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CHAPTER 1

Fundamental notions W
3
ke

We start by introducing some notions that are fundamental for the study of curved spaces.
Doing so will lead to a deeper understanding of some concepts from Linear Algebra and
Analysis.

1.1 Points, vectors and the tangent space

Recall that we define R” as ordered n-tuples p = (xg, ..., x,) of scalars x; € R, 1 < i < n.
We also consider column vectors of length n with real entries

X1

Xn

We write M, ,(R) for the set of (m x n)-matrices with real entries. A column vector of
length n may be thought of as an (n x 1)-matrix, hence we write M, 1 (R) for the set of
such column vectors. Clearly we have a bijective map

X1
V,:R" = M,1(R), (x1,...,xn) —

Xn

which writes the entries of an n-tuple into a column vector. Because of this map, we
may avoid a distinction between R" and M, ;(R) and pretend they are the same thing.
This was done so in Linear Algebra. In geometry, it turns out to be useful to think of R”
and M, 1(R) as different sets. The elements of R" are interpreted as points and will be
denoted by p, g, r .... The elements of M, 1 (R) are interpreted as vectors in R" that are
attached to the origin Og» = (0, 0, ..., 0) € R". They will be denoted by &, V, w, ....

Already in elementary geometry the situation occurs where we consider vectors in R”
that are not attached to the origin Og», but rather to some other point p € R". Think for
instance of the normal vector of a plane in R3 not containing the origin Ogs.

<U

FIGURE 1.1. Avector v attached at the origin and at the point p.



In order to deal with vectors that are not attached to the origin, but to a point p € R", we
introduce the so-called tangent space of R" at p,

ToR" ={V,| Ve M,1(R)}.

The element v, € T,R" is to be interpreted as attaching the vector v € M,;(R) at
the basepoint p € R”. The elements of T,R" are called tangent vectors with basepoint
p. Observe that for all p € R” the tangent space T,R" is a vector space over R when
equipped with vector addition +7,g» : T,R” x T,R" — T,R" defined by the rule

Vp T T, Wp = (‘7+Mn‘1(R) W),
forall v,,,w, € T,R™and scalar multiplication -7 g» : R x T,R" — T,R" defined by the
rule
S TR Vp = (S Myu(®) V)p

foralls € Randall v, € T,R". Here +,,,(r) denotes usual component-wise addition
of column vectors and -, , (r) denotes usual component-wise scalar multiplication of a
column vector by a scalar. Clearly, for all p € R"” we have a vector space isomorphism

ToR" = M,1(R), Vo=V

which simply “forgets“ the basepoint p € R". We can thus think of T,R" as a copy of
M, 1(R) attached to p € R". The union of all these copies of R” is known as the tangent
bundle of R"

TR"= | T,R" = |J {#%|VeE M1 (R)}.
peR” pER?

At this point the name tangent space is a bit confusing, since it is unclear to what T,R" is
tangent to. This will be clarified later on. If U C R" is an open subset, we define likewise

TU =[] T,R".
peU

Observe that for each p € R” the tangent space T,R" is equipped with an ordered basis
el) = ((&)pr . (&)p),

where {é}, ..., €,} denotes the standard basis of M, 1 (R). For all p € R" we call eﬁ,") the
ordered standard basis of T,R".

Whenever nis clear from the context we simply write e, instead of ef,").

Remark 1.1 Since M, 1(R) is one-dimensional, so is T;R for all t € R and the
ordered standard basis of T;IR consists of a single vector which we denote by 1;.

Recall that a pair (V, (-,-)) consisting of a vector space V over R and an inner product
(-} : V x V = Ris called a Euclidean space. We can turn each tangent space into a
Euclidean space:

Definition 1.2 Forall p € R", the standard inner product on T,R" is the unique
inner product (-,-), for which e, is an orthonormal basis, that is, we have

@ @n=0={ ¢ 157

LAninner product on an vector V over R is a positive definite symmetric bilinear form (Y VXV =R



FIGURE 1.2. The endpoint E,(v,) of a tangent vector v},.

We will henceforth always assume that T,R" is equipped with (,-) ,. Whenever no confu-
sion can arise about the point p at which (-,-),, is computed, we will usually simply write

<,>

Occasionally it is useful to turn a tangent vector v, € T,R" into a point g € R". This
is done by mapping a tangent vector v, € T,R" to its “endpoint”. More precisely, we
define:

Definition 1.3 (Endpoint map) Forall p € R" we define

E,: T,R" — R", Vo = Ep(Vp) = (X1 + Va, .o, Xn + Vi),
where p = (xq, ..., x,) and
Vi
v, =
Vn

1.2 Smooth maps, diffeomorphisms and the differential

We recall some facts from Analysis II, but now with a slightly more geometric perspective.

Forn € Nwelet{ey, ..., e,} - here interpreted as points - denote the standard basis of
R" thatise; = (1,0,0,...,0),e2 =(0,1,0,...,0) and so on. Let U C R" be an open set
and consideramap f : U — R™. Recallthatforall p € Uand 1 < i < nwe define the
partial derivative of f in the coordinate direction i as

0if(p) = M‘o% (f(p + hei) — f(p)),

provided the limit exists. Recall also from Analysis Il thatthe map f : U — R™ s
continuously differentiable if and only if* forall1 < i < n

(i) the partial derivative 0;f(p) exists forall p € U;
(i) themap o;f : U — R™, p — 0;f(p) is continuous.

Recursively, we can define higher derivatives. For k € N,k > 2wecall f : U —
R™ k-times continuously differentiable if 0;f : U — R™ is (k — 1)-times continuously
differentiable forall 1 <7 < n. We write

CK(U,R™) = {f : U — R™| fis k-times continuously differentiable}
and

ZThisisa theorem, not a definition!



Definition 1.4 We set
C*(U,R™) = ) C*(U,R™)
keN
and call the elements of C*°(U, R™) smooth maps from U to R™.

Throughout this module we will almost exclusively consider smooth maps.

Remark 1.5 (Smooth maps on non-open domains) It is useful to have a notion of
smoothness for maps that are defined on some arbitrary subset X € R". A map
f : X — R™is called smooth if there exists an open subset U C R"” containing X
and a smooth function 7 : U — R™ so that f(p) = f(p) forall p € X.

Definition 1.6 (Differential of a map) Given U C R”, letf : U — R™ be smooth
and write f = (fi, ..., f,) for real-valued functions f; : U — R.

(i) The differential of f at p € U is the unique linear map
f*|p : TPR" — Tf(p)Rm

so that for all

Vi
Vo= € Tp,R",
Vn
P
we have
wy
ﬁk|p(‘7p) = Wr(p) =
0
with
Wi 01f1(p) 200 Onf1(p) Vi
(L.) =l s
Whn 81 fm(p) e 8nfm(p) Vn

(ii) Recall that the (n x m)-matrix on the right in (1.1) is called the Jacobian matrix
of f at p. We denote it by Jf(p).

(iii) Foreach p € Uwe obtain alinearmap f.|, : T,R" — T¢,)R™. Itis useful to
think of the family {£.|p},cu of all such linear maps as a single map

f.: TU— TR™
defined by the rule
f (Vo) = Wr(p), where w = Jf(p)v.

Thatis, for all p € U, the restriction of £, to T,R"” C TU is given by f,|,. The
map f, : TU — TR™ is called the differential of .

Example 1.7 Consider the smooth map

fiR?PR2, p=(xy) e f(p) = (x*—y? xy)



For the Jacobian we obtain
2x 2y>
Jf(p) =
(p) ( )

and hence for

we have

Remark 1.8 (Matrices acting on points) Recall that W, : R” — M, 1(R) is the map
that turns a point into a column vector. We use W, to let an (m x n)-matrix A act on
points of R"” by the rule

Ap =V, (AV,(p))
forall p € R”, where on the right hand side A acts on the column vector W, (p) by
matrix multiplication.

Example 1.9 Let A € M, ,(R), b € R™ and consider the map
fap : R" — R™, p+ Ap+ b.

Then we have
(fa)«(Vp) = (AV)Ap+b-
forallp € R”and v, € T,R".

Definition 1.10 (Euclidean motion) A map
frq :R" = R", p—Rp+gq

for some point g € R"” and orthogonal matrix R € O(n) is called a Euclidean motion.

Example 1.11 Forn=2,q = (y1, y») and

R (COS(@) —sin(a)> . 4€R

sin(a)  cos(«)
we have
fr,q(p) = (cos(a)xi — sin(a)xz + y1, sin(a)xq + cos(a)xz + y2)

where we write p = (x1, x2).

Example 1.12 Consider a Euclidean motion fg 4 : R” — R", then

(fr,q)+ (Vo) = (RV)Rp1q-
Notice that this implies that

<(fR,q)*(‘7p)v (fR,q)*(VVP» = <‘7p' V_';p>



forall p € R” and all v,,, W, € T,R".

Remark 1.13 Let U C R beopenandf : U — R asmooth function. We have the
usual derivative from Analysis |

f':U—R, t»—>f’(t):%(t):;i_r)no%(f(t—kh)—f(t)).

We also have the differential in the sense of Definition 1.6 whichisamap f, : TU —
TR. Now notice that for all t € U we have

(1.2) fi (1t) = f/(t)lf(t).

Recommendation: Pause here and think about (1.2) until you understand it.

Diffeomorphisms are smooths maps that are bijective and admit a smooth inverse:

Definition 1.14 (Diffeomorphism) Let U € R"” and V C R™ be open sets and
f : U — V asmooth map. If f is bijective and f =1 : V — U is smooth as well, then
f: U — Viscalled a diffeomorphism.

Recall from Analysis thatif f : U — V is a diffeomorphism, then n = m and moreover,
forall p € Uthelinear map £.|, : T,R" — T¢(,)R" isinvertible.

If f - U — R™isasmooth and injective map, we say f is a difffomorphism onto its image,
provided the inverse map =1 : Im(f) — U is smooth as well. Here as usual we define

From the chain rule in Analysis Il we conclude:

Proposition 1.15 (Chain rule) Let U C R"and V C R™ be opensetsand f : U —
R™and g : V — R be smooth maps with f(U) C V. Thengof : U — RKis
smooth and for all p € U we have

(1.3) (g0 f)ilp = 8lr(p) © filp-

That is, the differential of the composition g o f at p is given by the composition of
the linear map f.|, : T,R" — T¢,)R™ and the linear map g.|f(p) : Tr(pR™ —
Te(r(p)R"

Remark 1.16 (Sums and products of smooth maps) The chain rule tells us that
compositions of smooth maps are smooth, so are sums and products. More precisely:

(i) Iff, g : U — R™are smooth, thensois f +cyrm) g : U — R™, where
(f +c(urm &)(P) = f(p) +r~ g(P)

forallp € U.
(i) Iff, g : U— Raresmooth,thensois f -ce(yr) g : U— R, where

(f -c=(ur) &)(P) =f(p) r &(P)
forallp € U.

10



¥ ¥ K K o e -
¥ ¥ ¥ K w o < 4
V¥ ¥ ¥ ¥ x e -
Y ¥ ¥ ¥ ¥ o
V F S S s s~

A AN A AN A -

A A A
——————
R TR TR TN

VLN

VNN NN -
NN N N =
NN N s~
NN N W w - ]
NN A -

r*\\\\\\
-— - w X X X X
F -~~~ XX X X
- - X X X X
F o~~~ X X X XX
AN
A O O L
~ v v
——t—— !
AT
SR AN A A
RO AT A Y
A A
- A A A
e dr A A Ay Ay
- AN

NN A A e >

g g AV A A A 4

FIGURE 1.3. Avisualisation of the vector field p = (x1, x2) — <_X2) .
X1
P

1.3 Vector fields and the gradient

Recall that for all p € R” the tangent space T,R" is equipped with a basis given by
attaching the standard basis {éj, ..., €,} of M, 1 (R) at p. We may think of attaching the
i-th standard basis vector at p as a map from R” to TIR". That is, we define

R o
ax’_ 'R _>TR! pHaxi(p)_(el)p'

The mappings a% are examples of vector fields:

Definition 1.17 (Vector field) A vector field on some open subset U C R" is a map
X : U — TR"sothat X(p) € T,R"forall p € U. For a vector field X : U — TR"
there exists unique functions X; : U — R, 1 < i < n, so that

X(p) = ZX,-(P)a%(p)

forall p € U. The vector field is called smooth if the functions X; are smooth for all
1<i<n

Remark 1.18 By definition, -2 is amap from R” — TR". The notation -2 might
seem strange for a map, it will be motivated below.

Avector field simply attaches a tangent vector v, to every point p of its domain of defini-
tion. Vector fields appear naturally in physics. For instance, an electromagnetic field is
an example of a vector field. Likewise, in the classical Newtonian theory of gravity, the
gravitational field is an example of a vector field.

Example 1.19 Write p = (x;, xo) for an element of R?, then
X :R? — TR?, p=(x1,x)— <X2>

X1

is a smooth vector field on R2.

11
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FIGURE 1.4. A visualisation of the gradient of the function p =
(x1, %) = (x1)? + (32)°.

Every smooth function gives rise to a vector field:

Definition 1.20 (Gradient) Let U Cc R"and f : U — R be a smooth function. Then
the so-called gradient of f defined by

o f(p)
gradf : U — TR", p

0,f(p)

P
is a smooth vector field on U.

Example 1.21 Consider the smooth function f : R?> — R defined by the rule
f(p) = () + (x2)?,

where we write p = (x1, x2). Then we have

2x
gradf(p) = (2xl>
P

1.4 The cotangent space and the exterior derivative

Recall from Linear Algebra Il that if V is a vector space over R, then its dual vector space
V* consists of the linear maps f : V — R with vector addition defined by the rule

(f +v- g)(v) = f(v) +r g(v)
forall f,g € V*andall v € V and scalar multiplication defined by the rule
(s-v+f)=s-xgrf(v)
forallf € V*,allse Randallv € V.

We can think of row vectors of length n with real entries, that is the elements of My ,(R),
as elements of the dual vector space of the vector space M, 1(R) of column vectors of
length n with real entries. This is done by interpreting 7 € M; ,(R) as a linear map

12



M, 1(R) — R given by

(V) =DV eR,
where on the right hand side we use matrix multiplication of the row vector 7 and the
column vector V. In doing so, the standard basis of My ,(R) given by {&3, ..., &,} can be
interpreted as as basis of (M, 1(R))*. Here &; denotes the row vector of length n whose
i-th entry is 1 with all other entries 0.

Let n € Nand p € R". The dual vector space of the tangent space T,R" is called the
cotangent space at p € M and denoted by T;R" := (T,R")*. We write an element of
T,;R"as i, with p € R"and v/ € My ,(R). Hence we have

T;R" = {1, |V € My a(R)}.

The elements of T IR" are called cotangent vectors with basepoint p. The union of all
cotangent spaces is the so-called cotangent bundle
TR = | ;R = | J {7 € Mia(R)}.
pER” pER”
As in the case of the tangent space, each cotangent space T;R" is equipped with an

ordered basis £ = ((£1)p. ... (1)p)-

Definition 1.22 (Exterior derivative) Let U C R” beopenand f : U — R a smooth
function.

(i) Theexterior derivative of f at p € Uisthe unique cotangentvectordf|, € T R"
so that
(1.4) df|, = 01f(p)(€1)p + - - + Onf(P)(En)p-
(ii) Asinthe case of the differential, there exists a unique map

df : TU— R

so that forall p € U, the restriction of df to T,R"” C TU is given by df|,. The
map df : TU — Ris called the exterior derivative of f.

Remark 1.23 (Exterior derivative vs the gradient) Notice that for a smooth function
f:U— Rwehaveforall v, € TU

(grad f(p), vp) = df(vp).

Remark 1.24 (Exterior derivative vs the differential) Notice that the differential and
the exterior derivative are not the same thing! The differential is defined for smooth
maps f : U — R™, whereas the exterior derivative is only defined for smooth
functions, that is, smooth maps f : U — R taking values in the real numbers. For a
function  : U — R the two notions are however closely related. The differential of
f isamap

fo: TU— TR

and the exterior derivative of f at p is a map
df : TU — R.

Recall that we have a natural basis of T¢(,)R consisting of the vector 1¢(,) and with
respect to this basis we have forall v, € T,R”"

f(Vp) = df (Vo) 1f(p).-

13



Remark 1.25 (Standard abuse of notation) Itis customary in the literature to use
the letter x both for an unspecified element in R"”, as well as for the identity map on
Rn
x=Ildgs : R" = R", p+— x(p) =p.
This can - and usually does - lead to confusion. Unfortunately this is well established
notation used in almost all books about differential geometry. We will therefore
adopt it as well.
For1 < i < nthe projection onto the i-th entry of a point p € R" is denoted by x;
xi:R" =R, p=(p1, ..., pn) — xi(p) = pi-

Noticethatforl < /,j < n

9ixi(p) = 0
and hence
(1.5) dxi|p = (&1)p-
Combining (1.4) and (1.5) we obtain for a smooth function f : U — Randallp € U

df|, = oif(p)dxa|p + - - - + Onf(P)dXnlp.
When omitting the basepoint p, we get
df = O1fdxy + - - - + O,fdx,.
If f : I — Ris asmooth function on an interval, the previous equations become
df|, = f'(u)dt|, and df = f'dt,

where here u € | and t denotes the identity map on R.

Example 1.26 (Exterior derivative) Let f : R> — R be the smooth function defined
by the rule

f(Xl, X2) e e2X1 Sin(Xz).
Then we obtain for the exterior derivative

df = 2e®% sin(xz)dx; + €% cos(xo)dxs.

Definition 1.27 (Directional derivative) Let U € R™ beopenandf : U — Ra
smooth function.
(i) Foratangentvector v, € T,R" C TU, we define the directional derivative of f
at pin the direction v, by df ().
(ii) Given a smooth vector field X : U — TR”, we obtain a smooth function
X(f):U—=R,  p= X(f)(p) == df(X(p))
whose value at p € U is given by the directional derivative of f at p in the
direction X(p) € T,R".
(iii) When X = 3% for1 < i < nitis customary to write

of 0
&;—5ﬂ)
Notice that 5
% = O;f.

foralll <i < n.

14



(iv) Writing X = >"7_; Xia% for smooth functions X; : U — R, we obtain

where we use thatdf|, : T,R” — Ris linear.

Example 1.28 For the vector field X defined in Example 1.19 and the function
defined in Example 1.26 we thus obtain

X(f) = —x02e* sin(x0) + x1% cos(xy).

15






CHAPTER 2

Curves
WQ,/Q

Curves are among the simplest geometric objects we can study, but they already have
non-trivial properties.

2.1 Definitions and examples

Definition 2.1 (Curve) Let m € N and / C R be an interval. A curve in R™ is
a continuous map v = (vi)i<i<m : | — R™. The curve v is called smooth if
v : 1 — R™isasmooth map.

Definition 2.2 (Velocity vector) Lety = (vi)i<i<m : | — R™ be a smooth curve.
(i) We define the velocity vector of v attime t € | by
Y(t) = 7:(1e).
Notice that the velocity vector of v at time t € / is an element of the tangent
space T,»)R™ aty(t).
(i) The map
y: 1 — TR™, t — A(t)
is called the velocity vector field along ~.
(iii) Asmooth curve v satisfying ¥(t) # O, g~ forall t € /s called an immersed
curve.

Definition 2.3 (Speed and length of a curve) Let~ : I — R™ be a smooth curve.
(i) The speed of vy attime t € | is defined as

V(DI = v/ (3(2). 4(2))-

(ii) If I = [a, b] for real numbers a < b, we define the length of v as

b
19 = [ Il

Remark 2.4 Let~ : /| — R™ be a smooth curve. Then its Jacobian is
n(t)
I (t) =
Ym(E)

17



In particular, we obtain

Y(t) = Ye(1e) = Wy(r) = :
()

where w = Jv(t)1. The velocity vector 4(t) at time ¢ is thus simply obtained by
computing the usual time derivatives /(t) of the components ~; of y at time ¢ and
attaching the resulting vector at y(t).

