cdot\rangle\) is symmetric if and only if \(\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\) is symmetric;
if \(\mathbf{b}^{\prime}\) is another ordered basis of \(V,\) then \[\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b}^{\prime})=\mathbf{C}^T\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\mathbf{C},\] where \(\mathbf{C}=\mathbf{C}(\mathbf{b}^{\prime},\mathbf{b})\) denotes the change of basis matrix, see Definition 3.103.
Let \(V\) be a finite dimensional \(\mathbb{C}\)-vector space and \(\mathbf{b}=(v_1,\ldots,v_n)\) an ordered basis of \(V\) with associated linear coordinate system \(\boldsymbol{\beta}: V \to \mathbb{K}^n.\) Suppose \(\langle\cdot{,}\cdot\rangle\) is a sesquilinear form on \(V,\) then
for all \(v,w \in V\) we have \[\langle v,w\rangle=\overline{\boldsymbol{\beta}(v)}^T\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\boldsymbol{\beta}(w);\]
\(\langle\cdot{,}\cdot\rangle\) is Hermitian if and only if \(\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\) is a Hermitian matrix;
if \(\mathbf{b}^{\prime}\) is another ordered basis of \(V,\) then \[\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b}^{\prime})=\overline{\mathbf{C}}^T\mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\mathbf{C},\] where \(\mathbf{C}=\mathbf{C}(\mathbf{b}^{\prime},\mathbf{b})\) denotes the change of basis matrix.
Proof. Exercise.
Let \(\langle\cdot{,}\cdot\rangle\) be a bilinear form on a finite dimensional \(\mathbb{K}\)-vector space \(V\) and \(\mathbf{b}\) an ordered basis of \(V.\) Then \(\langle\cdot{,}\cdot\rangle\) is non-degenerate if and only if \(\det \mathbf{M}(\langle\cdot{,}\cdot\rangle,\mathbf{b})\neq 0.\)
Let \(V\) be an \(\mathbb{R}\)-vector space. A bilinear form \(\langle\cdot{,}\cdot\rangle\) on \(V\) that is positive definite and symmetric is called an inner product.
Let \(V\) be a \(\mathbb{C}\)-vector space. A sesquilinear form on \(V\) that is positive definite and Hermitian is called a Hermitian inner product.
Suppose \(\mathbf{A}\in M_{n,n}(\mathbb{C})\) is a Hermitian matrix, then the map \(\langle\cdot{,}\cdot\rangle: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}\) defined by the rule \[\langle \vec{z},\vec{w}\rangle_{\mathbf{A}}=(\overline{\vec{z}})^T\mathbf{A}\vec{w}\] for all \(\vec{z},\vec{w} \in \mathbb{C}^n\) defines a Hermitian form on \(\mathbb{C}^n.\)
Let \(a<b\) be real numbers and consider \(V=\mathsf{C}([a,b],\mathbb{C}),\) the complex-vector space of continuous complex-valued functions on the interval \([a,b].\) We define \(\langle\cdot{,}\cdot\rangle: V \times V \to \mathbb{C}\) by the rule \[\langle f,g\rangle=\int_{a}^b \overline{f(x)}g(x)\mathrm{d}x.\] Then the properties of integration from the Analysis module show that \(\langle\cdot{,}\cdot\rangle\) is a Hermitian inner product on \(V.\)