Example 2.5 (Unit circle) The curve
v :[0,27] = R?,  t > (cos(t),sin(t))

is smooth and its image ([0, 27]) consists of the circle of radius 1 centred at (0, 0).
The curve «y has velocity vector

0= (),

170l = V/(3(£), 4(t) = /(= sin(1))? + (cos(t))? = 1

attime t € [0, 27], respectively. Therefore, the unit circle has length

z(c):/:ﬂ ||ﬁ(t)||dt:/02ﬂ 1dt = 27,

and speed

Example 2.6 (Non-immersed curve) The curve

7v:R = R?, t e (3, 1°)

i(t) = (3;: )W)

I7()]] = V9t* + 4t2.

Since 7/(0) = Og: it is not an immersion.

is smooth with velocity vector

and speed

Example 2.7 (Helix) The curve
v:R = R3 ts (cos(t),sin(t), t)

is smooth and its image v(R) consists of a helix.

Example 2.8 (Figure-eight curve) The curve
y:[0,27] = R3,  t— ((2 4 cos(2t)) cos(3t), (2 + cos(2t)) sin(3t), sin(4t))

is smooth and its image ([0, 27]) consists of a figure-eight knot.

18



Remark 2.9 (Curves and the differential) Given U C R, letf : U — R™ be a
smooth map. For p € U and v, € T,R"” we would like to interpret the tangent
vector £,(V,,) € T¢(,)R™. Fore > 0 consider a smooth curve y : (—¢,¢) — U with
7(0) = pand 4(0) = V,. For instance the curve

v:(—¢€,¢e) = R, t = y(t) = Ep(tvp)
satisfies v(0) = p and 4(0) = v,. Recall that E, : T,R” — R" denotes the
endpoint map from Definition 1.3. The composition of f and ~ is then a smooth
curve§ = foxy: (—e,e) — R™satisfying £(0) = f(v(0)) = f(p) and velocity
vector
£(0) = (f 2 7)«(10) = £i(7x(10)) = £(7(0)) = £u(V),

where the second equality sign uses the chain rule (1.3). The image of v, under f,
can thus be interpreted as the velocity vector at 0 of the curve £ = f o ~.

Ifv: 1 — R™isasmooth curve,themap+ : | — TR™, t — 4(t) assigns a tangent

vector at y(t) to every time t € /. This is an example of a vector field along a curve.

Definition 2.10 (Vector field along a curve) Let~y : | — R™ be a curve. Amap
X:l— TR™, t— X(t)

is called a vector field along v if X(t) € T,,R™ forallt € /. There exist unique
functions X; : | — R,1 </ < msothat

X(t) = ZXi(t)%(V(t))'
i=1 !

The vector field X along « is called smooth if the functions X; : | — R are smooth
foralll < i< m.

2.2 Unit speed curves

Definition 2.11 (Parameter on an interval) A smooth parameter on an interval / is a

smooth injective map ¢ : I — R which is a diffeomorphism onto itsimage J = o (/).

Theinverse map ! : J — [ is called a parametrisation of |I.

Example 2.12 The sigmoid function

'R 1 t— ——
p:R—(0.1), H1+e—f

is a smooth parameter on R.

Example 2.13
(i) The tangent function

o:(—7/2,7/2) = R, t — tan(t)

is a smooth parameter on (—7/2, 7/2).

19



FIGURE 2.1. The graph of the parameter ¢ from (ii) for the choice § =
w/2 —1/5.

(ii) Ford € (0, 7/2) we can use the tangent function to define a smooth parameter
tan(—4 + 2td) — tan(—9)
2tan(9)

v :[0,1] — [0, 1],

with
L 1 arctan(8 — 2f3s)
ehiDA 0, s g (1o TEIER)),

where § = tan(9).

Example 2.14 Recall from Linear Algebra that a linear coordinate system on a finite
dimensional vector space V over R is a linear injective map ¢ : V — R", where
n = dim(V). Alinear coordinate system on R -thought of as a 1-dimensional vector
space over R - is thus also a smooth parameter on R.

Remark 2.15 In light of Example 2.14 we can think of a smooth parameter on some
interval / as a coordinate system on / which is allowed to be non-linear. We may
think of this as a notion of non-linear time - see the animation below.

It often simplifies computations if a curve v : [a, b] — R" has constant unit speed, that is,
we have ||§(t)|| = 1forall t € [a, b]. Given animmersed curve v : [a, b] — R" of length
L, we may thus ask whether there exists a smooth unit speed curve ¢ : [0, L] — R" such
that

Intuitively, these conditions mean that £ travels along the same route as v (condition (i)),
while starting at the same point £(0) = ~(a) (condition (ii)) and ending at the same point
&(L) = ~(b) (condition (iii)). In order to find £ we thus have to find a suitable schedule of
how to move along ~. This leads to the notion of a reparametrisation.
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Definition 2.16 (Reparametrisation of a curve) Let~ : | — R" be a smooth curve.
A reparametrisation of - is a smooth curve § = yo ™! : J = R", wherep : [ — J
is a smooth parameter on /.

Proposition 2.17 (Existence of a unit-speed parametrisation) Let~ : [a, b] — R"
be a smooth immersed curve of length L. Then there exists a smooth parameter
s : [a, b] — [0, L] so that the reparametrisation

E=vyo0s1:[0,L] >R"

of v is a unit speed curve.

Proof Consider the map
t
s:[a b =R, t— / [1F(u)||du.
a

Clearly, we have s(a) = 0and s(b) = L = fab I¥(v)||du. By the fundamental theorem of
calculus, the map s is differentiable and we have

(2.1) s'(t) = (D).

Since v is an immersed curve we have §(t) # O, - forall t € [a, b] and hence s'(t) =
[I5(t)]] > Oforall t € [a, b]. Results from Analysis | imply that s is strictly increasing and
thus a bijective map onto its image [0, L]. Moreover s~1 : [0, L] — [a, b] is differentiable
forall v € [0, L] and we have

22) (s 1) (u) = %

where s(t) = u. In particular, s : [a, b] — [0, L] is smooth and moreover a diffeomorph-
ism. It remains to show that ¢ = v o s is a unit speed curve. Using the chain rule we
compute forall u € [0, L]

(E(u). (e = ((vos7), (L) (vos7), (Ta))(s ()
= (a5 (1)), Yo (55 (1)) (52 (w))-
Since by (1.2) we have
s (L) = (s (1) s1u),
we obtain
(€(u), Eu))ew) = [(s )/(U)} (Ve(Ls=1())s Vo (Ls=100)) ) (s—1(u)
= [(s7Y/ ()] 51 w)IP
I o ol )1 e G €)Y
[s'(s~1(u)]>  [A(s )P ™
where we use the linearity of 7. [s-1(,), the bilinearity of (-,-) ;(s-1(4)) as well as (2.1) and
(2.2). O

Remark 2.18 (Arc length)
(i) An arcis any smooth curve joining two points.
(ii) The parameters : [a, b] — [0, L] associated to a smooth curve v : [a, b] — R”
of length L is called the arc length parameter of the curve, since s(t) is the
length of the arc connecting v(a) and (t).
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(iii) Thecurveyos~!:[0, L] — R"is called the parametrisation by arc length of
7. For the curve ¢ = v o s~ the travel time u € [0, L] agrees with the distance
travelled along & from £(0) to &(u).

Example 2.19 (Logarithmic spiral) For b > 0and A > 0 and t; € R consider the
curve
7 : [to, 00) — R?, t — (Ae’® cos(t), Ae® sin(t)).

78]l = Ae™ Vb2 +1

forall t € [ty, 00) and its arc length parameter is given by
t %) 1
s(t) = AVb2 + 1/ ePidu=A bb+ (Pt — )
to

forall t € [ty, 00). Notice that

It has speed

. i B2+1 4,
Jm [ = A e

sothat the arc length parameter is also well defined when we think of v being defined
on all of R.

2.3 Curvesin the plane

2.3.1 Curvature of a plane curve

Let~ : I — R™ be a smooth curve with unit speed. Then we have forall t € /

1= (3(t),4(0) = Y ((t)*.

i=1

Taking the derivative with respect to t, we obtain

(2.3) 0="> 29/(t)(t).
i=1

Definition 2.20 (Acceleration vector) Lety : I — R™ be a smooth curve with
velocity vector field 4 : | — TRR™ along . Then the acceleration vector field along
~ is defined by

7 (1)
vl — TR™, t—5(t) = :

0/

We call 4(t) the acceleration vector of y at time t € /.

Using the notion of the acceleration vector, (2.3) can be written as

0 =2(3(t), ().

We conclude that for a unit speed curve the velocity vector 4(t) and the acceleration

vector ¥(t) are orthogonal forall t € /.
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Now we consider a smooth unit speed curve v : I — R? in the plane R2. For p € R? let
Jp : T,R? — T,R? denote the counter-clockwise rotation by 7/2 around 0, € T,R2.!
More precisely, J, : T,R? — T,R?is the unique linear map satisfying

(2.4) Jp((€1)p) = (&), and Jp((&2)p) = —(é1),.

Whenever pis clear from the context we will write J instead of J,. Since 4(t) and 4(t) are
orthogonal for all t € /, there exists a unique smooth function x : | — R so that

(2.5) (t) = w(8)J(3(1))
The function s : | — Ris called the signed curvature of . Notice that since ||¥(t)|| = 1
forall t € | we also have || J(%(t))|| = 1 and hence

(3(1), J(1(1))) = (r()J(3(2)), J(V (1)) = K(E)(J((2)). J(3(2))) = ~(t)

so that we obtain the identity

(2.6) K(t) = (3(t), J(3(1)))
forallt € I.

Example 2.21 (Circle of radius r) For r > 0 consider the unit speed curve
v :[0,27r] — R2, t +— (rcos(t/r), rsin(t/r)).

The image ([0, 27r]) consists of a circle of radius r centred at Og2. We compute

o= ()

and

so thatforall t € [0, 27r]

Therefore, a circle of radius r has signed curvature 1/r at all of its points. Notice that
the circle

§:[0,27r] — R?, t +— (rcos(t/r), —rsin(t/r))
which travels clockwise around the origin (0, 0) € R? has signed curvature —1/r.

Remark 2.22
(i) When~ : I — R?is injective it is common to say that v has curvature r(t) at
the point y(t) € R2.

(i) Whenever the acceleration vector is to the left of the velocity vector, the curve
bends counter clockwise and the signed curvature is positive. Whenever the ac-
celeration vector is to the right of the velocity vector, the curve bends clockwise
and the signed curvature is negative.

It is desirable to also have a notion of curvature for a smooth immersed curve : [a, b] —
R? which does not necessarily have unit speed. We can derive such a formula by com-
puting the acceleration of the reparametrisation ¢ =y os~1: [0, L] — R2 by arc-length
s :[a, b] — [0, L] of 5. In the proof of Proposition 2.17 we obtained the formula

1

(1) = ————A(s }(u
RN Te O KA

'Don’t confuse Jp with the Jacobian of a map!
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which holds for all u € [0, L]. Writing t = s~!(u), we equivalently have

- i(1)
6O = Ea

where t € [a, b]. Computing the time derivative of the previous equation, we obtain

E(s(1)s'(t) = E(s(0))II5(t)ll

1
= Far 7+ 70 (e ) ©
NGO
“Fol Eer W
so that in summary we have
()
. W= .
N Y N O O
) = e (70~ gie 19).

where again we write u = s(t). Since ||£(u)|| = 1 forall u € [0, L], we have

ey S ) = TR

where we use (2.7) and that (y(t), J(#(t))) = 0.

(2.8)

Definition 2.23 (Curvature of a plane curve) Lety = (y1,72) : | — R? be asmooth

curve. The function

(2.9) k:l — R, t—

((2), J((1)) _ (D)9 (t) = 2o(t) (t)
[slealls (11(2)* + 72 (t) )3/2
is called the signed curvature of . The function

kil —=[0,00),  t~|s(t)

is called the curvature of . Forall t € /, the values x(t) and k(t) are called the

signed curvature and curvature of y at t, respectively.

Remark 2.24 The motivation for the definition of the signed curvature asin (2.9) is
(2.8). This equation states thatif v : / — R? is a smooth immersed curve with signed
curvature s : | — R, then the signed curvature 4 : | — R? of the parametrisation

&€ = v o s~ by arc length of v satisfies
(2.10) A(s(t)) = K(2),

forall t € [. Since &(s(t)) = ~(t), we see that £ and v have the same signed
curvature at p = y(t) = £(s(t)). Observe that (2.5) implies that (2.9) agrees with
the definition of curvature for a unit speed curve. We have thus found a notion
of curvature for a plane curve which is unchanged - in the sense of (2.10) - after
reparametrisation by arc length and which agrees with the definition of curvature
for a unit speed curve. It thus is the natural definition of curvature for an immersed

curve which does not necessarily have unit speed.

As a special case consider a smooth function h : | — R and the associated smooth

immersed curve
vl —R?%  te(t h(t))
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whose image (/) is the graph of h. In this case we have v, (t) = t and v»(t) = h(t) for

all t € I. Consequently, (2.9) gives

h//(t_)
2.11 =
( ) k(1) (1+ h(£)2)3/2

Example 2.25 (Curvature of the graph of the sine function) The smooth immersed
curve v : [0,27] — R? associated to the graph of sin : [0, 27] — R? has signed

curvature
sin(x)

) = "0 cos(e )2

Example 2.26 (Curvature of the figure 8 curve) Let
7 : [0, 27] — R?, t — (sin(t), sin(t) cos(t)).

The curve has velocity vectors

0 (S80).,

i(t) = <__2 2:&)0

forall t € [0, 27]. The signed curvature is thus given by
() = cos(2t)sin(t) —2cos(t)sin(2t) _ 3sin(t) +sin(3t)

forall t € [0, 27].

and acceleration vectors

(cos(t)? + cos(2t)2)%/2 2 (cos(t)? + cos(2t)2)*/?

2.4 Local geometric properties of plane curves %Z?r
3

For a smooth immersed curve y = (v1,%2) : | — R? we define

. 2 _ ()
T:1— TR?, t— T(t) = Eol

and

N:I— TR? t e N(t) = J(T(t)).
We call T the unit tangent vector field along v and N the unit normal vector field along ~.
By construction, { T(t), N(t)} forms an orthonormal basis of T, yR? forall t € /. Abasis

of some vector space is sometimes called a frame and the pair { T, N} is called a moving
frame along ~, since as time t progresses, the frame { T(t), N(t)} moves along .

Suppose the signed curvature k. : | — R of v is non-vanishing for all t € / and define
p=1/k:1— R.Thecurve

§: 1 —R? t = 8(t) = Ey ) (p(t)N(t))

is called the evolute of . The circle with centre 6(t) and radius r(t) = |p(t)| is called the
osculating circle of -y at t. We will discuss the osculating circle more thoroughly in the
exercises. Notice that

(2.12) (1) = Esey(=p(t)N(1))
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forall t € I, where here we think of N as a vector field along .

In what follows we will assume thaty = (y1,72) : | — R2 has unit speed. In this case
we obtain

Tl TR, tes T(t) = 4(t) = (128)
(1)

and

n(t)

We have the following equations known as the Frenet equations

N:I— TR?  te N(t)=J(T(t) = <_7£(t)) :
y(t)

T = kN, and N=—xT.

Written in “matrix notation” they become
T 0 =~ T
e (8)-C ) (W)

Exercise 2.27 Derive the Frenet equations (2.13) for a unit speed curve y : | — R?,

Using the Frenet equations we can compute the velocity vector field of the evolute
8 : | — R? of aunit speed curve v : | — R, Explicitly, we have forall t € R

316 = (0 = 2 200)+ B ) = 0a(0) = o010 2(0) + ple1oh 1)

from which we compute

(o (MO~ RO RO e (hO)
0= (i = merit6 - rori(o) gy =" (it ), = /OO

where we used the second Frenet equation N(t) = —x(t) T(t), which is equivalent to

(—vé’(ﬂ) _ 1 <vi(f)> _
7 (t) p(t) \7a(t)
We can use the identity d(t) = p/(t)N(t) which holds for all t € / to show:

Theorem 2.28 (Plane curves of constant curvature) Let~ : | — R? be a smooth
immersed curve whose signed curvature x : | — R is constant, that is, there exists
¢ € Rsuch that k(t) = cforall t € I. Then either

(i) ¢ # 0and~(1)isasegmentof a circle of radius 1/c;

(i) ¢ =0and~(l)isasegmentofa line.

Proof Without loss of generality, by (2.8) we can assume that  is a unit speed curve.
Suppose ¢ # 0. Since & is constant, so is p and hence S(t) = Oforallt € I. The velocity
vector of § thus vanishes for all t € / and therefore §(/) consists of a single point g € R2,
thatis, 6(t) = gforallt € /. Since forall t € / the tangent vector N(t) has length 1 and
since p(t) = 1/c, (2.12) implies that all points of the curve  have the same distance
from g which means that v(/) is a segment of a circle of radius 1/c.

Suppose ¢ = 0. Then §(t) = 0 forall t € / which is equivalent to
V() =(t)=0
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forall t € /. This implies that y(t) = (x1 + tvi, x» + tvs) = E,(tV},) for some point

p = (x1, x2) € R? and tangent vector v, = <:1> . Consequently, v(/) is a segment of a
2

P
straight line. O

It is natural to ask to what extent the signed curvature of a curve in R? determines the
curve. Phrased differently, can we recover the curve when we know its signed curvature?

Exercise 2.29 Let R € O(2) be an orthogonal 2 x 2-matrix, g € RZand x : | — R
the signed curvature of a smooth immersed curve v : | — R2. Show that x is
invariant under Euclidean motion, that is, the curve

§:1—R? t = 6(t) = frg(y(t))

has the same signed curvature as .

From Exercise 2.29 we learn that the curvature alone is not sufficient to determine the
curve. We can however rule out Euclidean motions by specifying a point on the curve as
wellas T and N at this point. More precisely, we have:

Proposition 2.30 Let |/ = [a, b] be aninterval. For a smooth function x : | — R there
exists a unique smooth unit speed curve v : | — R? such thaty(a) = (0,0) = Og>
and

(2.14) T(a) = <(1)>0 2 and N(a) = ((1))0 2

and so that the signed curvature of v is given by k.

For the proof we need:

Lemma 2.31 Let§ : [a, b] — R? be a smooth curve with §(t) € S* forall t € [a, b],
where

St={(xy) eR*|x*+y* =1}.
Then there exists a smooth function ¢ : [a, b] — R - called a polar angle function -
so that forall t € [a, b] we have

5(t) = (cos(4(t)). sin(4(t))) -

Proof Let ¢ be a real number so that 6(a) = (cos(¢o), sin(¢o)). Clearly ¢g is unique
up to adding an integer multiple of 27r. We may define ¢(t) as the sum of ¢ and the
distance travelled on S* from ¢(a) to ¢(t), where counter clockwise motion contributes
positively and clockwise motion contributes negatively. First consider the case where §
moves counter clockwise - and counter clockwise only - around the unit circle S*. In this
case we can define

o(t) = ¢0+/t 16(w)]|dw.

In general, § may move clock wise as well and we can account for this as follows. Observe
that there exists a unique smooth function ¢ : [a, b] — R so that

(50) =5 (5
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forall t € [a, b]. With this definition we have

[|6(t) t)|\/01(t)? + (¢
Now define .
= ¢o +/ §(w)dw
then ¢ : [a, b] — Ris the desired polar angle ;unction. O

Proof of Proposition 2.30 Lety = (71, 72) : [a, b] — R? be a unit speed curve. By the
fundamental theorem of calculus we have

t t
(2.15) 7(t) = / yi(u)du+ const; and  (t) = / 7% (u)du + const,
a a

Recall that
- (10)
72 ( t) ~(t)

so that we can recover v - up to translation in R? by (const;, const,) - from its unit
tangent vector field.

By Lemma 2.31 there exists a polar angle function ¢ : [a, b] — R so that

_ (eos(() _(~sin(é()
o= <sin<¢><r>>>w) ond 0= i) )vm

From this we compute using the Frenet equations

oy = (~SEESEY L (—sin(@()
70 = (contopers )W) =0 (oo )W,'
so that ¢/(t) = x(t) forall t € [a, b]. This gives the formula

(2.16) o(t) = /t k(w)dw + const.

Consequently, we can recover the unit tangent vector field - up to rotation by the angle
const - from the signed curvature x. Combining (2.15) and (2.16) we thus obtain the
formulas

71(t):/atcos</au/<a(w)dw>du and yz(t):/atsin</auf<;(w)dw>du.

These last two formulas uniquely determine « up to the choice of integration constants.
The conditions (2.14) precisely state that we have to choose all integration constants to
be zero. O

2.5 Global geometric properties of plane curves

In order to compute the curvature of a smooth immersed curve v : [a, b] — R? at time
to € [a, b], we only need to know the values of v near t. We say that the curvature is a
local property of a curve. Local properties are in contrast to global properties which try to
capture geometric properties of the whole curve. The prototypical example of a global
property of a plane curve is its total curvature:

Definition 2.32 (Total curvature of a plane curve) Let~ : [a, b] — R? be a smooth
unit speed curve. The total curvature of -y is given by the integral of its signed
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curvature over the interval [a, b].

/ab k(t)dt.

Afirst observation about the total curvature is that it is quantised, that is, it is always an
integer multiple of 27, provided the curve is closed. Recall that a function f : R — R™ is
called periodic with period Lif f(t + L) = f(t) forallt € R.

Definition 2.33 (Closed curve)

(i) Let~ :[a, b] = R™ be a curve. Then v is called closed if v(a) = v(b).

(ii) Lety : [a, b] — R™ be a smooth curve. Then + is called closed if there exists
a smooth curve § : R — R™ which is periodic with period (b — a) so that
~(t) = o(t) forall t € [a, b].

Remark 2.34 Notice that if a smooth curve v : [a, b] — R™ is closed, then
el =41
forall i € N, that s, its derivatives agree to all orders at a and b.

Example 2.35 The “right half“ of the figure 8 curve
7 : [0, 7] — R?, t — (cos(t), sin(t) cos(t))
is closed as a continuous curve, but not as a smooth curve, since

7'(0) # /(7).

Recall that for the unit tangent vector field T : [a, b] — TR2 of a smooth unit speed

curve y we have
_ ((cos(¢(t))
T(t) = (Sin(¢(t)))'y(t)

o(t) = /t k(w)dw + const

and « : [a, b] — R denotes the signed curvature of ~. If v is closed, then v(a) = ~(b)
and T(a) = T(b) so that

o= (S o= (S0

where

7(a)
This implies that ¢(b) — ¢(a) is an integer multiple of 27 and hence
1ot 1
k(t)dt (p(a) — ¢(b)) = N, N e N.

21 J, T o

Definition 2.36 (Rotation index) Let+ : [a, b] — R? be a smooth closed unit speed
curve with signed curvature k : [a, b] — R. The integer

1 b
Ry = %/a r(t)dt
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is called the rotation index of .

Observe thatif+ : [a, b] — R2\ {(0,0)} is a smooth curve, then the curvey : [a, b] — R?

defined by the rule

1
o(t) = Y L r31 (1(2), 72(1))

forall t € [a, b], is smooth and takes values in S' C R2. Hence by Lemma 2.31 we can
write

6(t) = (cos((t)). sin((t)))
for some smooth polar angle function ¢ : [a, b] — R. In the case where v is closed, it
follows as above that (1/27) (¢(b) — ¢(a)) is an integer known as the winding number
of . It counts the total number of times that -y travels counter clockwise around the
point (0, 0) € R2. A negative winding number indicates, that the curve travels clockwise
around (0, 0).

Example 2.37 (Rotation index as winding number) The rotation index of a smooth
closed unit speed curve v : [a, b] — R? can be interpreted as the winding number
of the first derivative v’ : [a, b] — R?\ {(0, 0)}.

A closed curve which has no self intersections is called simple:

Definition 2.38 (Simple closed curve) A closed curve v : [a, b] — R”" is called
simple if the restriction of - to the half open interval [a, b) is injective. Simple closed
curves are often called Jordan curves.

Intuitively one might expect that the rotation index of a simple closed curve in the plane
is either 1, in the case where the curve moves counter clockwise or —1, in the case where
the curve moves clockwise. This is indeed true, but somewhat tricky to prove.

Theorem 2.39 Let : [0, L] — R? be a smooth unit speed curve that is simple and
closed. Then its rotation index is +1.

This fact was probably already known to Riemann. We present a proof of H. Hopf.

Proof Without loss of generality we can assume that (0) = (0, 0) and that the image of
~is contained in {(x, y) | x > 0}. For0 < s < t < Lwitht —s < Ldenote by ¢(s, t) the
angle between (y(t) — v(s)) and (1, 0). Since v is simple, y(t) — v(s) is never equal to
(0,0). The function ¢ is uniquely determined by the condition to be continuous and that
|$(0, t)| < w/2forallt € (0, L). We also have |¢(s, L) — w| < w/2foralls € (0, L) and

ItlTrrlj #(0,t) — Itlina ¢(0,t) = IslTrrlj o(s, L) — I;fg ¢(s, L) = £
Observe that the function
o(t) :=lim (s, t) = lim (¢, r)
is a continuous polar angle function for+’ : [0, L] — R2, that is

V() = (cos(e(t)), sin(¢(1)))
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forall t € [0, L]. Using ¢(L) = limsy ¢(s, L) and ¢(0) = lim¢j0 &(0, t) as well as
im 6(0, £) = lim o(s, L),

we compute

L
| et = 60 = 0(0) = imei(s, ) ~ i o(0. 1)
= lim (s, 1) ~ lim o(s. 1) +lim (s, 1) ~ lim 6(0, )
= lim 65, L) ~ lim (5, 1) + lim 60, ) ~ lim (0, )
=+ £+ 7 = 27,

as claimed. O

2.6 Curves in three-dimensional space

The Frenet frame along a smooth unit speed curve in R? assigns an orthonormal basis
to every tangent space along ~y. For a smooth unit speed curve v : | — R? into three-
dimensional space we can carry out a similar construction, provided the second derivative
4" . I — R3is non-vanishing for all t € /. For such a curve - called a Frenet curve - we
define the unit tangent vector field

T:1— TR3, t T(t) :=A(t)

the unit normal vector field

NI TR e N = )
[Tl

and the unit binormal vector field
B:l— TR, t > B(t) = T(t) x N(t),

where we think of the cross product x asamap T, nR3 x T,)R> = T,HR> forall
tel

Definition 2.40 For a smooth immersed curve v = (71,72, 73) : | — R3 satisfying
Y(t) x 4(t) # 07 rs forall t € I, we define the curvature x : | — R and torsion
7:1 — Rby

IR x40 o G0 < 7(0)
"O="EeE ™ O TEe <R

Exercise 2.41
(i) Given aFrenetcurve : | — R3. Show that the Frenet equations

T 0 x 0\ /T
N|l=|-« 0 71 N
B 0 -7 0/ \B

hold.

(ii) LetR € O(3) and g € R3. Show that the curvature and torsion are invariant
under Euclidean motions. That s, if y : / — R3 is a smooth immersed curve
with y(t) x 4(t) # 07 e and curvature s : | — Randtorsions : | — R,
then the curve

0=1frgo
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has the same curvature and torsion as .

Similar to the case of plane curves we have:

Proposition 2.42 Let | = [a, b] be an interval. For smooth functions x : | — Rt and
T : | — R there exists a unique Frenet curve v : | — R3 withv(a) = (0,0,0) € R?
and

1 0 0
T(a)=10 ) N(a) = |1 , B(a)= [0
v Op3 v Op3 1 Og3

and so that the curvature and torsion of v are given by k and T, respectively.

In order to prove this fact one needs to solve a system of ordinary differential equations
(Proposition 2.42 and its proof are not examinable).

Remark 2.43 There is also a notion of Frenet curve into R™ for m > 3. We refer to
the literature for further details.
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CHAPTER 3

Surfaces

3.1 Embedded surfaces ‘”er
q

In Linear Algebra | you saw the notion of the kernel of a linear map f : V — W between
vector spaces V, W. A related notion is that of a level set. Here, for geometric con-

creteness, we restrict ourselves to level sets in R3, but the notion makes sense in any
dimension.

Definition 3.1 Let X ¢ R3beasetand f : X — R a function. The level set of
with level c € R is the subset of X" given by

F ({c}) ={p e X|f(p) = c}.

Example 3.2 (2-plane) Let f : R® — R be a linear function.

(i) The kernel of f is the level set of f with level zero, that is, Ker(f) = f~1({0}).
If f has rank 1, then f~1({0}) has dimension 2 by the rank-nullity theorem and
hence is a two-dimensional plane through the origin Ogs.

(i) Let c # 0 be different from zero. Then f~1({c}) is an affine subspace whose
associated vector spaceis f =1 ({0})

F({e}) = ({0}) + g ={p+q|p € Ker(f)},
where g € R3 satisfies f(q) = c.

A 2-plane is not a particularly interesting object from the point of view of geometry.
However, we obtain more interesting surfaces once we consider level sets arising from
non-linear functions.

Example 3.3 (2-sphere) For p = (x, y, z) we consider
f:R3 =R, p X2+ y? 4+ 2%

Then forall r > 0the level set £~ ({r?}) of f with level r? is the 2-sphere of radius

r centred at Ogs. We will denote it by S2(r) with the convention of writing S? when
r=1.

Example 3.4 (Torus) Let R > 0and f : R® — R be the function defined by the rule

2
p=(xy, z)— (R—\/X2+y2) + 22,

Then for r < R we consider the level set £~ ({r?}) of £ with level r2. This level set
is called a torus.
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FIGURE 3.1. A sphere, a torus and a cylinder.

Example 3.5 (Cylinder) Consider the smooth function
f: R3S R, p=(xy 2)—x+y>

Then for r > 0 the level set f~! ({r?}) of f with level r? is an (infinite) cylinder of
radius r and central axis {(0, 0, z) | z € R}.

Example 3.6 (Paraboloid) Fora, b € Rt and p = (x, y, z) consider f : R® — R
defined by the rule
X2 y2
p— ? + E — Z.

The level set f =1 ({0}) of f with level zero is known as an elliptic paraboloid.

3.2 Tangent planes

For the 2-sphere S%(r) C R3 we have an intuitive geometric understanding of what the
tangent plane at p = (x, y, z) € S%(r) is, namely the subspace of T,R3 consisting of
those vectors v, where v is orthogonal to the line passing through the points p and Ogs.
That is,

T,5%(r) = {Vp € TR | vix + voy + v3z2 = 0} C T,R?,

where

It is natural to ask how we might define the tangent plane to a point p € f~* ({c}) for
some level set defined by a function f : X — R. The following example shows that
needs to satisfy certain conditions so that we obtain a geometrically natural definition of
the tangent plane to a point.

Example 3.7 (Half-cone) Forc € Rt andp = (x, y, z) consider f : R® — R defined

by the rule
X2 _y2 2
p ? + ? —Z.
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FIGURE 3.2. A half-cone. At the vertex of the cone we cannot define the
tangent plane

Let X = {p = (x,y,z) € R¥|z > 0} and consider the level set C = 1 ({0}) N X.
Then C is a cone whose vertex (its tip) is Ogs. Clearly, we cannot define a tangent
plane at the vertex of the cone in any geometrically natural way. Observe that f is
smooth and that the exterior derivative of f is given by

of of orf 2y
df = 6—dx 3y —dy a—dz = —dx —2dy — 2zdz.
Recall that df|, : T,R® — Risa linear map satisfying
2y
df|,(v,) = v1 —|— 5 V2 — 2213,
where we write
Vi
\7p = Vo
V3 .
Therefore
1, p# Ops,
kdf|, =
rank df], { 0 p=0g.

The rank of df |, fails to be maximal (i.e. 1) precisely at the vertex, where we cannot
define the tangent plane.

This motivates the following definitions:

Definition 3.8 (Regular point and regular value) Let f : U — R be a smooth
function on the open set U C R3.

(i) Apoint p € Uis called a regular point of f if df |, has rank 1.
(i) Arealnumber c € Ris called a regular value or a regular level of f if every point
of f~1({c}) is a regular point of f.

Recall that we write C*°(U, R) for the smooth functions on U.

Definition 3.9 (Smoothly embedded surface) Let f € C*(U,R)andc € R a
regular value of f. Then we call

M=f1({c})CR?

a smoothly embedded surface in R3.
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Remark 3.10

(i) We call the surface embedded since it is a subset of the larger ambient space
R3.

(ii) As we will see later on, we can also consider a notion of a space which does not
rely on an ambient space R3. Thus, there is a notion of abstract space - usually
called a manifold.

(iii) We will often drop the adverb smoothly and simply speak of an embedded
surface and hence implicitly we always assume that the surface arises as a level
set of a smooth function.

Example 3.11 (Example 3.3 continued) For the 2-sphere we have
df = 2xdx + 2ydy + 2zdz

so that df|, has rank 1 for all points p # Ogs. Consequently, all r € R are regular
values of f. Since f is smooth we conclude that S3(r) is a smoothly embedded
surface for all r € R*. Observe that in this case we have

(3.1) T,5%(r) = Ker (df|,) .
forall p € S%(r).

We use (3.1) as a motivation for the following definition:

Definition 3.12 (Tangent space and tangent bundle) Let M = f~!({c}) be an
embedded surface.

(i) forall p € M the tangent space of M at p is defined by
TpM = Ker(df|,) C T,R3.

The elements of T,M are said to be tangent to M at p.
(i) Bydefinition, forall p € M the tangent space T,M is a subspace of T,R3 whose
dimension is

dim T,M = dim T,R? — dim Im(df|,) = 3 — rank df|, = 2,

by the rank-nullity theorem.
(iii) The dimension of M is the dimension of any tangent space of M, that is, 2.
(iv) The union of all tangent spaces is called the tangent bundle of M

™ = | J {%, € T,R?| ¥, € Ker(df|,)} .
peEM

Example 3.13 Write p = (x, y, z) for a pointin R3 and consider the linear function
f:R3 5 R, p> Z.
Then M = f~1({0}) is an embedded surface, the 2-dimensional vector subspace
M={peR*z=0} CR?
which is isomorphic to R?. The tangent spaceto p € M is
ToM = {V, € T,R?|v; =0}.
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FIGURE 3.3. A piece of an embedded surface and its tangent plane at
some point p € M.

Simply forgetting about the third entry, we thus have a vector space isomorphism
T,M ~ T;R?

where p arises from p by deleting the third entry. The notion of the tangent space of
RR? as defined in the first chapter is thus compatible with Definition 3.12 when we
think of R? as the embedded surface of R* defined by z = 0.

Example 3.14 (Graph of a function) Let U C R? beopenand h: U — R a smooth
function. Then the graph of h
Gn:={(q.h(q))|q € U}
is an embedded surface in R3. Indeed, consider ¥ = U x R ¢ R3? and
f: X =R, p=(q,t)— h(q) —t.
forge Uand t € R. Then

F=1({0}) = {(a.h(q)) | g € U} =Gy
and writing g = (u, v), we have
oh oh
df = adu—i— Edv —dt.
Therefore, df|,—(q.r) hasrank Lforallp = (g,t) € U x Rand M = =1 ({0})isan
embedded surface. The tangent space at (g, h(q)) for g € U is given by

, dh oh
T(a.napM = {V(q,h(q)) € Tian@nR® |3 = Zo(a)v + E(q)Vz} :

Remark 3.15 (Gradient) Let M = £~ ({c}) be an embedded surface. Recall that
a subspace and its orthogonal complement are in direct sum. This implies that
dim(T,M)+ = 1forall p € M and since

df[(Vp) = (grad f(p), V)
we see that grad f(p) is a basis for (T,M)* forall p € M.

Definition 3.16 (Normal space and normal bundle) Let M = f~1 ({c}) be an em-
bedded surface.
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(i) Forallp € M,theorthogonalcomplementof T,M C T,,]R3 is called the normal
spaceto M at p

T,M* = span {grad f(p)} C T,R>.
(ii) The union of all normal spaces is called the normal bundle of M

™' =] T,M*.
peEM

Remark 3.17 (Velocity vector of curves in a surface) Let M = f~! ({c}) C R®be
an embedded surface. Suppose 7 : I — R3 is a smooth curve contained in M, that
is,y(t) € Mforallt € /. Then

’Y(t) € T’Y(t) M.

forall t € /. Indeed, since y(t) € M forallt € M, we have f(y(t)) = cforallt € /.

Taking the time t derivative of this equation we obtain

df|y 5 (9(£)) =0
forall t € /. Thisimplies that §(t) is tangent to M at (t) forall t € /.

3.3 Orientation

Definition 3.18 (Vector field and unit normal field)
(i) A vector field on M assigns to every point p € M an element of the tangent
space T,M at p, thatis, itis a map
X:M— TMC TR?
so that X(p) € T,Mforall p € M.
(i) Amap
N:M— TM* c TR?
sothat N(p) € T,M* and so that (N(p), N(p)), = 1forall p € Miscalled a
unit normal field on M.
Writing a vector field or unit normal field on M as
a3 + b3 + c2
ox dy 0z
for functions a, b, ¢ : M — R, the vector field or unit normal field is called smooth if
the functions a, b, c are smooth in the sense of Remark 1.5.

Example 3.19 Let M = f~1 ({c}) be an embedded surface. The map

df(p)
N:M— TME, prs= BRCTAP)
| grad f(p)||

is a smooth unit normal field on M.
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Definition 3.20 (Orientation) Let M = f~1 ({c}) be an embedded surface. A choice
of smooth unit normal vector field N : M — TM+ on M is called an orientation. An
embedded surface equipped with a choice of orientation is called oriented.

3.4 Geodesics

Let M = f~1 ({c}) be an embedded surface.

Definition 3.21 (Geodesic) Asmooth curvey : | — M C R3 s called a geodesic in
M if

’y(t) E T,Y(t)MJ‘
forall t € /. Thatis, the acceleration vector 5(t) is orthogonal to T, ;)M for all
tel

Example 3.22 (Straight lines - Example 3.13 continued) Think of R? as the embed-
ded surface M C R3 consisting of those points p = (x, y, z) for which z = 0. A
curve v in M is of the form

v = (71,72,0)
for smooth functions vy, 7, : | — R. Clearly 5(t) € T, )M~ ifand only if (t) =
Os forall t € /. Therefore, the geodesics in R? are segments of straight lines.

Example 3.23 (Helix on a cylinder) Consider the cylinder of radius r and central
axis {(0,0,z) |z € R}

M={(xyz) eR¥|X*+y*=r}=f1({r}),
where f : R* — Ris given by f(p) = x> + y2. For b € R consider the helix

v:R— McCR?, t — (rcos(t), rsin(t), bt).
Then, writing p = (x, y, z) we have
2x
grad f(p) = | 2y
0
P
as well as
—rsin(t) cos(t) 1
Y(t) = [ rcos(t) and H(t) = —r | sin(t) =—5 grad f(~(t)).
b 0

(1) (1)
Since grad f(p) is a basis of T,M* forall p € M, it follows that %(t) € T M* for
all't € R, hence v is a geodesic.