Let \(V=M_{n,n}(\mathbb{C})\) denote the \(\mathbb{C}\)-vector space of \(n\times n\)-matrices with complex entries. We define a map \(\langle\cdot{,}\cdot\rangle: V \times V \to \mathbb{C}\) defined by the rule \[\langle \mathbf{A},\mathbf{B}\rangle=\operatorname{Tr}\left(\overline{\mathbf{A}}^T\mathbf{B}\right)\] for all \(\mathbf{A},\mathbf{B}\in M_{n,n}(\mathbb{C}).\) Since the trace is a linear map \(\operatorname{Tr}: M_{n,n}(\mathbb{C}) \to \mathbb{C}\) satisfying \(\operatorname{Tr}(\overline{\mathbf{A}})=\overline{\operatorname{Tr}(\mathbf{A})}\) for all \(\mathbf{A}\in M_{n,n}(\mathbb{C}),\) it follows that \(\langle\cdot{,}\cdot\rangle\) is a Hermitian form on \(M_{n,n}(\mathbb{C}).\) Writing \(\mathbf{A}=(A_{ij})_{1\leqslant i,j\leqslant n},\) we obtain \[\langle \mathbf{A},\mathbf{A}\rangle=\sum_{i=1}^n \sum_{j=1}^n \overline{A_{ji}}A_{ji}=\sum_{i=1}^n\sum_{j=1}^n|A_{ji}|^2\] so that \(\langle \mathbf{A},\mathbf{A}\rangle\geqslant 0\) and \(\langle \mathbf{A},\mathbf{A}\rangle=0\) if and only if all entries of \(\mathbf{A}\) are zero, that is, \(\mathbf{A}=0.\) We conclude that \(\langle\cdot{,}\cdot\rangle\) defines a Hermitian inner product on \(M_{n,n}(\mathbb{C}).\)
A pair \((V,\langle\cdot{,}\cdot\rangle)\) consisting of an \(\mathbb{R}\)-vector space \(V\) and an inner product \(\langle\cdot{,}\cdot\rangle\) on \(V\) is called a Euclidean space.
The mapping \(\Vert \cdot \Vert : V \to \mathbb{R}\) defined by the rule \[v\mapsto \Vert v \Vert=\sqrt{\langle v,v\rangle}\] for all \(v \in V\) is called the norm induced by \(\langle\cdot{,}\cdot\rangle\). Moreover, for any vector \(v \in V,\) the real number \(\Vert v \Vert\) is called the length of the vector \(v\).
The mapping \(d : V \times V \to \mathbb{R}\) defined by the rule \[(v_1,v_2) \mapsto d(v_1,v_2)=\Vert v_1-v_2\Vert\] for all \(v_1,v_2 \in V\) is called the metric induced by \(\langle\cdot{,}\cdot\rangle\) (or also metric induced by the norm \(\Vert\cdot\Vert\)). Furthermore, for any vectors \(v_1,v_2 \in V,\) the real number \(d(v_1,v_2)\) is called the distance from the vector \(v_1\) to the vector \(v_2\).
A pair \((V,\langle\cdot{,}\cdot\rangle)\) consisting of an \(\mathbb{C}\)-vector space \(V\) and a Hermitian inner product \(\langle\cdot{,}\cdot\rangle\) on \(V\) is called a unitary space.
Let \((V,\langle\cdot{,}\cdot\rangle)\) be a Euclidean space. Then, for any two vectors \(v_1,v_2 \in V,\) we have \[\tag{10.1} |\langle v_1,v_2\rangle|\leqslant \Vert v_1\Vert \Vert v_2\Vert.\] Furthermore, \(|\langle v_1,v_2\rangle|=\Vert v_1\Vert \Vert v_2\Vert\) if and only if \(\{v_1,v_2\}\) are linearly dependent.
The distance function is also defined analogously and again we have the triangle inequality. Again, we will not prove this.
The notions of orthogonality, orthonormality, the orthogonal complement, the orthogonal projection onto a subspace are again defined analogously to the Euclidean case.