Example 3.24 (Great circle on a 2-sphere) The intersection of S?(r) with a 2-
dimensional vector subspace U C R3 is called a great circle. Let {w;, wy} be an



orthonormal basis of U. Then U N S2(r) is the image of the curve
7:R— S%(r) C R, t — rcos(t)wy + rsin(t)ws.
Then
4(t) = —r(cos(t)wr + sin(t)w2)., ()
where here w; denotes the vector obtained by thinking of w; as a column vector.
Since $2(r) = =1 ({r?}) forthe function f : p = (x,y,z) — f(p) = x> + y? + 2%,

we have
2x

gradf(p) = | 2y | =2pp

2z
P

where again p'denotes p, but thought of as a column vector. Consequently, we have
grad f(y(t)) = 2r (cos(t)wy + sin(t)w2) () = —27(t),

which shows that v is a geodesic in S?(r).

Geodesics always have constant speed:

Proposition 3.25 Let~y : | — M be a geodesic. Then ||(t)|| is independent of t € .

Proof Fora geodesic %(t) is always orthogonal to #(t) and hence

CIRIP = 6,40 = 26(0). () =0. .

As we will see later on, geodesics are locally length minimising in the sense thatif vy : | —
M is a geodesic and p, g € y(/) are points on the image of v which are sufficiently close
to each other, then the segment of the geodesic connecting p and q is the shortest curve
in M which connects p and g.

Another interpretation of geodesics is in terms of the notion of a free particle. In classical
mechanics, a free particle is a massive particle upon which no force acts. By Newton’s
second law of motion, a free particle has vanishing acceleration. A geodesic in an embed-
ded surface M describes the movement of a particle that is not free in Newton’s sense,
but the force acting on it merely forces the particle to remain in M. The particle is free in
tangential directions.

3.5 Covariant derivative

Ify: 1/ — Misasmooth curve in an embedded surface,amap X : | — TMis called a
vector field along y if X(t) € T, ;)M forall t € M, with smoothness defined as before.
We would like to have a notion of derivative of a vector field along ~. If we take the usual
time derivative of X, we obtain a map which in general takes values in TR3 and not
TM. For instance, in the case of a smooth curve v : I — M, the velocity vector field
4 : 1 = TMis a vector field along v, but its acceleration ¥ is not, since 4(t) does not
necessarily liein T, ;)M, but ratherin T, R3.

An obvious way to solve this problem is to compute the usual time derivative of a vector
field along a curve and then apply an orthogonal projection onto each tangent space.
More precisely:
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Definition 3.26 (Covariant derivative) Foracurve~ : | — M and a smooth vector
field X : I — TM along -y, we define the covariant derivative of X as
20 =1, (X))
where forp € M
Ny TR = T,M
denotes the orthogonal projection onto T, M with respect to the inner product (-,-) ,

on T,R? and where
Xi(t)
X(t) = | X5(¢) € T,»nR?
(t)

X3(t)

with X = 372 X,-a% for smooth functions X; : | — R.

Remark 3.27
(i) Notice thata smooth curvey : | — M is a geodesic if and only if
Dy
E(t) =0
forallt € I.
(i) fN : M — TM> is a smooth unit normal field on Mand X : | — TM a
smooth vector field along the curve v : I — M, then

220 = X(5) — (NG (8), X ()N (8).

Example 3.28 (Covariant derivative) Consider S? and v to be the “equator”
7 :[0,27] — S2, t — (cos(t),sin(t),0).
Observe that the vector fields along - defined by the rule

—sin(t) 0
E(t) = ( cos(t) ) and E(t) = (0)
0 ) 1

gl (%)
span T,y S?forall t € [0, 27]. Furthermore

cos(t)
N(t) = | sin(t)
0

(1)
spans (T.,;)S?)* forall t € [0, 27] and { Ey(t), Ex(t), N(t)} isan orthonormal basis
of T,»R3?forall t € [0, 2]. Any smooth vector field X : [0, 27] — TS? along ~ is
of the form
X=s5E + sE
for smooth functions s, s, : R — R which are periodic with period 27. From this
we compute

X(t) = s{(t)Ex(t) + s5(t) Eo(t) — su(t)N(t)
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Hence we have

?T):(t) = s1(t)Ex(t) + sp(t) E2(t) — s () N(t)
— (s1(t) Ex(t) + s3(t) Ea(t) — s (t)N(t), N(t)) N(t)
which simplifies to become

DX () = S(1E(6)+ HIE:Le)

Definition 3.29 (Parallel vector field along a curve) Let~y : /! — M be acurve and
X : | — TM a smooth vector field along 7. Then X is called parallel along ~ if

BX(t) =0forallt € /.

The velocity vector field of a geodesic «y is thus parallel along v in the sense of the previous
definition.

Exercise 3.30 Let~y : [0,27] — S2,t — (cos(t),sin(t), 0) be the equator. Show
that the vector fields £, E; along v as defined above are parallel along .

Proposition 3.31 Let~y : | — Mbeacurveand X,Y : | — TM smooth vector
fields along v and u : | — R a smooth function. Then we have
4 D DX DY
—(X Y)(t) = —(t — (T
— (X4 Y)(0) = (0 + - (2),
(ii)

2 (X)(8) = (DX (E) + u(t) oo (1)

Proof This follows from the linearity of the usual derivative, the product rule for the
derivative of real-valued functions and the definition of the covariant derivative. O

Remark 3.32 Observe that Proposition 3.31 and Exercise 3.30 immediately imply
the end result of Example 3.28.

There are various questions related to geodesics. For instance, how many geodesics are
there on an embedded surface? Do geodesics keep moving forever? We will come back to
these questions later.

3.6 Curvature of embedded surfaces WQ}
$

Given an embedded surface M C R3, we may ask how we can define a notion of curvature
at each point of M.

Consideraplane M = f=1 ({0}) C R3,wheref : R® - R,p = (x,y, z) — Ax+By+Cz
is a linear function and the constants A, B, C are not all zero. In this case a unit normal
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field is given by

1 A

= N(p) = ————
PN = e

P
Observe that this unit normal field is constant when we forget about the basepoint. That
is, writing

N(p) = (v(p))p
forsome map v : R® — M3 ;(R), we have

vy

A
1
v(p) = ——————
VAZ+ B>+ C \ -
so that v(p) is independent of p.

Intuitively a planeis a flat surface. In order to define a notion of curvature we can study
how the unit normal field changes along an embedded surface. This leads to the notion
of the shape operator.

Let M = =1 ({c}) be an embedded surface and N : M — TM+ a unit normal field.
We may take N = grad f /|| grad f||. By assumption grad f(p) is non-zero for all points
p € M. Each point p of M admits an open neighbourhood on which grad 7(p) is also
non-zero. This implies that N is well defined on an open subset U C R3 which contains
M. Again we write

N(p) = v(p)s
for some function v : U — M3 1(R). Explicitly we have

vi(p)
v(p) = | v2(p)
v3(p)

for real-valued functions v; : U — R. Since N is a unit normal field, we have
3

Z Vi(P)2 =1

i=1

forall p € U. Taking the exterior derivative of this equation, we obtain

3
(3.2) 0= 221/,-(p)d1/,-\p.
i=1
Defining
dVl(Vp)
[dv(Vp)]p := duva(V))
dV3(\7p)

forall v, € TU, (3.2) implies

(N(p), [dV(Vp)]p> =0

Recall that T, M~ is spanned by N(p), hence [dv(V,)], is an element of T,M for all v},.
In particular, for all p € M we obtain a linear map

Sp: ToM — Tp,M, Vp = [dv (V)] p.

Definition 3.33 (Shape operator and Gauss map) The map S, is known as the shape
operator and themap v : M — S C M;1(R) is called the Gauss map of M.
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Here S2 denotes the 2-sphere in M3 1 (R), that is, those column vectors V = (v;)1<;<3 SO
that (V1)2 + (V2)2 + (Vg,)2 =1.

Restricting (-,-), to T,M C T,R3, each tangent space of M is a Euclidean space and with
respect to this Euclidean space structure we have the following important fact:

Proposition3.34 Forall p € M the shape operator S, : T,M — T,M s self-adjoint.
Thatis, forall p € M and all V,,, w, € T,M, we have

<‘7p1 Sp(ﬁp» = <5p(‘7p)1 VVP)'

We thus obtain two symmetric bilinear forms on each tangent space:

Definition 3.35 (First and second fundamental form) Let M C R3 be an embedded
surface. The first fundamental form of M at p € M is the restriction of the inner
product on T,R3to T,M, thatis, we define
(V) Wp) := (Vp, Wp)
forall v,, w, € T,M. The symmetric bilinear form on T,M defined by the rule
N(Vp, Wp) == —(Sp(V}p), Wp)
forall vi,, W, € T,M is called the second fundamental form of M at p.

Proof of Proposition 3.34 Write { = 1/||grad | and p = (x1, %2, x3). Then, for all
1 < i < 3wehaver; = £0;f and hence

dvi() Z D;0if(p)dx;(V,) 4 Oif (p)d&(,).
Writing
%1 wi
V= | v and W= |wa | ,
V3 P w3 p

we thus have

(Sp(V), Wo) = £(P) DD (wid0if (p)dx;(¥)) + dE(¥ Zw,af

i=1 j=1 i=1

Now notice that
3
dé(7,) Y widif (p) = dé(v,)(grad f(p), W) = 0.
i=1

since w, € T,M and grad f(p) € T,M" . Furthermore, dx;(V,) = v;, hence we obtain

3 3
(Sp(Vp =<£(p) ZZW\gaaf

i=1 j=1

In terms of the Hessian matrix H¢(p) of f at p (whose entries are given by [H¢(p)];; =
0;0;f(p)), we can thus write

(3.3) ”(‘7pv VT/P) = _<SP(VP) b) = —£(p) HTHf(P)‘z

Since f is smooth the Hessian matrix is symmetric and this gives
(Sp(Vp), Wp) = f(P)V_‘}THf(P)V = (Vp, Sp(Wp)),

as claimed. O
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Example 3.36 (Shape operator of the 2-sphere) Let M = S%(r) C R3 be the 2-
sphere of radius r > 0. In this case M = £~ ({r?}) for the function f : R® — R
defined by p = (x, y, z) = f(p) = x*> + y? + z2. Clearly we have

100
He(p)=2(0 1 0
00 1

and ] q
&p =
)= Terad Flp)] ~ 2r
Therefore, we have for all p € S?(r) and v, w, € T,52
. o 1 7.
(Vo wWp) = —(Sp(Vp), Wp) = *;VTW-
It follows that 1
Sp(‘7p) = *‘7p

Example 3.37 (Shape operator of a graph) Let / be an intervaland h: | — R a
smooth function. We obtain an associated curve

v:l = R? t > (t, h(t))

whose image is the graph G, of h. We want to compute the shape operator of the
graph of h. Recall that G, is a level set with level 0 for the function

f:l xR =R, p=(t,s)— h(t)—s.

grad f(p) = (h/_(i)) (t.)

win=("0 9

Let p = (¢, h(t)) be an element of M = G,. A orthonormal basis of of T,M is given
by

Clearly we have

and hence

& = \/1+1hw <h'}f)>p

from which we compute
h//(t)

(3.4) (Sp(&p), &) = (e IGREE
Notice that T,M is 1-dimensional, from this we conclude that
~ h”(t) ~
SP(VP) = (1 + h/(t)2)3/2 Vp
forall v, € T,M, where p = (t, h(t)).

Definition 3.38 (Normal curvature) Let M C R3 be an embedded surface. Then for
allp € Mallall v, € T,M with (v, v,) = 1, we define the normal curvature at p in
the direction v, by

K(Vp) = —11(Vp, Vo) = (Sp(Vp), Vp)-
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We would like to have a geometric interpretation of x(1,). By (3.4) the normal curvature
of a graph G, at (t, h(t)) is given by (both for €, and for —é&,)

h”(t)
(1+ H(t)?)3/2
This is precisely the signed curvature at t of the curve v : | — R?, t ~— (¢, h(t)).

It is tempting to try to interpret x(V,) as a signed curvature of a plane curve as well. To
this end write

X1 Vi w1
p=|x and N(p)=| v and Vo= | wma
X 1% %

3 s/, s/,

and consider the affine 2-plane U;, C R3 passing through p and which is spanned by
N(p) and v,
Uz, == {(x1 +s1vi + 2wy, X2 + S1va + 2w, X3 + S1v3 + 52w3) | 51, 52 € R}

Theintersection of this affine 2-plane with M is a plane curve. Lete > 0andy : (—¢,¢€) —
Uy, N M be a smooth unit speed curve with v(0) = pand 4(0) = vj, which is contained
in the intersection Uz, N M. In order to apply the definition of the signed curvature of
a plane curve, we choose a vector space isomorphism V : Uy — R? and compute the
signed curvature of thecurve § := Wo~v : | — R?att = 0. Let ¥ : Uy, — R? be the
vector space isomorphism so that
VU ((x1 +s1vi + w1, X2 + s1vo + w0, X3 + 51v3 + w3)) = (51, 52)
forall s1, s, € R. Observe that
V. (N(p))=X and  W.(V,) =Y,

where here we simplify notation and write X, Y for the standard basis of To., R?

X - (3) V= (2) |
0,2 0.2

By definition, the signed curvature of 0 at t = 0 is the real number & so that
5(0) = roJ(6(0)),

where J : To ,R? — Ty ,R? is the unique linear map satisfying

—

JX)=Y and JY)=-X.

Let ((-,-)) denote the inner product on Ty, R?. Since N(p), v, are orthonormal vectors in
T,R3 and X, Y are orthonormal vectors in To,,R?, it follows that

V. :span{v,, N(p)} — T0m2R2

is an orthogonal transformation. Using this fact we compute

(5(0), N(p)) = (W.(5(0)), W.(N(p))) = (3(0), X)) = —ro(J(5(0), J(Y))

= —ko((8(0), Y)) = —ko(W.(7(0)), V)

= —kol(V.(¥,), YY) = —ro{(Y, Y)) = —ko.

We also have:

Lemma 3.39 Let M be an embedded surface and v : (—¢, €) — M a smooth unit
speed curve with v(0) = p and ¥(0) = v, then

K(Vp) = —(5(0), N(p))-
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Proof Lety = (71,72,73) : | — M C R3 be a smooth unit speed curve with v(0) = p
and §(0) = V,. Then

3
0= & BONGEN= TS soua)
t=0 j=1
3 3
:Z (0)vi(y Z (0)dw; (%

i=1 i=1

= (3(0), N(p)) + (Sp(Vp). V)
Hence we obtain the formula

K(Vp) = —(3(0), N(p)) O

In summary we see that
#(Vp) = —(5(0), N(p)) = o

where Ky is the signed curvature at p of the curve cut out of M by the affine 2-plane Uy,
passing through p and which is spanned by N(p) and vj,. Notice that x(1/,) depends on
the choice of unit normal vector field N. Reversing the sign of N(p) reverses the sign of

K(Vp).

Since S, : T,M — T,M is self-adjoint for all p € M, the Spectral Theorem from MO06 Lin-
ear Algebra Il implies that T, M admits an ordered orthonormal basis (v}, w,) consisting
of eigenvectors of S,,.

Definition 3.40 (Principal curvatures and principal curvature directions) Let M C
R be an embedded surface and p € M. For 1 < i < 2, the eigenvalues

k1(p) := K(Vp) = (Sp(Vp), V) and H2(P) = Kk(Wp) = (Sp(Wp), Wp)
of S, at p € M are called the principal curvatures of M at p. The corresponding
orthonormal eigenvectors vj,, w, are called the principal curvature directions of M
at p.

The average trace of the shape operator is known as the mean curvature and the determ-
inant of the shape operator as the Gauss curvature:

Definition 3.41 (Mean curvature and Gauss curvature) Let M C R3beanembedded
surface. We define

H:M—TR, p»—)H(p):%TrSp:%(m(p)—Fmg(p)).
We call H(p) the mean curvature of M at p. We also define
K:M—R, p— K(p) =detS, = k1(p)r2(p).
We call K(p) the Gauss curvature of M at p.

Using the principal curvatures we can classify the points of an embedded surface into
different types:

Definition 3.42 Let p € M be a point of an embedded surface. Then pis called an
umbilical point if k1(p) = ka(p). If kK1(p) = Kk2(p) = 0 we say pis a planar point. If
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K(p) = 0, but H(p) # 0 we say p is a parabolic point. If K(p) > 0 we say pis an
elliptic point and if K(p) < 0 we say p is a hyperbolic point.

Remark 3.43

(i) Notice that changing the sign of N(p) changes the sign of H(p), whereas the
sign of K(p) is unchanged.

(ii) Example 3.36 immediately implies that a 2-sphere of radius r has Gauss
curvature 1/r? and mean curvature 1/r at each of its points. It consists en-
tirely of elliptic points.

(i) An affine 2-plane in R has vanishing Gauss and mean curvature at each of its
points. Unsurprisingly, it consists entirely of planar points.

(iv) With our convention of taking N = grad f /|| grad ||, it follows that the normal
curvature at p € M in the direction of v, € T,M is positive if the surface bends
away from N in the direction of v, and it is negative if the surface bends towards
N in the direction V. In particular, p € M is an elliptical point if the surface
bends away from N in both principal curvature directions or bends towards
N in both principal curvature directions, whereas p is a hyperbolic point if it
bends towards N in one principal curvature direction and bends away from N
in the other.

Lemma 3.44 Let M C R3 be an embedded surface, p € M and b = (V,, w,) an
ordered orthonormal basis of T, M. Then with respect to b the shape operator has
matrix representation
)
o)

Proof Exercise! O

Vo) (5p(Vp)

Vp> <5p(Wp)

!

ws.on (3

Vo),
Wp),

1
1

Example 3.45 (Cylinder) Consider the cylinder of radius r > 0, which is the level set
M = =1 ({r?}) with level r? of the function f : R® - R, p = (x,y,z) = x* + y2.
Here we obtain

2x
grad f(p) = | 2y
0
P
and hence
2 00
He(p)= {0 2 0
0 0 O
At p = (x,y, z) € M an ordered orthonormal basis of T,M is given by b = (},, w,),
where
0 1 (Y
Vo= |0 and wp=—| x
r
1 0
p p

Using (3.3) and Lemma 3.44 we compute

M(S,, b, b) — (8 0 )
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We conclude that v, is a principal curvature direction with principal curvature 0, w,
is a principal curvature direction with principal curvature 1/r. The Gauss curvature
of the cylinderis 0 = 0 - 1/r at each point of M and the mean curvature is 1/(2r) at
each point of M. It follows that M consists entirely of parabolic points.

Example 3.46 (Hyperbolic paraboloid) Consider the hyperbolic paraboloid which
is the level set with level 0 of the function f : R — R, p = (x, y, z) — xy — z. Here
we obtain

y
gradf(p) = | x
-1
P
and hence
0 1 0
He(p)=(1 0 0
0 0 0
Atp = (x,y,xy) € M = f~1({0}) an ordered orthonormal basis of T,M is given

by b = (V,, w,), where

1 1 1 —xy/y/1+ y?

Vy=———10 and Wp = —— 1+ y?
P / 2 P / 2 2
1_|_y y 1+ x +y X/ /1+y2

P
Using (3.3) and Lemma 3.44 we compute

1 0 1
sothatat p = (x, y, xy) € M we have Gauss curvature
(3.5) K(p) = det M(S,, b, b) — —(1+X21+y2)2
and mean curvature
Xy
Notice that the Gauss curvature of M is negative at each point of M and hence M
consists entirely of hyperbolic points.

(3.6) H(p) = 5 trM(S,.b,b) =

Example 3.47 (Elliptic paraboloid) Consider an elliptic paraboloid which is the level
set with level 0 of the function f : R® — R, p = (x,y, z) — X2—2 + y? — z. Here we
obtain

X

gradf(p) = | v

il
P

and

100

He(p)= (0 1 0

000
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Atp = (x,y,(x®> +y?)/2) € M = f~1 ({0}) an ordered orthonormal basis of T,M
is given by b = (,, w,,), where

1 1 1 —xy/vV1+ x?
\7;3:72 0 and V‘_}p:ﬁ \/1+X2
V9I+x2 A\, V1itxt+y y/NITx2

P
Using (3.3) and Lemma 3.44 we compute

1

M(S,,b,b) =
(Se. . b) (1Jr><2)\/1+x2+y2
. —xy/\/1+x2 + y?
—xy/\/1+x2+y (X +xPQ2+y)+1)/ 1+ +y?) )
This gives
1 2+ x% + y?
KlP)= %>, and H(p)= Y

(1 + x2 +y2)2 2(1 4+ x2 +y2)3/2 :
The Gauss curvature is positive at each point of M, hence M consists entirely of
elliptic points.

Lemma 3.48 Let M C R3 be an embedded surface, p € M and let x1(p) < k2(p)
denote the principal curvatures of M at p and v, w,, the corresponding principal
curvature directions. Then

P = g ™&) rlp) = e ()

Proof Everyé, € T,M with ||&,|| = 1 can be written as
€, = cos()v, + sin(c) W,
for some real number o € R. From this we compute
k(€p) = (Sp(cos(a) v, + sin(a)wp), cos(a) v, + sin(a) W)
= cos()*(Sp(Vp), Vp) + 2 cos() sin(a)(Sp(7p), Wp) + sin(a)*(Sp(Wp), W)
= cos()?k1(p) + sin(a)?ka(p).
Since k1(p) < k2(p) we obtain
r1(p) < cos(a)’ka(p) + sin(ar)’ra(p) = £(&) < r2(p)

and k1(p) = k(&) for the choice « = 0 and x»(p) = k(&) for the choicea = /2. O

Remark 3.49 Lemma3.48 and the self-adjointness of the shape operator
(Proposition 3.34) have quite a remarkable geometric consequence. Together they
imply that when we pick any point p on an embedded surface M and determine the
tangential directions &, to M at p in which the surface bends the most and the least,
then the two directions are always orthogonal.

3.7 Local parametrisations "l'sé.lr
6

An affine 2-plane in R3 is the set M of solutions to an equation of the form

Ax+By+ Cz=D

50



figures/Figure83D.pdf

FIGURE 3.4. Theimage of the injective immersion F : (0, 27) x (0,1) —
R3 defined by (u, v) + (sin(u), sin(u) cos(u), v).

for some coefficients A, B, C not all zero. We thus obtain the plane as the level set of the

smooth function the defined by the rule p = (x, y, z) — f(p) = Ax + By + Cz, thatis,

M = f=1({D}).

Alternatively, we can describe the affine plane as the image of a smooth map

F:R? = R3, qg=(u,v)— po+ uwy + vwy,

for points po, wi, wa € R3 such that f(py) = D and f(w;) = f(wz) = 0.

Many surfaces are much easier to describe as the image of a smooth map, rather than as

a level set. Unfortunately, it is exceptional that the whole surface is the image of single

map, as it is the case for an affine 2-plane in R3. In general one needs several maps that

parametrise a surface. This leads to the notion of a local parametrisation.

Definition 3.50 (Local parametrisation of a surface) Given an embedded surface
M C R3, a smooth map F : U — R3 defined on some open subset U C R? so that
(i) Im(F) c M;
(i) Fisinjective;
(iii) F isanimmersion. This means that F.|, : T,U — Tp(q)R3 is injective for all
qgey;
(iv) Fisahomeomorphism onto its image. This means that there exists an open
subset W of R3 which contains the image of F and a continuous map ® : W —
Usothat (F(q)) = gforall g € U;

is called a local parametrisation of M (or more precisely a local parametrisation of

Im(F)). The restriction of ® to W N M is called a local coordinate system on W N M.

Exercise 3.51 Consider the injective immersion F : (0,27) x (0,1) — R3 defined
by (u, v) — (sin(u), sin(u) cos(u), v). Show that F is not a homeomorphism onto
itsimage (compare Figure 4.1).

Exercise 3.52 Write ¢ = (u, v) for a point of U C R2. Show that F, |, is injective if
and only if the cross product

OF; OF
OF OF 9a (@) v (a)
5@ x 5-(@) = | 52(a) | x | F2()

Fe(q) & (a)

is non-vanishing, where we write F = (Fy, F», F3) for smooth functions F; : U — R.
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Example 3.53 (Stereographic projection) Consider the 2-sphere S? and the map

2u 2v 1+’ + v2)
1+ +v2' 1+ +v2' 14+ u?+v2
Clearly F is smooth and injective and we have

F:R? — R3, q—(u,v)|—>(

oF q 2 — 202 4+ 2v?
WS arerer |
and
—4uv
OF B 1 ) )
5, (@)= (v 2(1+ v —v?)
4v
From which we obtain
8u
OF OF 1
%(q) X E(q) - _(1 ¥ U2 I V2)3 8v 7é 0R3

414 v*+ v?)
so that F : R? — R3 is an immersion. Notice that the image of F is contained in

S2 C R3, it does however not contain the north pole (0,0,1) € S2. Consider the
open subset of R? defined by W = R3\ {(x,y,1)|x,y € R} and

7 W R = *0)= (13 123)
(3.7) 2R, p=00y2) = 0(p) (1—2'1—z>

The map @ is called the stereographic projection from the north pole. 1t is continuous
and moreover, a direct calculation shows that ®(F(q)) = g forall g € R2. It follows
that F : R? — R3is a local parametrisation of S? with the north pole removed.
Likewise, consider the map

_ — R = 2
F:R? - R? q:(u,v)'—>( 2u av. 1o V)

I+ +v2' 14+ 4+ v2 140242
As above, one chan check that F is a smooth injective immersion and defining
W=R3\{(x,y,-1)| x,y € R} and

d: W — R? = dp)=——, —L ).
— ' p (X'y'z)'_> (p) (1+Z’1+z

we have @(If'(p)) = pforall p € R2. The map ® is called the stereographic projection
from the south pole and the F is a local parametrisation of 52 with the south pole
removed. We conclude that we can parametrise 52 in terms of two maps F and F.

Exercise 3.54 Show thatfora point p = (x, y,z) € S2\ {(0,0, 1)}, the equatorial
plane {(x,y,0)| x, y, € R} C R? intersects the straight line through (0, 0, 1) and p

in the point
X y
<1—z' 1—Z'O>'

Because of this fact the map W from (3.7) is called the stereographic projection from
the north pole. Likewise, the straight line through (0,0, —1) and p € S2\{(0,0, —1)}
intersects the equatorial plane in the point

X g
1+z'14+2")°

Another local parametrisation of the sphere is given by the following map:

52



Example 3.55 (Spherical coordinates) The 2-sphere S?(r) with half a meridian
removed is parametrised by the map F : (0,27) x (—7/2,7/2) — S?(r) C R3
defined by the rule

(u, v) — (rcos(v)cos(u), rcos(v)sin(u), rsin(v)).

The coordinates associated with this parametrisation are known as spherical co-
ordinates.

Example 3.56 (Torus) Recall that the torus is the level set of the function f(p) =
(R = \/m)z + z? with level r2. A local parametrisation of the torus is given
by the map F : (0,27) x (0, 27r) — R3 defined by the rule

(u, v) = ((R + rcos(v)) cos(u), (R + rcos(v))sin(u), rsin(v)).

Example 3.57 (Graph of a function) Let U C R?beanopensetandh: U — Ra
smooth function. Recall that the graph G, of his an embedded surface. Consider

F:U—R3 q=(u,v)— (u,v, h(u,v)).

Then F is smooth, injective and moreover an immersion since

OF . OF ~3(9)
%(q) X E(q) = —%(Cl) # Ogs
1

Let W = U x R C R3 and define
oW —R? p=(xy,z)— ®(p) =(xy).

Clearly ¢ is continuous and ®(F(q)) = g forall g € U. It follows that the graph G,
of his parametrised by F.

Remark 3.58 Choosing the function h(u, v) = uv in the previous example gives
the hyperbolic paraboloid.

Having the notion of a local parametrisation of a surface, we should make sure that
sufficiently small pieces of an embedded surface admit a local parametrisation. Thisis a
consequence of the implicit function theorem.

Theorem 3.59 (Special case of the implicit function theorem) Every embedded
surface M C R3 is locally the composition of a Euclidean motion and the graph of
a smooth function. That is, for every point p € M there exists a Euclidean motion
frq : R® — R3, an open set W C R3 containing Rp + q, an open set U C R? and a
smooth function h : U — R so that W N fr (M) = Gp.

Proof Notice thatif A isan invertible 3 x 3-matrix and b € R3, then fp ,(M) is also an
embedded surface. Fix p € M and choose a Euclidean motion fr 4 : R® — R3 so that
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fr.q(p) = Ogs and so that the tangent space of M = fz ,(M) at Ogs is spanned by

1 0
0 and 1
0 U 0 O3

We want to argue that M is locally a graph near Ogs. For g = (u, v) € R? consider the
curve 4 through (u, v, 0) which is perpendicular to the plane {(x, y, 0) |x, y € R}

'yq:Rz—>]R3, g = (u,v) = v(t) = (u,v,t)

Since the tangent plane of M at Ogs is horizontal, the curve g Will intersect M for suffi-
ciently small values of (u, v) = g. Mapping g = (u, v) to the smallest (in absolute value)
time t for which ~, intersects M, we obtain a smooth real-valued function h on some
open neighbourhood U of Og. By construction, M is locally the graph of h, that is, there
exists an open set W C R3 sothat W N M = Gy, (]

Exercise 3.60 Show that Theorem 3.59 is still true when the Euclidean motion is
replaced with fp_ : R3 - R3and P, € Ms 3(IR) denotes the permutation matrix of
a permutation o : {1, 2,3} — {1,2,3}.

Given an embedded surface M C R3, we can conclude from Theorem 3.59 that for each
point p € M we can find an open set W C R containing p so that W N M is parametrised
by the map

F:U— RS, qg=(u,v)— frg(u, v, h(u,v)),

where fgr o : R* — R3is a Euclidean motion and h : U — R a smooth function defined
on some open set U C R?. Asufficiently small piece of an embedded surface thus always
admits a local parametrisation.

3.8 Calculations in local parametrisations

If M = f=1({c})is an embedded surface and F : U — R3 a local parametrisation of M,
we have that f(F(q)) = cforall g € U. Taking the exterior derivative of this identity, we
conclude that

df‘F(q)(F*|q(VT;q)) =0
forall w, € T4U. Since F,|, is injective, this means that
7—F(q)M = {F*|q(V_‘7q) | Wq € TqU}-
That is, the linear map F.|q : TqU — TF(q)R3 maps the tangent space of Uat g € U
onto the tangent space of M at F(q). In particular, writing

OF
0F(q) = 5~

=Tl and 2R =2 ()

it follows that
br(g) = ((A1F(9)rq) - (92F(@))r(q))
is an ordered basis br(q) of Tr(gyM forallg € U.

With respect to a choice of local parametrisation F of M we can thus encode the first
fundamental form | of M in terms of a map g on U with values in the symmetric 2 x 2-
matrices g : U — M, >(R). The map g assigns to a point g € U the matrix representation
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of the inner product Ir(4) = (,-) F(q) With respect to the ordered basis br(q)

_ ~ (01F(q)-01F(q) 01F(q)-02F(q)
9 8(a) = Mlleq), bra) = <82F(q)-61F(q) 02F(q) - 82F(q)) ’

where - denotes the standard scalar product of column vectors. For 1 < 7, j < 2 we write
gi(q) = [M((-,/)r(@), br(q)] ; S0 that

g11(q) = 01F(q) - 01F(q),
(3.8) g12(q) = 01F(q) - 0F(q) = 02F(q) - 01F(q) = g21(9).
822(q) = 02F(q) - 2F(q).

or written more succintly (while surpressing the base point)

(3.9) g,'j = é),F . 8JF

Example 3.61 Consider the local parametrisation of the 2-sphere of radius 1 given
in Example 3.55

F(u, v) = (cos(v) cos(u), cos(v)sin(u), sin(v)).
In this case we obtain
(— cos(v) sin(u)) (— sin(v) cos(u))
01F(q) = | cos(v)cos(u) and 0,F(q) = [ —sin(v)sin(u)
0 cos(v)
where we write g = (u, v). From this we compute
g11(q) = (— cos(v) sin(u))® + (cos(v) cos(u))* + (0)* = cos(v)?

and likewise g1 = 0 and g, = 1 so that

o[ )

Example 3.62 For the parametrisation of the hyperbolic paraboloid

F:R? - R3, qg=(u,v)— (u,v,uv)

()_ 1+ v2 uv
£19) = uv 14+ u?)°

we obtain

Exercise 3.63 Show that for the parametrisation of the torus given in Example 3.56

we obtain ,
£(q) = <(R—|—r<(:)os(v)) r02)

where we write g = (u, v).

We can also encode the second fundamental form Il of M in terms of a matrix-valued
map on U. We define

A: U= Mpa(R), g+ A(g) = M(llg(g), beg))-
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To compute the matrix entries of A explicitly, first observe that we may choose the unit
normal field N : M — TM+* so that

(3.10) G(q) =v(F(q)) = &EEZ; i gﬁzgr

where we write N(p) = (v(p)), for some smooth functionv : M — S C M3 1(R) and
where |w| = vw - w for w € M3 1(R). This follows from the fact that the cross-product
of two linearly independent vectors is orthogonal to the 2-plane spanned by the vectors.
Recall that v : M — S? s called the Gauss map of M and - by abusing language -
G : U — S?is sometimes also called Gauss map. Observe that

(01F(a))F) = F((&)g)  and  (92F(q))r(q) = F((&)q)

where {(é1),, (&)} denotes the standard basis of T,R?. Suppressing base points to
simplify notation and denoting the entries of A(q) by A;i(g) for1 < i,j < 2, we have

Aij(q) = —(dv(F.(&)), F.(§)) = —(d(v o F)(&). F.(&))
= —(dG(&). F.(§)),

where the second equality follows from the chain rule and the third equality uses that
G = v o F. Explicitly we thus have

Au(q) = —0:1G(q) - 01F(q),
A2(q) = —01G(q) - 2F(q) = =02G(q) - 91F(q) = Ax(q),
Ax(q) = —02G(q) - 02F(q),

where we write

01G(q) = %(q) and 0 G(q) = g—g(q)

Since G(q) - 91F(q) = Oforall g € U, we have

9 (G F)(q) = 0=:16(q) - 0:F(q) + G(q) - 1 F(q)

ou
sothat9;G(q) - O1F(q) = —G(q) - 8%, F(q), where we write
O2F
2 —
a].1":((7) T auau(q)

Using corresponding notation, we obtain likewise
326(q) - 92F(q) = —G(q) - 95,F(q)

and

916(q) - 02F(q) = —G(q) - 95,F(q) = —G(q) - 95 F(q) = 92G(q) - 1F ().
In summary, we thus have
Au(q) = G(q) - 951 F(q),
(3.11) A2(q) = G(q) - 95,F(q) = G(q) - 95, F(q) = Az (q),
A2(q) = G(q) - 93,F(q),
or written more succintly (while surpressing the base point)

(3.12) Aj =G O2F.

We next derive explicit identities for the functions Ko F: U - Rand Ho F : U — R.
Recall that for all g € U the matrix g(q) is the matrix representation with respect to
the basis br(q) of the inner product (-,-) £(q) on Tp(q)R3 restricted to Tr(,)M. From M06
Linear Algebra Il we know that the restriction of an inner product to a subspace is non-
degenerate. This is equivalent to g(g) being an invertible matrix for all g € U. We write
g 1 U— Myy(R)for the map which assign to a point g € U the inverse matrix of g(q),
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thatis, forall g € U we have g71(q)g(q) = 1,, where 1, denotes the identity matrix of
size 2.

Fixg € UandletS(q) € Ma»(R) denote the matrix representation of the shape operator
SF(q) at F(q) with respect to the ordered basis bg(q) of Tr(o)M

S(q) = M(Sk(q). br(q))

Write S(q) = (Sii(9))1<ij<2 for unique scalars S;;(q) € R. Moreover let X;, X, denote
the basis vectors of the ordered basis br(4). Then we have

2 2
== Su(9)egk(q) = — Y gwSui(a) = Ai(a).
k=1 k=1
In matrix notation we thus obtain the identity

(3.13) Alg)=-g(@S(a) <= S(a)=-g "(9)Aq)
Recall that the Gauss curvature at p € M is the determinant of S,. Hence we conclude
~ detA(q)

 detg(q)’

where the third equality uses that the determinant of a 2 x 2-matrix is unchanged when the
matrix is multiplied by —1 and the last equality uses the product rule for the determinant.

K(F(g)) = detS(q) = det (—g'(q)A(q)) = det (g *(q)A(q))

For the mean curvature we obtain correspondingly H(F(q)) = —% Tr (g7 *(q)A(q)) so
that in summary we have forallg € U

_ det A(q)
(3.14) D geratoy

H(F(@)) = 5 Tr (5 ()A(a)

Example 3.64 For the hyperbolic paraboloid with F(q) = (u, v, uv) where g =
(u, v) we compute

1 —V
G("’:m(l)-

From this one can calculate that

1
A(q) _ < (1) \/1+u2+v2>
VT2 v
and Example 3.62 gives
(q) = 14 v? uv
e = uv 1+ u?

From this we obtain det g(q) = 1 + v + v? so thatat F(q) = (u, v, uv) we have

Gauss curvature 1

K(F(q)) = NN
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which is in agreement with (3.5). We also obtain
uv

H(F(q)) = m

which differs from (3.6) by a minus sign. This is no error however, since G(q) =
—grad f(F(q)) forallg € U,where f : R} - R,p = (x,y,z) — xy — zis the
defining function of the hyperbolic paraboloid.

Example 3.65 (Torus) For the torus we obtain
cos(u) cos(v)
G(q) = | cos(v)sin(u)
sin(v)

and we can compute

Alq) = — (cos(v)(R + rcos(v)) 0)

0 r
From which we deduce together with Exercise 3.63
COos( Vv
K(F(@) = — o)

~ r(R+ rcos(v))

_1/1 cos(v)
H(F(q)) = 2 <r TRy rcos(v)) '

and

3.9 Immersed surfaces

All the calculations in the previous section also make sense if F is a smooth injective
immersion. This motivates:

Definition 3.66 (Immersed surface) Let U C R3beopenand F : U — R3asmooth
injective immersion. Then:

(i) theimage M := F(U) C R3is called an immersed surface;

(ii) the tangent space of M at p = F(q) is defined as

Tr(gyM := span{(01F(q))F(q). (02F(q))F(q)}-

Remark 3.67

(i) Inwhatfollows, whenever we speak of a surface M C R3 we mean animmersed
or embedded surface.

(i) While we can define the tangent space at each point of an immersed surface, we
have to be aware that immersed surfaces can have self intersections, compare
with Figure 4.1.

(iif) The Gauss curvature, mean curvature, shape operator, first and second funda-
mental form and Gauss map are defined in terms of the expressions from the
previous sections. Often, these quantities are interpreted as being defined on U.
For instance, the Gauss curvature of an immersed surface is often interpreted
asafunction K : U — R.
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FIGURE 3.5. A (subset of the) helicoid.