Suppose \(\mathbf{A}\in M_{n,n}(\mathbb{C})\) is a Hermitian matrix, then the map \(\langle\cdot{,}\cdot\rangle: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}\) defined by the rule \[\langle \vec{z},\vec{w}\rangle_{\mathbf{A}}=(\overline{\vec{z}})^T\mathbf{A}\vec{w}\] for all \(\vec{z},\vec{w} \in \mathbb{C}^n\) defines a Hermitian form on \(\mathbb{C}^n.\)
Let \(a<b\) be real numbers and consider \(V=\mathsf{C}([a,b],\mathbb{C}),\) the complex-vector space of continuous complex-valued functions on the interval \([a,b].\) We define \(\langle\cdot{,}\cdot\rangle: V \times V \to \mathbb{C}\) by the rule \[\langle f,g\rangle=\int_{a}^b \overline{f(x)}g(x)\mathrm{d}x.\] Then the properties of integration from the Analysis module show that \(\langle\cdot{,}\cdot\rangle\) is a Hermitian inner product on \(V.\)
Let \(V=M_{n,n}(\mathbb{C})\) denote the \(\mathbb{C}\)-vector space of \(n\times n\)-matrices with complex entries. We define a map \(\langle\cdot{,}\cdot\rangle: V \times V \to \mathbb{C}\) defined by the rule \[\langle \mathbf{A},\mathbf{B}\rangle=\operatorname{Tr}\left(\overline{\mathbf{A}}^T\mathbf{B}\right)\] for all \(\mathbf{A},\mathbf{B}\in M_{n,n}(\mathbb{C}).\) Since the trace is a linear map \(\operatorname{Tr}: M_{n,n}(\mathbb{C}) \to \mathbb{C}\) satisfying \(\operatorname{Tr}(\overline{\mathbf{A}})=\overline{\operatorname{Tr}(\mathbf{A})}\) for all \(\mathbf{A}\in M_{n,n}(\mathbb{C}),\) it follows that \(\langle\cdot{,}\cdot\rangle\) is a Hermitian form on \(M_{n,n}(\mathbb{C}).\) Writing \(\mathbf{A}=(A_{ij})_{1\leqslant i,j\leqslant n},\) we obtain \[\langle \mathbf{A},\mathbf{A}\rangle=\sum_{i=1}^n \sum_{j=1}^n \overline{A_{ji}}A_{ji}=\sum_{i=1}^n\sum_{j=1}^n|A_{ji}|^2\] so that \(\langle \mathbf{A},\mathbf{A}\rangle\geqslant 0\) and \(\langle \mathbf{A},\mathbf{A}\rangle=0\) if and only if all entries of \(\mathbf{A}\) are zero, that is, \(\mathbf{A}=0.\) We conclude that \(\langle\cdot{,}\cdot\rangle\) defines a Hermitian inner product on \(M_{n,n}(\mathbb{C}).\)
Let \((V,\langle\cdot{,}\cdot\rangle)\) be an \(n\)-dimensional Euclidean space and \(\mathbf{b}=(v_1,\ldots,v_n)\) an ordered basis of \(V.\) For \(2\leqslant i\leqslant n\) we define recursively \[w_i=v_i-\Pi^{\perp}_{U_{i-1}}(v_i)\qquad \text{and}\qquad u_i=\frac{w_i}{\Vert w_i\Vert},\] where \(U_{i-1}=\operatorname{span}\{u_1,\ldots ,u_{i-1}\}\) and \(u_1=v_1/\Vert v_1\Vert.\) Then \(\mathbf{b}^{\prime}=(u_1,\ldots,u_n)\) is well defined and an orthonormal ordered basis of \(V.\) Moreover, \(\mathbf{b}^{\prime}\) is the unique orthonormal ordered basis of \(V\) so that the change of basis matrix \(\mathbf{C}(\mathbf{b}^{\prime},\mathbf{b})\) is an upper triangular matrix with positive diagonal entries.
Let \((V,\langle\cdot{,}\cdot\rangle)\) be an \(n\)-dimensional unitary space and \(\mathbf{b}=(v_1,\ldots,v_n)\) an ordered basis of \(V.\) For \(2\leqslant i\leqslant n\) we define recursively \[w_i=v_i-\Pi^{\perp}_{U_{i-1}}(v_i)\qquad \text{and}\qquad u_i=\frac{w_i}{\Vert w_i\Vert},\] where \(U_{i-1}=\operatorname{span}\{u_1,\ldots ,u_{i-1}\}\) and \(u_1=v_1/\Vert v_1\Vert.\) Then \(\mathbf{b}^{\prime}=(u_1,\ldots,u_n)\) is well defined and an orthonormal ordered basis of \(V.\) Moreover, \(\mathbf{b}^{\prime}\) is the unique orthonormal ordered basis of \(V\) so that the change of basis matrix \(\mathbf{C}(\mathbf{b}^{\prime},\mathbf{b})\) is an upper triangular matrix whose diagonal entries are real and positive.