(iv) We will occasionally also allow U to be non open, provided there exists an open
subset U C R? containing U and a smooth immersion F : U — R3 so that the
restriction of F to U C U is injective.

Example 3.68 (Helicoid) Consider
F:R? - RS, g = (u,v)— F(q) = (ucos(v), usin(v), v)

Clearly, F is smooth and injective and a calculation shows that F is an immersion,
hence M = F(R2) C R3is an immersed surface called the Helicoid. Here we
compute

sin(v)
0= (g L) 60— [ o)

as well as

O
Alq) = <_ 1 6“ >
V1+u?
Which gives
1

The mean curvature of a Helicoid is identically 0. Such surfaces are called minimal
surfaces.

Definition 3.69 (Minimal surface) An immersed or embedded surface M c R3
whose mean curvature is identically 0 is called a minimal surface.

Remark 3.70 Minimal surfaces are mathematical idealisations of soap films and
belong to the most intensively studied surfaces in geometry. Despite having math-
ematical origins that date back to the 18th century, they are still actively studied.

An interesting class of immersed surfaces arises from rotating a curve in the xz-plane
around the z-axis.
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Example 3.71 (Surface of revolution) Let / beanintervaland v = (y1,72) : | — R?

a smooth injective immersed curve with v;1(t) > 0forall t € /. Consider F :

[0,27) x | — R3 defined by

(u,v) = 1R, (712(v), 0,72(v)) = (71(v) cos(u), 1 (v) sin(u), 72(v))
where R, is the matrix corresponding to rotation around the z-axis with angle u

cos(u) —sin(u) 0
R, = | sin(u) cos(u) O
0 0 1

Then, one can easily check that M = Im(F) C R? is an immersed surface known
as a surface of revolution. We compute the Gauss and mean curvature in the case
where v is a unit speed curve. We have

(—71(V) sin(u)) (’vi(V)COS(U))
01F(q) = [ 71(v)cos(u) and F(q) = | 71 (v)sin(u) | .
0 Ya(v

from which we compute

e cos(u)3(v)
s@= ("0 1) ane G(q):<sin(u)zg(v))

—1(v)
as well as
) 0
Ala) = ( 0 AV —71(V)7£’(V)>

K(q) = Y2(v) (11 (V)75 (v) = 797 (V)1a(v))
71(v)
Differentiating
M) +72(v)* =1
with respect to v we deduce

Y1 (V)Y (V) = =1 (V)3 (v),

so that //( ) /( )2 //( ) /( )2 //( )
_ n\Wvmlv) = \Wv)plv)s v
S () N0

For the mean curvature we obtain
1 (7(v)
HCI:( + (V)Y (v) — 5 (v)yL(v) ) .
() 2 \1(v) Y1 (V)72 (v) = (V) (v)
Notice that if x : /| — R denotes the signed curvature of the plane curve v =
(71,72) : | — R?, then we can write

o4 5

Exercise 3.72 (Catenoid) The surface of revolution arising from ~;(v) = cosh(v)
andy,(v) = visknown as the Catenoid. Show that the Catenoid has mean curvature
identical to 0. Warning: The formula for H from Example 3.71 cannot be used, since
v = (7,72) : R — R?is not a unit speed curve.
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Remark 3.73 The Catenoid is the first non-trivial example of a minimal surface (the
plane is a trivial example). It was discovered in 1744 by the Swiss Mathematician
Leonard Euler.

Exercise 3.74 Show that the surface of revolution arising from the tractrix - known
as the pseudo-sphere - has constant negative Gauss curvature.
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CHAPTER 4

Intrinsic surface geometry W
N
>

Animportant observationin geometry is that the Gauss curvature of an embedded surface
can be expressed in terms of the first fundamental form only. Gauss, who discovered
this fact, was so astonished by it that he called it a “Theorema Egregium” (Latin for
“Remarkable Theorem”). Geometric quantities associated to a surface which can be
obtained from computing inner products between tangent vectors - that is, quantities
that are computable once we know the first fundamental form - are called intrinsic.
Intrinsic quantities are in contrast to extrinsic quantities which cannot be computed from
knowing the first fundamental form alone. Prototypical examples of extrinsic quantities
associated to an embedded surface M C R3 are the second fundamental form, the
mean curvature and the unit normal field. The intuition for intrinsic vs extrinsic is that
intrinsic quantities do not rely on the ambient space R3 in which the surface is embedded,
whereas extrinsic quantities do.

Recall that the Gauss curvature is the product of the principal curvatures which can be
computed as the signed curvature of the curve cut out of the surface by intersecting it
with a suitable affine 2-plane. At p € M the affine 2-plane is spanned by a unit normal
vector N(p) and a tangent vector v,. The unit normal vector N(p) being an extrinsic
quantity, it is not clear at all that the Gauss curvature can be expressed without involving
N(p), this is however the case as we will see below. Gauss’ Theorema Egregium lead
mathematicians to consider geometric spaces which are not necessarily embedded in
a surrounding ambient space such as R3. This point of view is relevant in particular in
physics. As far as we know our universe does not sit inside a larger ambient universe, but
is a geometric space in itself.

4.1 The Gauss-Codazzi equations

Specifying an immersed surface F : U — R3 involves choosing 3 functions Fy, F,, F3 :
U — R. Recall that to an immersed surface F : U — R3 we associated two maps
g, A: U— Mpy(R) taking values in the symmetric 2 x 2-matrices. The map g encodes
the first fundamental form and the map A encodes the second fundamental form. We can
change our view point and prescribe two matrix-valued maps g, Aon an open set U C R?
and ask whether g and A arise from an immersion F : U — R3 via the expressions given
in (3.8) and (3.11). Thinking of g;;, Aj for 1 < /,j < 2as givenand Fy, F», F3 as unknown
functions, the equations (3.8) and (3.11) are a system of partial differential equations.
Partial differential equations are the (generally speaking more complicated) counterparts
to ordinary differential equations, the key difference being that the sought after functions
are allowed to depend on more than one variable. Many important laws of nature can
be phrased as partial differential equations, in particular, the so-called Einstein field
equations describing gravity, the Schrédinger equation arising in quantum mechanics
and the Maxwell equations governing the laws of electromagnetism. Understanding
partial differential equations is a fundamental part of modern mathematics.
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The two systems (3.8) and (3.11) give us 6 equations for 3 unknown functions Fy, F, F3.
Roughly speaking, whenever we have more equations (here 6) than unknowns (here 3)
we should expect some compatibility conditions among the equations so that we can
find any solutions. For historical reasons, in the theory of partial differential equations
compatibility conditions are often called integrability conditions.

In what follows we derive such conditions. That is, we derive conditions for the functions
gij, Ajj (and their derivatives) that are necessary for (3.8) and (3.11) to have a solution
F1, F2, F3. They appear in Proposition 4.5 below.

Let F : U — R3 be an immersed surface so that

c(q) == (01F(q), 92F(q), G(q))

is an ordered basis of M3 1(R) forallg € U. Forallg € Uandalll < /,j < 2, the vector
93F(q) € M3 1(R) can thus be written as a linear combination of the elements of ¢(q).
We can therefore find unique functions Ff.j. :U—RandBj: U— Rforl <i,j, k<2
so that

(4.1) O5F(q) = Ti(q)01F(q) + T5(9)02F (q) + Bi(q) G(q).
Taking the inner product with G we obtain
Aj=G-05F =T;(G-01F)+T5(G-9F)+ B; (G- G) =By,

where we suppress the base point, we use (3.12), G(q) - G(q) = 1 and that G(q) is
orthogonal to 91 F(q) and to 9> F(q). Taking inner products with 9; F and 9, F we obtain

OLF - OFF =TL (OuF - 01F) + T3 (O1F - 92F) = Thgu + Tgia

and
OoF - 2F =T} (02F - 01F) + T3 (0aF - 02F) = Tgar + Mgaa,

where we use (3.8).

Remark 4.1 (Einstein Summation convention) In what follows we employ a useful
notational convention going back to A. Einstein. Whenever an index appears as
an upper index as well as a lower index in the same term, then it is automatically
summed over. For instance, in the expression I'f-jgk/ the index / occurs both as an
upper index and a lower index, hence we have

r{'jgkl =g + régkz-

Using the Einstein summation convention, the above equations can be written as
6kF : 85/‘_ = Ff.jgk,.
Now notice thatfor1 < /,j, k < 2 we have
8,-gjk = 0; (8]/'_ . 8kF) = 83/’_ - OkF + ajF . 8,2,(/:
From this we compute
digik + 0jgi — Okgij = O3 F - OkF + OiF - O3 F + O5F - OkF + O;F - 03 F
— OgF - 0;F — OiF - Oy;F

so that
digik + 0jgi — Okgij = 20kF - OF,

where we use that 95 F = 93F. In summary we have

1
(4.2) rfjgk/ =5 (Oigjk + 0jgik — Ogij) -
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Recall that we write g~ : U — Ma»(R) for the map which assigns to g € U the inverse
of the matrix g(q). Itis customary to write

g—l _ <g11 g12>
g21 g22

for functions g : U — R which satisfy g'2 = g?!. By definition, we have
1, r=1,

rk _ rl r2 —
& 8k =8 8+ & 8 {0' r£ .

Using this we can compute

g™ Tiigu = Tg™ g =T}
Finally, using (4.2) we thus have

r 1 Il
M = 5&™ (Digi + g — Ougi) -

Definition 4.2 (Christoffel symbols) The functions Ff.j : U — R defined by

1 .
M= Eg/k (Oigjk + O;gik — Ok&ij) 1<ij,k1<2

are the Christoffel symbols associated to the immersion F : U — R3.

Notice that the Christoffel symbols satisfy
/ /

Example 4.3 (Example 3.71 continued) For a surface of revolution, we computed
that

so that

Moreover, we have
g11(q) = 271(v)11(v)
and 0;gjx = 0 otherwise. It follows that

I'h = r%z = F§2 = r§1 = r%z =0

and
Ma(q) =T(g) = %g”(q) (01812(q) + 02811(q) — D1812(q))
— 56 (@0am(q) = i) I
as well as

131(a) = 567(a) (91812(4) + hsra(a) — Dogna(a))

= —282(@)n(a) = —32n(WAY) = (V)

Example 4.4 (Example 3.68 continued) For the Helicoid we compute that

g(a) = (é 1+0u2>
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so that

Moreover, we have
01822(q) = 2u
and 0, gjx otherwise. It follows that

I'§2 = r%l = r%l = r%z = r%l =0

and
1
M2(9) = 51(9) = 587(9) (91822(9) + D2812(q) — P2812(4)))
71 22 - 2U - u
= 58" (9)01g22(q) = 21+2) 112
as well as
1 1
r%z = Egll(Q) (202812(q) — O1822(q)) = *Egll(qwlgm(q)
= —%2u =—

We now return to our problem of determining integrability conditions for finding F : U —
IR3 when we are given the functions gj;, A;; on U. Using the summation convention, we
can write (4.1) as
0% F = AuG + T OF.
Using this we compute
Qjikm : = [8; (0% F)] - OmF = [0; (AkG + T OiF)] - OmF
= 0;Aik G - OmF +Aj 0;G - OmF +0iTjy O/F - O F +T )y OFF - OmF
N—— \W_/ \H,—/ ——
=0 =—Aim =8im =T gmr

= —AjAim + a,-rj’-kg/m + rjl-kl_,f,gm,_
Indices that are summed over can be given new “names”, so that

rj’krlrlgmr =T krlagmr rjkrggmb = r}krggmb = rfkrfrgml-
Since gmi = gim We thus obtain

Qjikm = —AjAim + (0T M+ kF +) 8im.-
Using that third derivatives commute, we have 9;(95 F) = 8;(8j2k F)and hence
0 = Qjjkm — Qjikm = (@'rf-k a,r'k + I F’ - F +) 8im — (AiAjm — AjAim).

Writing
(4.3) Rijm = (0Tl — OiT j + Tl fy = T5T5,) 8,
we have the so-called Gauss equations
(4.4) Rijkm = AikAjm — AjkAim,
which must hold forall 1 </, j, k, m < 2. The functions Rjj, depend on the gj,, and the
Christoffel symbols only, thus they can be computed from knowing the functions gj;. If
we are given functions gj;, A;; on U, then the Gauss equations are necessary conditions

for the existence of an immersion F : U — R3 realising gj;, A;. We can derive more
necessary conditions as follows: Consider

Pji = [0; (0F)] - G = [0; (AxG + TiaiF)] - 6
(4.5) = 0AK G - GH+ARDG - G+ DT} OF - G+TLF - G.

=1 ~0
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Since G(q) - G(q) = 1, it follows as before that 9;G(q) - G(q) = Oforallg € U and
i =1, 2. Therefore (4.5) together with (4.1) gives

Pk = 0iAjk + Ty (TF0mF + AiG) - G = 9;Aj + T A
Again, using that third partial derivatives commute, we arrive at

0 = Pk — Pjix = 9;Ai — 0iAjx + T Ain — T Air.

Equivalently, at the so-called Codazzi equations
(4.6) 0jAu — 0iAj = T Ai — T Ajr,

which must hold forall 1 < 7, j, k < 2. This shows:

Proposition 4.5 (Gauss-Codazzi equations) Let U C R? be an open subset and
gij, Ajj - U — R smooth functions for1 < i,j < 2 with gi» = g1 and A1, = Az
Then the Gauss - and Codazzi equations

(4.7) Rijkm = A,'kAjm — jkAim and 8J-A,-k — G;Ajk = FJ’-kA,-, — kaAj,,

are necessary conditions for the existence of a smooth immersion F : U — R3 whose
associated functions via (3.9) and (3.12) are gjj and Aj;.

Remark 4.6

(i) Atheorem which goes beyond the scope of this course states that if U is so-
called simply connected (which is in particular the case if U is a rectangle), then
the equations (4.7) are also sufficient, provided gj;(q) is positive definite for
all g € U. Thatis, if gj;, Aj are given functions on U satisfying (4.7) and gj; is
positive definite, then there exists an immersion F : U — R3 realising gijand
Ajj and moreover, the image of thisimmersion if unique up to post composition
by a Euclidean motion.

(ii) Loosely speaking this all states that the functions g;; and A; capture an im-
mersed surface up to Euclidean motion.

(iii) Inthe case of a curve inIR?, we saw that the signed curvature captures the curve
up to Euclidean motion. We can prescribe any smooth function as the signed
curvature of a plane curve, whereas in the case of a surface the functions gj;, A;;
that we prescribe must satisfy the integrability conditions (4.7).

4.2 The covariant derivative revisited

Recall that

and

(gu(q) glz(q)) <Au(q) Au(q)>
g12(q) &2(q) A2(q)  Ax(q)

are the matrix representations of the first - and second - fundamental form I (), Il () at
F(q) with respect to the ordered basis ((91F(q))F(q), (02F(q))F(q)) Of Tr(qyM, respect-
ively. It is natural to wonder whether the Christoffel symbols [ also encode a natural
map.

Recall that if M C R3is an embedded surface and v : | — M a smooth curve and
X : | — TM avectorfield along v, so that X(t) € T,(;)M, then we defined the covariant

derivative of X as
DX .
=2(1) = N, wlX(2)
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forall t € /. Phrased differently, 2% (t) is the tangential component of the vector X(t) e
T (tyM with respect to the direct sum decomposition

TR = TyyM @ Ty(yM~.

We can use the covariant derivative of a vector field along a curve to define a directional
derivative of a vector field. If Y : M — TM is a smooth vector fieldon M and v, € TM,
we define the derivative of the vector field Y in the tangent direction v, by
Ve Y = E(Yo )(0)
% T 4y Y '

where v : (—¢, €) — M is asmooth curve with y(0) = p, ¥(0) = v, and ¢ > 0. We have
to make sure that the choice of iy does not matter, thatis V; Y does only depend on Y
and v,. Write

Y3(p)

for smooth functions Y’ : M — R. Then by definition

p

Vi, Y =N u(Z(0)),
where Z = Y o . We have

| (Y 04)(0) dY*(5(0)) dY(7,)
20)= [ (Vo) ] ={dvG0)] = dvi(5)
(Vo)) o \dV?G0)/) L \dY3(T)

We conclude that Z(O) does only depend on Y and v, and hence so does V Y/, since
I'I%PM does not depend on the choice of curve 7.

k)

Let X(M) denote the set of smooth vector fields on M. We define addition in the natural
way, that is, for X, Y € X(M), we defineforallp € M

(X +Y)(p) == X(p) + Y(p).
Moreover, for a smooth function f : M — R we define
(7X)(p) == f(p)X(p).
For two vector fields X, Y € X(M) and all p € M, we define
(VxY)(P) = Vx(p)Y € TpM.

With these rules in place we can thinkof Vasamap V : (M) x X(M) — X(M) defined
by
(X, Y) = VxY

The map V is also called the covariant derivative.

Lemmaa4.7 Let X1, Xz, Y1, Yo € X(M) and f : M — R a smooth function. Then the
covariant derivative satisfies:
(i) Vxi+x Y1 =Vx Y1+ Vx Y
(ii) Vxl(yl + Y2) = VX1 Y1 + sz Yo;
(iii) Ve, Yi =1Vx Y,
(IV) Vxl(fyl) = fVXl Y1 - df(Xl)Yl

Proof Exercise. O
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Remark 4.8 In Lemma 4.7, df(X;) is the smooth function on M defined by
df(X1) : M — R, p— df(Xi(p)).

By construction the covariant derivative V does depend on the first fundamental form
only, it is thus an object of intrinsic surface geometry. In fact, the Christoffel symbols do
encode V, more precisely, we have the following statement:

Proposition 4.9 Let M C R3 be a surface and F : U — M a local parametrisation
of M with Christoffel symbols Ffj‘- :U— Rfori,j, k=1,2. ThenonIm(F) C M we
obtain vector fields B; for i = 1, 2 defined by the rule
Bi(F(q)) = (9:F(a))r(q
forall g € U. For these vector fields we have
(Ve Bj)(F(q)) = T5(a)Bk(F(q))

for all g € U and where we employ the summation convention.

Remark 4.10 Since F : U — M is an immersion, it follows that {B1(p), B2(p)} is a
basis of T,M forall p € F(U).

For the proof we need the following:

Lemma4.11 Let M C R3 be a surface and F : U — M a local parametrisation of
M. Suppose ¢ = (ct, c?) : | — Uis a smooth curve and X : | — M is a vector field
along the curve y = F o c : | — M. Writing

(4.8) X(t) = XI(t)Bj(v(t))
for unique smooth functions X' : | — R, we have
/ ci
w9 S0 (SO OO 0) B00),

where in (4.8) and (4.9) we employ the summation convention.