Let \(n \in \mathbb{N}\) and \(\mathbf{A}\in M_{n,n}(\mathbb{R}).\) The matrix \(\mathbf{A}\) is called positive definite if the bilinear form \(\langle\cdot{,}\cdot\rangle_\mathbf{A}\) on \(\mathbb{R}^n\) is positive definite.
Let \(n \in \mathbb{N}\) and \(\mathbf{A}\in M_{n,n}(\mathbb{C}).\) The matrix \(\mathbf{A}\) is called positive definite if the sesquilinear form \(\langle\cdot{,}\cdot\rangle_\mathbf{A}\) on \(\mathbb{C}^n\) is positive definite.
Let \(n \in \mathbb{N}\) and \(\mathbf{A}\in M_{n,n}(\mathbb{R})\) be a symmetric positive definite matrix. Then there exists a unique upper triangular matrix \(\mathbf{C}\in M_{n,n}(\mathbb{R})\) with positive diagonal entries such that \(\mathbf{A}=\mathbf{C}^T\mathbf{C}.\)
(Cholesky decomposition over \(\mathbb{C}\)). Let \(n \in \mathbb{N}\) and \(\mathbf{A}\in M_{n,n}(\mathbb{C})\) be a positive definite Hermitian matrix. Then there exists a unique upper triangular matrix \(\mathbf{C}\in M_{n,n}(\mathbb{C})\) with real and positive diagonal entries such that \(\mathbf{A}=\overline{\mathbf{C}^T}\mathbf{C}.\)
Notice that every invertible matrix \(\mathbf{C}\in M_{n,n}(\mathbb{R})\) gives rise to a symmetric positive definite matrix \(\mathbf{A}=\mathbf{C}^T\mathbf{C}.\) Indeed, by Remark 2.18 we have \(\mathbf{A}^T=(\mathbf{C}^T\mathbf{C})^T=\mathbf{C}^T(\mathbf{C}^T)^T=\mathbf{C}^T\mathbf{C}=\mathbf{A}\) so that \(\mathbf{A}\) is symmetric. Using Remark 2.18 again we obtain for all \(\vec{x},\in \mathbb{R}^n\) \[\langle \vec{x},\vec{x}\rangle_\mathbf{A}=\vec{x}^T\mathbf{C}^T\mathbf{C}\vec{x}=(\mathbf{C}\vec{x})^T\mathbf{C}\vec{x}=\langle \mathbf{C}\vec{x},\mathbf{C}\vec{x}\rangle\] where the bilinear form on the right hand side denotes the standard scalar product on \(\mathbb{R}^n.\) In particular this implies that \(\langle\cdot{,}\cdot\rangle_\mathbf{A}\) is positive. Since the standard scalar product on \(\mathbb{R}^n\) is positive definite, the last expression is \(0\) if and only if \(\mathbf{C}\vec{x}=0_{\mathbb{R}^n}.\) Since \(\mathbf{C}\) is invertible this condition is equivalent to \(\vec{x}=0_{\mathbb{R}^n}.\) It follows that \(\langle\cdot{,}\cdot\rangle_\mathbf{A}\) is positive definite as well.