Proof Takingthe time derivative of (4.8), we obtain

X(0) = (LEO () + X055 (O F(ele )

Since 95 F = I'J’-,-E)/F + A; G, we get

x() = (L0 F(elo)

X0 S 0) (T (el) + Ay ()G(e(e))

v(t)
The tangential component of X (t) is thus given by

5 0= (T o0 0) BG)

as claimed. O
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Proof of Proposition 4.9 In order to compute (Vg,B;)(F(q)) we can choose a curve
7 : (—€,€) = Mso that4(0) = B;(F(q)) and then evaluate 2 X(0) using the formula
(4.9) for X := Bjo~. Let e, e; denote the standard basis of R?, interpreted as points, and
consider the curve ¢ : (—¢, €) — U defined by the rule c(t) = g + te; for e sufficiently
small. Notice that v = F o c satisfies y(0) = F(g) and moreover 4(0) = B;(F(q)). Since

X(t) = Bi((t)) = (@'F(C(t)))y(t)

it follows that the functions X" in (4.8) are given by X'(t) = 4/ forall t € (—¢, €). Moreover,
we also have

%(t) = ok
Renaming indicesin (4.9) and evaluating at t = 0 we obtain
DX, (dX! , ey €7
(V8. B)F(@) = 5 0 = (G0 + TcOX" O ) (aFeo))
= (T1n(@)3757) (9F(a) = T3(@)BIF(a)),
as claimed. O

Recallthatageodesicy : | — M must satisfy %(t) = Oforallt € /. From Proposition 4.9
we thus obtain:

Corollary 4.12 Let M C R3 be a surface and F : U — M a local parametrisation of
M. Suppose ¢ = (ct, c?) : | — Uis asmooth curve. Theny = Foc: | — Misa
geodesic if and only if c satisfies the so-called geodesic equation

2 i
(.10 O+ The() S (1)

forall t € | and where we employ the summation convention.

dc/
E(t) =0

Proof This follows immediately from (4.9) for X = 4 so that X/(t) = ‘ifti(t). O

Also, for vector fields X, Y € X(M) we obtain a function
(X Y):M=R, p=(X(p). Y(p))p
and with this definition we have for all Z € X(M)
(4.11) d((X,Y))(Z2)=(VzX,Y)+ (X, VzY),
which can again be deduced from (4.9).
Example 4.13 (Geodesics on the helicoid - Example 4.4 continued) For explicit

calculations it is often convenient to write u(t) instead of c(t) and v(t) instead of
c2(t). Doing so we obtain for the geodesic equation on the helicoid

d?u dv, . dv
0= d?(t) - U(t)a(t)a(t)v
_ d?v 2u(t) du, . dv

0= @(t) + 1 + u(t)2 E(t)a(t)

or, using primes to indicate derivatives and omitting writing t, we have
2u
11 !/

u' = uv'v and v :fﬁu/v.
1+u
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Example 4.14 (Geodesics on the torus) We can parametrise the torus in terms of
F:(0,27) x (0, 27r), (u, v) = (cos(u)y1(v), sin(u)y1(v), v2(v))
where y1(v) = R + rcos(v/r) and v2(v) = rsin(v/r). Since vy = (71,72) :
(0, 2r) — Ris a unit speed curve, we obtain for the geodesic equation

o) s, sinlv/n)
71 (v) R + rcos(v/r)

and
V' =y (v)vi(v)d'v' = —(R+ rcos(v/r))sin(v/r)u'u,
where we use the identities from Example 4.3.

Remark 4.15 We referto M12 for techniques to solve systems of ordinary differential
equations. Generally speaking, it is rather exceptional that one can explicitly write
down a solution to a geodesic equation.

4.3 Curvature tensor and the Theorema Egregium ‘l’s&r

In the previous section we saw that the Christoffel symbols FJ’Z,( : U — R, defined with
respect to a local parametrisation F : U — R3, encode the covariant derivative V. It is
natural to ask what object the functions Ry : U — R encode. We first define:

Definition 4.16 (Commutator of two vector fields) The commutator of the two
vector fields X, Y € X(M) is the vector field [X, Y] € X(M) defined by

(4.12) [X,Y] = VxY — VyX.

Remark 4.17 The previous definition is a pedagogical simplification of the notion
of the commutator of two vector fields. The commutator is usually defined in terms
of the so-called flows of the vector fields. We refer to the literature for further details.

We let C*°(M) denote the smooth functions on a surface M, thatis, f € C*(M)is a
function f : M — R which is smooth. Using the commutator we now define:

Definition 4.18 (Curvature tensor) Themap R : X(M) x X(M) x X(M) x X(M) —
C*>°(M) defined by the rule

R:(X, Y, ZW)—= (Vx(VyZ)—Vy(VxZ)— Vix,v)Z, W)
is called the curvature tensor of M.

The curvature tensor satisfies:

Proposition 4.19 For a local parametrisation F : U — M we have for all q € U
R(Bi, Bj, B, Br)(F(q)) = Rjir(q).
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Proof We first want to compute V. (Vg Bx)(F(q)) forallg € Uandalll </, j, k

<

2. From Proposition 4.9 we know that (Vg Bx)(F(q)) = I'J’-k(q)B,(F(q)). In order to

compute V,(Vp, Bi)(F(q)) we proceed as in the proof of Proposition 4.9 and choose
curvey : (—¢, €) = Msothaty(0) = gand 4(0) = B;(F(q)). We then compute

(V880 07) 0

a

by using (4.9). Recall that we can choosey = F o ¢, where ¢ : (—¢,€) — U is given

by t — g + te; for e sufficiently small. Write X = (ij Bk) o v, then (Vg,B)(F(q))
rJl'k(fJ)B/(F(q)) implies that
X!(t) = T(c(t))

and hence /
dX
W(O) = 5irjl'k(q)-

Writing (4.9) as

SO = (T x5 0) (aFe)
we obtain DX
e (©) = (0T(@) + M@ @) (9F (),

where we use that %(0) = 4. In total, we get
(4.13) V5,(Vs,B)(F() = (9T(a) + Th(@)2(a) ) Bi(F(a).
Since I'J’-k = Ff{j, it follows that Vg, By = Vg, B; and hence (4.12) implies [B;, Bi] = 0.
Using the definition of R and (4.13) we thus obtain
R(B;. Bj. Br. B)(F(4)) = (Vs(V5,Bi)(F(4)) ~ Ve (Vs B)(F(a)). B(F()))

= ((0T(@) + M@ 72(a) = 1T (@) — Th(@)T32(a) ) BI(F(a)). B(F(a)) )
Since (Bi(F(q)), B,(F(q))) = gir(q), this becomes

R(B;, Bj, Bt B,)(F(q)) = (&-FJ’-k(q) + (@) R() = 9Tk (q) — Tjm(q) ,‘Z(q))g/r(q)

= jikr(Q)v

where we use the definition (4.3) of the functions Rjy : U — R.

Remark 4.20

(i) Proposition 4.19 implies that the functions Rjj, encode the curvature tensor
with respect to a choice of a local parametrisation F : U — M.

(ii) Notice that R does depend on V and the first fundamental form only, it is thus
an object of the intrinsic geometry of a surface.

(iii) (V- not examinable) Recall that second partial derivatives of a twice continu-
ously differentiable function f : U — R commute, that is, we have 8,-2jf(q) =
8j2if(q) forallg € Uandalll < /,j < n. This is not true any more for second
covariant derivatives. That is, in general we have Vx(VyZ) # Vy(VxZ).
The curvature tensor may be thought of as measuring the failure of second
order covariant derivatives to commute. The additional term —Vx y;Z in the
curvature tensor makes sure that R is a multilinear map.

Finally, we have

O
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Theorem 4.21 (Theorema Egregium) Let M C R3 be a surface. The Gauss curvature
of M does depend on the first fundamental form only and with respect to a choice of
local parametrisation F : U — M we have forall g € U

K(F(0) = o).

Proof From (3.14) and (4.7) we conclude that

_ det A(q) _ A11(q)A2(a) — A12(9)*  Ri212(q)

K(F(q)) = detg(q) detg(q) - detg(q)

We can thus express the Gauss curvature of M in terms of the curvature tensor and
the first fundamental form only. Since the curvature tensor is built from V and V does
depend on the first fundamental form only, the Gauss curvature does depend on the first
fundamental form only. O

Exercise 4.22 Show that the functions R satisfy the following symmetries
Rijxt = —Rjis = —Rijix = Ruij.-

Hint: Use the Gauss equations (4.4).

From the previous exercise we conclude that

Ri14(q) = Ro2wi(q) = Rij11(q) = Rij22(q) =0

forallg € Uandalll < i,j, k, | < 2. Theorem 4.21 implies

Ri212(q) = —Ro112(q) = —Ri221(q) = Ro121(q) = K(F(q)) detg(q)

We thus obtain the formula

’ Rijin = K (gikgji — gjx&ir) ‘

which holds forall 1 < 7, J, k, I < 2 and where we omit the base point g € U.

For vector fields X, Wi, W, € X(M) and functions f1, , € C*°(M), we have from the
bilinearity of (-,-), forall p € M that

<)<v lel + f2W2> = f1<X, W1> + f2<X, W2>
Thisimplies thatforall X, Y, Z, Wi, W, € X(M) and f1, f, € C*°(M) we have
R(X,Y,Z AW, + HWo) = AR(X,Y,Z Wi) + AR(X, Y, Z, Ws)

Exercise 4.23 Show that forall Z;, Z,, W € X(M) and all f;, f, € C°>°(M) we have
R(B1, By, hZh + hZo, W) = AR(By, Ba, Zy, W) + LR(Bi, Ba, Zo, W).

Remark 4.24 The statement from the previous exercise is still true if we replace
B, B> with arbitrary vector fields X, Y, we will however not need this fact.
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4.4 Geodesic curvature

Asinthe case ofaplane curve, aclosed curve~ : [a, b] — Minasurface Mis called simple
if the restriction of 5 to the half-open interval [a, b) is injective. Recall from Theorem 2.39
that a smooth unit speed curve in R? that is simple and closed has rotation index +1 - or
equivalently - total (signed) curvature +27. It is natural to ask whether this is still true
for simple closed curves on a surface M. In order to turn this into a sensible question we
need a notion of curvature for a curve on a surface. This leads to the notion of geodesic
curvature.

Let M C R3 be a surface equipped with a unit normal field N : M — TM~*. We define

Definition 4.25 (Geodesic curvature) Let~ : I — M be a smooth unit speed curve.
The geodesic curvature of -y is the function

kgl SR, te <3j(t), N(+(1)) x A'y(t)> |

The geodesic curvature for a curve in a surface M is indeed a natural replacement for the
signed curvature of a plane unit speed curve:

Example 4.26 (Geodesic curvature of a plane curve) Let M = {(x,y,0)|x,y € R}
andy = (71,72,0) : | — M be a unit speed curve, where v; : | — R are smooth
functions for i = 1, 2. Taking

0
N(p)= {0
1
P
forall p € M, we obtain
0 71(t) —75(t)
N(v(t)) x ()= | [ 0] x [ (1) = m(t)
1 0 ~(t) v ~(t)
and
: 71 (¢)
Dy
=)= 4
0
so that

rg(t) = =71 (£)7a(t) + 72 ()7 (t)
which is the signed curvature of the unit speed curve vy = (v1,72) : | — R? (see
(2.9)).

Exercise 4.27 Show that~ : /| — M is a geodesic if and only if k,(t) = 0 for all
tel

Remark 4.28 Let p € M and v, € T, M. Having a unit normal field N/, we let J,(V},)
be the unique vectorin T,M so that v, x J,(v,) = N(p). The properties of the cross
product imply that this defines a linear map J, : T,M — T,M which corresponds
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FIGURE 4.1. A simple closed curve on a helicoid.

to “counter clockwise rotation by /2", In particular, J(V},) is orthogonal to v, has
the same length as v, and we have the formula

N(p) x v, = J(V}).
In terms of J,, the formula for the geodesic curvature thus becomes
Dy .
wa(®) = (510 (0}

Notice that this precisely corresponds to the signed curvature of a unit speed curve
(2.6), where the acceleration # is replaced with the covariant derivative % of the
velocity vector 7.

For what follows it is convenient to slightly simplify notation:

Remark 4.29 (Notation)
(i) Foravector field X on M we write JX for the vector field defined by
IX(p) = Jp(X(p))

forall p € M. Likewise, for a vector field Y along a curve v we write JY for the
vector field along v defined by the rule

JY(t) =y (Y(2))
forallt € /.

(ii) Foracurve~y : I — M we write X, for the vector field along y obtained by
restricting X to v(/), that s,

Xy (t) = X(~(t))
forall t € /.

Having the notion of geodesic curvature we can ask: Given a simple closed smooth
unit speed curve v : [0, L] — M of length L and denoting its geodesic curvature by
kg [0, L] = R, isitstill true that

L
/ kg(t)dt = +277
0

To answer this question we need the notion of integrating a function over a surface M.

Letf : M — Rbeafunctionand F : U — M a local parametrisation of M. Suppose
Q C Uisasubset so that the function defined on Q by the rule

h(q) := f(F(q))\/det(g(q))

75



is measurable in the sense of Lebesgue. Then we define
(4.14) / fdA:= /(fo F)+/det(g)dp,
F(Q) Q

provided the right hand side is finite and where integration is carried out with respect to
the Lebesgue measure.

The motivation for the factor \/det g is a follows: Recall that { By (p), B2(p)} is a basis for
all p € F(U). Consequently, Bi(p) x Bx(p) spans T,M~* forall p € F(U). Therefore we

may take
Bi(p) x Bx(p) )
N(p) = <
®)=\[B1(6) x Balo)] ),
as a unit normal field on F(U) C M.

A direct calculation shows that the cross product of two column vectors vV, w € M3 1(R)
satisfies

|V x w||? = (Vx W) (Vx w) = (V- V)(W-w)— (VW)
which implies that forall g € U

1B1(p) x B2(p)|l = v/(Bi(p), B1(p))(B2(p). B2(p)) — (B1(p). B2(p))>

— J(@F(q) - 01F( ))(agF(q)~azF(q))—(alF(q>-azF(q>)2

= V/&11(9)g22(q) — £12(q)? = /det(g(
where we write p = F(q).

Recall that the quantity ||V x w|| equals the area of the parallelogram whose sides are
given by the vectors v, w. The factor \/det(g(q)) thus gives the surface area of the
parallelogram in T¢4) M whose sides are given by Bi(F(q)) and B>(F(q)).

Example 4.30 (Surface area of the 2-sphere) Let M = S? be the 2-sphere of radius
1 and take f : $> — R to be the function assuming the value 1 everywhere. For
the parametrisation F : U — S? C R3 from Example 3.55 with U = (0, 27) x

(=m/2,7/2) we computed
glq) = (Cosév) (1)) :

where g = (u, v). Since cos(v) > 0for v € (—m/2, 7/2) we thus obtain

27 /2
/ dA:/cos(v)d,u:/ / cos(v)dv | du
F(U) U 0 —m/2

27 /2 27
:/ sin(v) du—/ 2du = 4.
0 0

—7/2
If U c R?isan opensetand ¢ : U — U a diffeomorphism, then one obtains another
parametrisation of M givenby F := F o ¢ : U — M. Denoting by Q2 the subset of U so
that ©(Q) = Q, we have

(4.15) /ﬁ(foﬁ)vdet(é)du:/Q(foF)\/%du,

where g : U — M,5(R) encodes the first fundamental form with respect to F. For a
proof of (4.15) we refer to a book about measure theory. A consequence of (4.15) is that
the definition (4.14) is independent of the parametrisation F : U — M and we can
thus define the integral of a smooth function  : M — R over (sufficiently nice) subsets
D c M.
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4.5 First version of the Gauss-Bonnet Theorem %Z?r
9

We are now able to answer the question from the previous section.

Theorem 4.31 (First version of the Gauss-Bonnet Theorem) Let~ : [0, L] — M bea
smooth simple closed unit speed curve of length L whose image is contained in F(U)
for some local parametrisation F : U — M. Let D C M denote the region enclosed
by v and assume that J7(t) points into the interior of D for all t € [0, L]. Then

L
/ ng(t)dt:27r—/ K dA,
0 D

where k4 denotes the geodesic curvature of v and K the Gauss curvature of M.

The proof of the Gauss-Bonnet Theorem relies on Green’s theorem which we will prove
in the study week 13 of this course.

Lemma4.32 Let Y : [0, L] — M be a vector field along the curve v : [0, L] — M
satisfying (Y (t), Y(t)) = 1forallt € [0, L], then we have forall t € [0, L]

DJY DY
(416) 2 (0= b (510).

where J.(;) is defined as in Remark 4.28.

Proof Inwhat follows, all identities hold for all ¢ € [0, L], we will however omit writing t
each time to lighten notation. Since 1 = (Y, Y) = (JY, JY), taking the time derivative
implies

DY DJY

We also have
(Y, JY)=0
and taking the time derivative again, this implies

o= (2X )4 (v, 2
dt dt

Applying J to the left summand, we obtain

) == G) )= (0 ()

where we use that J(JY) = —Y. We thus have

DJY DY

Applying J to the first identity in (4.17) we also have

o~ (o))

Using the second identity in (4.17) we conclude

DJY DY

Since {Y(t), JY(t)} isabasis of T ;)M forall t € [0, L], (4.18) and (4.19) imply that the
vector Dy DYy
S0 ()
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is orthogonal to all vectors of T ;) M. Since (-,) () is non-degenerate this implies the
claim. O

We also need:

Lemma 4.33 Let F : U — M be a local parametrisation of the surface M C R3
with associated vector fields By, B, on F(U) C M, X a smooth vector field on M and
¢ : I — U asmooth curve. Writing v = F o ¢, we have

DX, dc!

= = (Ve X)) + 5 (Ve X)(7).

dt

Proof Since {Bi(p), B»(p)}isabasisof T,Mforallp € F(U),thereexistunique smooth
functions X1, X2 : F(U) — R so that

X(p) = X*(p)Bi(p) + X*(p)B2(p) = X'(p)Bi(p),
forall p € F(U), where we use the summation convention on the right hand side. This
givesforj =1,2
Vg X = Vg,(X'B;) = dX'(B;) + Vg Bi = dX'(B))B; + X'T}Bx,
where we use Lemma 4.7 Item (iv) as well as Proposition 4.9 and omit writing base points.
Consequently, we have
dc/ dc/

9 (VX)) = (1) (X (B ()BI(1) + X (DTS Bul(1)
= 220 ) (5o
dd/

- SO 0(0)

where we use (4.9). The claim thus follows provided we show that for k = 1,2 and all

t € I we have )
& (XK on(e) = axH (B (1) e ().

Since v = F o ¢, the chain rule gives
@20 & (XKoFoc)(t)= (BX*(1(1) X)) 9X*(1(1))
O1F(c(t))  D2Fi(c(t))
(81F2(c(t)) aze(c(t)))<
O F3(c(t)) 0a2Fs(c(t))
which agrees with
dct dc? dc’

dX(Bu(v(£))) 5 (8) + XK (Ba (v (1)) - () = dX (B (7(1))) 5 (1),

since B;(+(t)) = (@F(c(t)))ﬂt). O

Proof of Theorem 4.31 Let Z be the vector field defined on F(U) by the rule
O1F(q)
£1(a) r(g)
forall g € U. Notice that (Z(F(q)), Z(F(q))) = 1and
2(F () - BF@)
g11(q)

Z(F(q)) =

forallg € U.
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Sincey : [0, L] — Mis a unit speed curve, there exists a polar angle function ¢ : [0, L] —
R so that

(4.21) 4 = cos(¢)Zy + sin(¢)JZ,

where here and henceforth we omit writing the time ¢ € [0, L]. From this we compute

=) (22

Using this identity and Lemma 4.32 together with
Jy = cos(¢)JZ, — sin(¢)Z,,

D DZ
Ky = <dZJ>:¢’+<d”Jz>

We next want to evaluate Ddz; using Lemma 4.33. For this we need expressions for Vg, Z
for i =1, 2. We obtain

— ¢/Zv) + cos(¢) (Dd? + (b’JZA,) .