Let \((V,\langle\cdot{,}\cdot\rangle)\) be a finite dimensional Euclidean space equipped with an ordered orthonormal basis \(\mathbf{b}=(v_1,\ldots,v_n)\) with corresponding linear coordinate system \(\boldsymbol{\beta}.\) Then for all \(v \in V\) we have \[\boldsymbol{\beta}(v)=\begin{pmatrix} \langle v,v_1\rangle \\ \vdots \\ \langle v,v_n\rangle\end{pmatrix} \qquad \iff \qquad v=\sum_{i=1}^n \langle v,v_i\rangle v_i\] Indeed, since \(\mathbf{b}\) is a basis we can write \(v=\sum_{i=1}^n s_i v_i\) for unique real numbers \(s_i,\) where \(1\leqslant i\leqslant n.\) Using that \(\langle v_i,v_j\rangle=0\) for \(i\neq j\) and that \(\langle v_i,v_i\rangle=1,\) we obtain \[\langle v,v_j\rangle=\Big\langle\sum_{i=1}^n s_i v_i,v_j\Big\rangle=\sum_{i=1}^n s_i\langle v_i,v_j\rangle=s_j.\] Correspondingly, for all \(v \in V\) we obtain the following formula for the length of \(v\) \[\begin{aligned} \Vert v\Vert&=\Big\Vert\sum_{i=1}^n\langle v,v_i\rangle v_i\Big\Vert=\sqrt{\Big\langle \sum_{i=1}^n\langle v,v_i\rangle v_i,\sum_{j=1}^n\langle v,v_j\rangle v_j\Big\rangle}\\ &=\sqrt{\sum_{i=1}^n\sum_{j=1}^n\langle v,v_i\rangle\langle v,v_j\rangle\langle v_i,v_j\rangle}=\sqrt{\sum_{i=1}^n\langle v,v_i\rangle^2}. \end{aligned}\]
Exercises
Compute the Cholesky decomposition of the positive definite Hermitian matrix \[\mathbf{A}=\begin{pmatrix} 6 & -1+\mathrm{i}& -2 \\ -1-\mathrm{i}& 3 & -2+\mathrm{i}\\ -2 & -2-\mathrm{i}& 3 \end{pmatrix}.\]
Solution
Compute the Cholesky decomposition of the positive definite symmetric matrix \[\mathbf{A}=\begin{pmatrix} 3 & 0 & -1 \\ 0 & 8 & 4 \\ -1 & 4 & 3 \end{pmatrix}.\]
Solution
Since \(\mathbf{A}\) is positive definite and symmetric, we start by finding the unique ordered basis \(\mathbf{b}=(\vec v_1,\vec v_2,\vec v_3)\) of \(\mathbb{R}^3\) which is orthonormal with respect to \(\langle\cdot{,}\cdot\rangle_\mathbf{A}\) such that \(\mathbf{C}(\mathbf{b},\mathbf{e})\) is upper triangular with positive entries on the diagonal. Normalizing \(\vec e_1\) yields \[\vec v_1 = \begin{pmatrix}\frac{\sqrt 3}{3}\\0\\0\end{pmatrix}.\] Since \(\vec e_2\) is already \(\mathbf{A}\)-orthogonal to \(\vec v_1,\) we only need to normalize to obtain \[\vec v_2=\begin{pmatrix}0\\\frac{\sqrt{2}}{4}\\0\end{pmatrix}.\] Since \[\vec e_3 - \langle \vec e_3,\vec v_2\rangle_\mathbf{A}\vec v_2 - \langle \vec e_3,\vec v_1\rangle_\mathbf{A}\vec v_1 = \begin{pmatrix}\frac13\\-\frac12\\1\end{pmatrix},\] we find after normalizing \[\vec v_3 = \frac{\sqrt 6}{2}\begin{pmatrix} \frac13 \\ -\frac12 \\ 1\end{pmatrix}.\] This implies that \[\mathbf{C}(\mathbf{b},\mathbf{e}) = \begin{pmatrix}\frac{\sqrt 3}{3} & 0 & \frac{\sqrt 6}{6}\\ 0 & \frac{\sqrt 2}{4}& -\frac{\sqrt 6}{4} \\ 0 & 0 & \frac{\sqrt 6}{2}\end{pmatrix}\] and by construction, \(\mathbf{M}(\langle\cdot{,}\cdot\rangle_\mathbf{A},\mathbf{b}) = \mathbf{1}_{3}.\) Furthermore, if \(\mathbf{C}= \mathbf{C}(\mathbf{e},\mathbf{b}),\) then \[\mathbf{C}(\mathbf{e},\mathbf{b})^T\mathbf{M}(\langle\cdot{,}\cdot\rangle_\mathbf{A},\mathbf{b}) \mathbf{C}(\mathbf{e},\mathbf{b}) = \mathbf{C}^T\mathbf{C}= \mathbf{A},\] so that \(\mathbf{C}\) is obtained by inverting \(\mathbf{C}(\mathbf{b},\mathbf{e})\) and we find \[\mathbf{C}= \begin{pmatrix}\sqrt 3 & 0 & -\frac{\sqrt 3}{3}\\ 0 & 2\sqrt 2 & \sqrt 2\\ 0 & 0 & \frac{\sqrt{6}}{3}\end{pmatrix}.\]
Compute the Cholesky decomposition of the positive definite symmetric matrix \[\mathbf{A}=\begin{pmatrix} 3 & 0 & -1 \\ 0 & 8 & 4 \\ -1 & 4 & 3 \end{pmatrix}.\]
Solution
Since \(\mathbf{A}\) is positive definite and symmetric, we start by finding the unique ordered basis \(\mathbf{b}=(\vec v_1,\vec v_2,\vec v_3)\) of \(\mathbb{R}^3\) which is orthonormal with respect to \(\langle\cdot{,}\cdot\rangle_\mathbf{A}\) such that \(\mathbf{C}(\mathbf{b},\mathbf{e})\) is upper triangular with positive entries on the diagonal. Normalizing \(\vec e_1\) yields \[\vec v_1 = \begin{pmatrix}\frac{\sqrt 3}{3}\\0\\0\end{pmatrix}.\] Since \(\vec e_2\) is already \(\mathbf{A}\)-orthogonal to \(\vec v_1,\) we only need to normalize to obtain \[\vec v_2=\begin{pmatrix}0\\\frac{\sqrt{2}}{4}\\0\end{pmatrix}.\] Since \[\vec e_3 - \langle \vec e_3,\vec v_2\rangle_\mathbf{A}\vec v_2 - \langle \vec e_3,\vec v_1\rangle_\mathbf{A}\vec v_1 = \begin{pmatrix}\frac13\\-\frac12\\1\end{pmatrix},\] we find after normalizing \[\vec v_3 = \frac{\sqrt 6}{2}\begin{pmatrix} \frac13 \\ -\frac12 \\ 1\end{pmatrix}.\] This implies that \[\mathbf{C}(\mathbf{b},\mathbf{e}) = \begin{pmatrix}\frac{\sqrt 3}{3} & 0 & \frac{\sqrt 6}{6}\\ 0 & \frac{\sqrt 2}{4}& -\frac{\sqrt 6}{4} \\ 0 & 0 & \frac{\sqrt 6}{2}\end{pmatrix}\] and by construction, \(\mathbf{M}(\langle\cdot{,}\cdot\rangle_\mathbf{A},\mathbf{b}) = \mathbf{1}_{3}.\) Furthermore, if \(\mathbf{C}= \mathbf{C}(\mathbf{e},\mathbf{b}),\) then \[\mathbf{C}(\mathbf{e},\mathbf{b})^T\mathbf{M}(\langle\cdot{,}\cdot\rangle_\mathbf{A},\mathbf{b}) \mathbf{C}(\mathbf{e},\mathbf{b}) = \mathbf{C}^T\mathbf{C}= \mathbf{A},\] so that \(\mathbf{C}\) is obtained by inverting \(\mathbf{C}(\mathbf{b},\mathbf{e})\) and we find \[\mathbf{C}= \begin{pmatrix}\sqrt 3 & 0 & -\frac{\sqrt 3}{3}\\ 0 & 2\sqrt 2 & \sqrt 2\\ 0 & 0 & \frac{\sqrt{6}}{3}\end{pmatrix}.\]