We can calculate that

0=d((Z.2))=2(V52.2),
where we use (4.11). It follows that (V5. Z)(p) is orthogonal to Z(p) forall p € F(U) and
hence there exist unique functions P : U — Rand Q : U — R so that
(Ve.2)(F()) = P(@)JZ(F(a)  and  (V&,2)(F(a)) = Qa)JZ(F(a))

Let ¢ : [0, L] — U be the smooth curve so thaty = F o c. Using Lemma 4.33 we thus

obtain

B2, (1) — < (0)P(e(tIZ(r(e) + 2= Qe IZ(3(0)

hence we have
cl 2
<Ddztv(t), JZw(t)> = dcTt(t)P(C(t)) + %(t)Q(c(t)),

Now Green’s theorem states that

/OL <ddct1(t)P(C(t)) + ddCt ()0 )dt = / 81Q(q) — &P(q)dy

Using the expressions for Vg, Z we compute

(Ve,(Ve,2)) (F(q)) = 01Q(q)JZ(F(q)) + Q(a)JV s, Z(F(q)),
= 01Q(q)JZ(F(q)) — P(q)Q(9)Z(F(q))

and
(Ve,(V,2)) (F(q)) = 92P(q)JZ(F(q)) + P(q)IVs,Z(F(q)).

= 02P(q)JZ(F(q)) — P(q)Q(a)Z(F(q))

so that
01 Q(q) — %P(q) = (V,(Ve,Z) = V5, (Ve,2), JZ)(F(q))

= R(By, B, Z, JZ)(F(q)),

where we use that [By, B,] = 0, since the Christoffel symbols satisfy '} = F

It remains to compute R(By, By, Z, JZ). Recall that
By
V811 '

From the conditions (Z, JZ) = 0, (JZ,JZ) = 1and Z x JZ = N we obtain with a
calculation that we must have

Z:

1
JZ = ———— (g11B> — g12B1) .
det(g)/811
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Using these expressions, we obtain

1
R(B1,B>, Z,JZ) = ————R(B1, B2, B1, g11B2 — g12B1)
det(g)g11

1 R R
= ——=R(B1, B2, B1, By) = 2112 M2

V/det(g) V/det(g) \/det(g)
= —K/detg

where we use Proposition 4.19, Theorem 4.21 and Exercise 4.22. In summary, we have

calculated that
L L
/ /-;g(t)dt:/ (b'(t)dt—/KdA.
0 0 D

Since J4(t) points into the interior of D for all t € [0, ], it follows with Theorem 2.39
that [, ¢/(t)dt = 2. O

4.6 Second version of the Gauss-Bonnet Theorem

Recall that one of the fundamental theorems of elementary geometry states that the sum
of the interior angles of a triangle equals 7. A triangle consists of three distinct points
(often called vertices) in the plane R? which are connected by segments of straight lines
(often called edges). In the context of a surface M C R3, the notion of a straight line is
replaced by the notion of a geodesic. This leads to the notion of a geodesic triangle.

Definition 4.34 (Geodesic triangle) A geodesic triangle A on an oriented surface
M C R3 consists of three distinct points p;, po, p3 € M connected by segments
of geodesics. That is, there exist geodesics v; : [0, ¢;]] — M with v;(0) = p; and
7i(4;) = pit1 (with the convention that p; = p;). Furthermore, v; : [0, 4;] — M is
assumed to be injective.

We define the exterior angle at p; to be the angle between the vectors 4;_1(¢;—1) and
4i(0) with the convention 79 = 3 and ¢, = ¢3. The exterior angle is negative when
Ji—1(¢i—1) x 4:(0) is a negative multiple of N(p;). Here and henceforth we always assume
that —m < 9; < 7. The interior angle «; at p; is then defined to be a; = 7 — 9J;.

Example 4.35 (Geodesic triangle on the sphere) On S? C R3 we consider a octant,
that is, the region enclosed by a geodesic triangle with p; = (1,0, 0), p» = (0, 1,0)
and p3 = (0,0, 1). Here we may take geodesics

7(t) : [0, 7/2] — S?, t — cos(t)p1 + sin(t)p2,
Ya(t) : [0, /2] — S2, t — cos(t)p2 + sin(t)ps,
y3(t) : [0, /2] — S2, t — cos(t)ps + sin(t)p1.

It follows with a simple calculation that a; = ap = a3 = 7/2 so that

37
a1+a2+a3:7>7r.

For a geodesic triangle OA it is thus not true anymore that the sum of interior angles is
always 7. It is natural to guess that the angle deficit between 7 and the sum of interior
angles is related to the curvature of the enclosed region A. This suggests to look into
a version of the Gauss-Bonnet Theorem for curves ~ that are only piecewise smooth.
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FIGURE 4.2. A geodesic triangle on the 2-sphere enclosing an octant
and its exterior angle 9.

Roughly speaking, these are curves that are smooth except for finitely many exception
points, called corners.

Definition 4.36 (Piecewise smooth curve) Acurve~ : [a, b] — Mis called piecewise
smooth if there exists k € Nandtimesa = To < T; < --- < T, = bsothat
Y710y - [Tiw Tiya] — Mis smooth.

Notice thatif v : [a, b] — M is a geodesic and ¢ : R — R a smooth parameter of the
form ¢(t) = st + to for real numbers s, ty, then v o ¢ is also a geodesic.

We define the exterior angle at the corner of a piecewise smooth curve as in the case of a
geodesic triangle.

Example 4.37 A geodesic triangle may be thought of as a piecewise smooth curve.

We now have:

Theorem 4.38 (Second version of the Gauss-Bonnet Theorem) Let~ : [0, L] - M
be a simple closed unit speed curve of length L which is piecewise smooth with exterior
angles ¥, ..., ¥y at the corners ps, ..., px of v and whose image is contained in F(U)
for some local parametrisation F : U — M. Let D denote the region enclosed by -y
and assume that J¥(t) points into the interior of D for all t € [0, L] with the exception
of the corner points. Then

L k
/ kg(t)dt+219,-=27r—/ KdA,
0

i=1 b

where k, denotes the geodesic curvature of vy and K the Gauss curvature of M.
This version of the Gauss-Bonnet Theorem implies:
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Corollary 4.39 Let OA C F(U) be a geodesic triangle enclosing the region D € M
and let «; denote the interior angle at the corner p;of OA, where i = 1,2, 3. Then

a1+a2+a3=7r+/ KdA.
D

Proof Since OA is geodesic triangle, the geodesic curvature terms in Theorem 4.38 are
all zero, hence we obtain

191+192+193:27T—/ KdA.
D

Since the exterior angle «; satisfies o; = m — 1J; we have equivalently

37T—al—a2—a3:27r—/

KdA <— a1+a2+a3:7r+/KdA.
D

D

Sketch of a proof of Theorem 4.38 The curve v is the image of a piecewise smooth
curvec: [0,L] — U. Letqy, ..., gx € U denote the corners of c. We can smoothen the
curve + as follows. For e > 0 sufficiently small we remove the part of ¢ whose image
is contained in a disk of radius € around g; and glue in a smooth curve piece to obtain a
smooth curve ¢, : [0, L] — U with corresponding smooth image curve y. = F o c.. We
then apply Theorem 4.31 to -y, and consider the limit as € goes to zero. Let ¢, : [0, L] = R
denote the polar angle function of 7. as defined by (4.21) and kg : [0, L] — R the
geodesic curvature of .. Applying Theorem 4.31 we have

(4.22) /OL Kge(t)dt = /OL oL(t)dt — /DF KdA,

where D, denote the region enclosed by .. As e tends to zero the polar angle function ¢.
converges to a function which jumps by the exterior angle ¢J; at each corner p; and hence
misses the contribution of ¢J; at each corner p;. Taking the limit as e goes to 0 in (4.22) we
thus arrive at

L k
/ Hg(t)dtZZW—Zﬂ,-—/ KdA.
0 sy D

Example 4.40 (Example 4.35 continued) For the 2-sphere S? of radius 1 we have
K = 1 and hence for the octant A from Example 4.35 we have

KdA:7r+/ dA,

3r
a1+a2+a3:7:7r+
A

A
so that fA dA = 7 /2, thatis, the octant has surface area 7 /2 and hence the whole
sphere has surface area 8 - 7/2 = 4, which is in agreement with the calculation in
Example 4.30.

Exercise 4.41 Use the Gauss-Bonnet theorem to conclude that on a surface M with
K(p) < 0two geodesicsy; : [0, L1] — M and, : [0, Lo] — M can intersect in at
most one point.
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4.7 Global version of the Gauss-Bonnet Theorem %Z?r
{7

Itis natural to wonder whether the Gauss-Bonnet Theorem considered so far has any
implications on the total Gauss curvature of an embedded surface M C R3. Thisisindeed
the case. In case M is compact (recall this this is equivalent to M C R3 being a closed
and bounded subset), the total Gauss curvature is always an integer multiple of 27. The
integer is called the Euler characteristic of M. It can be computed in terms of a so-called
triangulation of M. A subset A of a surface M is called a triangle if A is the image of
a simple closed curve which is a piecewise smooth curve and which has 3 corners. A
triangulation of a surface M is a finite set T = {A; € M |1 < i < N} of triangleson M
so that

(i) UL, A = M;
(i) if for a pairofindices i # j we have A;NA; # (), then A; N A; consists of acommon
edge or of a common vertex.

For a given triangulation 7 of M we call
x=V-E+F

the Euler characteristic of the triangulation 7. Here F = N denotes the number of faces
(i.e. triangles) of 7. The number V denotes the number of vertices and E the number of
edgesof T.

Animportant theorem from a course about topology states that every compact embedded
surface M C R3 admits a triangulation 7 and moreover xy = x(M) is independent of T.
Furthermore, one can show that x (M) is related to the (roughly speaking) number g of
holes of the surface via the relation

x(M) =2-2g.

Example 4.42 For the 2-sphere S? C R3 we obtain a triangulation 7 in terms of its
octants and for this triangulation we have

x(5)=V-E+F=6-12+8=2.

A sphere has no hole, hence x(M) = 2 — 2 - 0 = 2, which is in agreement with the
value obtained in terms of a triangulation.

Example 4.43 Thetorus T C R3 has 1 hole, hence
x(T)=2-2-1=0.

Considering surfaces with more than one hole we obtain surfaces whose Euler character-
istic is negative.

We can now state:

Theorem 4.44 (Global version of the Gauss-Bonnet theorem) Let M C R3 be a
compact embedded surface with Gauss curvature K, then
1

— [ KdA = y(M).
27er x(M)
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Sketch of a proof Since M is compact we can find a triangulation 7 of M so that each
triangle A; € T is contained in the image of a local parametrisation of M. Applying the
local version of the Gauss-Bonnet Theorem 4.38, we obtain

3
KdA+/ Ke(t)dt = 21 — i,
[ waas [ et >0

i i

where here [, rg(t)dt stands for the first summand in Theorem 4.38 with  : [0, L] —
M being a simple closed unit speed curve travelling counter clockwise around the triangle
A;. Moreover 1;; denotes the j-th exterior angle of the i-th triangle A;. Having F triangles
in our triangulation, we thus obtain

F F 3
> (/ KdA +/ mg(t)dt> =2rF - > ;.
i—1 Aj OA; i=1 j=1
In the second summand, the geodesic curvature is integrated over each edge twice, with
opposing orientation. Consequently

F
0= / Ko (t)dt
;M £(t)

and we obtain

F
Z/ KdA:/ KdA =2rF = 0 =2rF =Y (7 — ay),
=1 /A M ij ij
where «jj denotes the j-th interior angle of the i-th triangle A; and where we write Z,J.
instead of Zle E?Zl Notice that the sum of all interior angles at each vertex of T is
27. This implies that Zi,j ajj = 2wV, where V denotes the number of vertices of the
triangulation 7. We thus arrive at

/KdA—27r<F+V3F>,
M 2

where we use that Zi,j m = 3Fm. Since every edge of the triangulation belongs two
exactly two triangles and a triangle has 3 edges, we must have

3F =2E

so that )
— [ dA=V —-E+F=x(M
2 /. + x(M),

as claimed. O
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CHAPTER 5

Further topics

In this chapter we provide an outlook to some further topics in differential geometry
which are typically studied in depth in a master course. The content of this chapter is not
examinable.

5.1 Differential forms

The proof of Gauss’ Theorema Egregium can be simplified by using so-called differential
forms. We start with a brief introduction to differential forms.

Recall that a vector field associates to every point p of its domain of definition a tangent
vector X(p) in the corresponding tangent space. Closely related is the notion of a 1-form:

Definition 5.1 (1-form) Let X C R" be a subset. A1l-formaon Xisamapa : X —
T*R"sothat af, := a(p) € T;R" forall p € U. Writing

a|p = al(P)dX1|p +oee an(P)an|P

for functions «; : X — R, where 1 < i/ < n. We call & smooth if the functions «; are
smooth foralll </ < n.

Example 5.2 (Exterior derivative) Let f : X — R be a smooth function, then its
exterior derivative df is a smooth 1-form on X.

1-forms can be added and multiplied with functionsin the obvious way. If «, 8 are 1-forms
onX and f : X — R afunction, then we define

forallp e Xand v, € T,R".

Given 1-forms o, 8 : X — T*R", we can define a symmetric and alternating bilinear
form on each tangent space T,R" forp € X'. Forall p € X and v,, W, € T,R", we define
(aB)|p : TpR" x T,R” — R by therule

(@B)|p(Vo, Wp) = %(O‘(Vp)ﬁ(wp) + B(Wp)a(vp))

Notice that for all p € X the map (a8)|, is a symmetric bilinear form on T,R". Similarly
we can define an alternating bilinear form (a A ), : T,R" x T,R"” — R by the rule
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Definition 5.3 (Wedge product) We call @ A 8 the wedge product of the two 1-forms
a, f.

Exercise 5.4 Letq, 3, £ be 1-formson X and f, h : X — R functions. Show that
(i) aNB=—-BAasothata A a = 0;

(i) (a+B)ANE=aNE+BNAE

(iii) (Fa)AB=aAn(fB)=f(aAnp).

For an R-vector space V we write A?(V/*) for the (vector space of) alternating bilinear
formson V and

N(T*R") == | NP(T;R")
pER”
Likewise we write S2(V*) for the symmetric bilinear forms on V and
T*Rn . U 52 *Rn
pER”
Definition 5.5 (2-form) Let X C R" be a subset. A 2-form on X’ is a map
£:X = N(T*R")
sothat [, := &(p) € A*(T;R").

A 2-form thus assigns to each point p € X an alternating bilinear map on T,R". The
wedge product a A 5 of two 1-forms v, 8 is a 2-form. Moreover, we can turn every smooth
1-form into a 2-form by taking the exterior derivative:

Definition 5.6 (Exterior derivative for 1-forms) Let o be asmooth 1-formon X C R”
sothata = 27:1 «a;dx; for smooth functions a; : X — R, wherel </ < n. The
exterior derivative da of «v is the 2-form defined as

daf, = Z Z aa, P)(dxj A dx;)[p.

J=1 =1

Recall that second derivatives of a twice continuously differentiable function commute
and this has the important consequence that d®> = 0, that is:

Lemma5.7 Letf : X — R be a smooth function. Then

d?f :=d(df) = 0.
Proof By definition we have
° Of
dff, = . aXi(P)Xm|p
and hence
p)(dx; A dx;)]p-
j=1 i=1 a
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Since f is twice continuously differentiable, it follows that

0°f (p) = 0°f ()
Ox;0x; P)= Ox;0x; P):
but since (dx; A dx;)|, = —(dx; A dx;)|, we conclude that d(df) = 0. O

We also have:

Lemma 5.8 (Product rule for the exterior derivative) For a smooth 1-form ocon X
and a smooth function f : X — R we have

d(fa) =df Aa+ fda.

Proof Writing o = a;dx; for smooth functions «; : X — R, we have

d(fa)=d <§n: fa,-dx,-> ZZ

j=1 i=1

—ZZ(af ; )dxj/\dx,

j=1 i=1 "

O

_ 8 Zadx, +fZZ dxj/\dx,

Jj=1 j=1 i=1
=df Ao+ fdo,

as claimed. O

Remark 5.9 (Notation for vector-valued maps and forms)

(i) Whenever we have a smoothmap f : X — M, 1(R) we write df for the 1-form
with values in M, 1(R) defined by the rule

df(Vp) h
df(v,) = : where f=1:
df,(vp) it
for smooth functions f; : & — R, 1 </ < nand where v, in T,R" for p € X'.
(i) If ais a vector-valued 1-form on X so that
aq
a=
ap

for 1-forms a; on X, 1 < i < n, then we write
a-f=Ff-a=fay+- -+ fha,.
(iii) If 8is a 1-form on X, then we write
dfi A
df NG = :
dfn A B

5.2 The Theorema Egregium revisited

We will next give a proof of the Theorema Egregium using differential forms.
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Recall that {(&1),, (&), (&), } denotes the standard basis on T,R? for each p € R3.
In the presence of a surface M C R? it is useful to modify this basis so that for p € M
the vectors {(&1),, (&2),} are an orthonormal basis of T,M and so that (&), spans the
normal space T,M~-. We will call such a basis adapted to T,M. Unfortunately it is
not always possible to find an adapted basis for each tangent space of M which varies
continuously over the whole surface. A theorem which goes beyond the content of this
course - sometimes called the Hairy ball theorem - states that on the 2-sphere every
continuous vector field must attain the zero tangent vector at some point. This implies in
particular that we cannot find a basis {(&1),, (&), } for each tangent space of S which
varies continuously over all of 2. We do however obtain an adapted basis locally. To see
this we choose a local parametrisation F : U — M C R3and compute F,, F, : U —
Ms 1(R). Recall that {(F.)r(q). (Fu)F(q)} is basis of Trq M forall g € U. Applying the
Gram-Schmidt orthonormalisation procedure we thus obtain an orthonormal basis on
each tangent space T,M where p € F(U). Taking the cross product of the two tangent
vectors we obtain an adapted basis for each tangent space in F(U). If we forget about
the base points we obtain three column vector-valued maps

é;- M — M3'1(R), i = 1,2,3

where here - for notational simplicity - we pretend that these maps are defined on all of
M.

Recall the map ¥, : R" — M, 1(R) which turns a point into a column vector

xi
Y, R"—= M,1(R), (x1,....,%) —
Xn

For what follows we consider the case n = 3 write W3 : R® — M3 (R) as

X
V3 =

<

V4

where the functions x, y, z : R3 — R denote the projection onto the respective compon-
ent. Observe that

dx(vp)
(5.1) [dVs(p)]lp = | dy(V) | =V
dz(v,)

forall v, € TR3. Thisimplies that for each v, € T,M we have [d®(V,)], € T,M, hence
there are unique smooth 1-forms wy, w, on M so that

(5.2) dW3(7,) = &(p)wr(7p) + &(p)wa(7,)
forallp € Mandall v, € T,M. Notice thatforallp € Mandall v, € T,M we have
(5.3) wi1(Vp) = (Vp, (€é1)p)p and wa(Vp) = (Vp, (€2)p)p

so that the 1-forms w1, wy are intrinsic quantities. Notice the identities

dx dx
(5.4) wy=|dy|-é and wy = |dy | -é.
dz dz

which follow from computing the inner product of (5.2) with é1,&, respectively and using
(5.1).
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Example 5.10 Recall that for the hyperbolic paraboloid at p = (x, y, xy) € M an
orthonormal basis of T,M is given by

1 1 1 _X.y/ V 1 + y2
(é)p=——= |0 and (&)= —F——=| V1+)y?
/ 2 / 2 2
1+y y ) 1+ x +y X/ /l+y2
Using (5.4) we compute that

1
wy = ———(dx + ydz)
14 y?

and

dx + /14 y?dy +
y?

“’ZWH;*W(W Wd>

Likewise, there exist unique 1-forms w; on M for1 </, j < 3so that

3
de, E k wk, Vp

k=1

forallp € Mand v, € T,M. Omitting the tangent vector v, we have

3
(5.5) de = Z Sk Wi -

Since € - € = §;; we obtain

so that

We also have:

Lemma 5.11 Ateach point p € M the two cotangent vectors wi|,, wa|, € Ty M are
linearly independent and hence a basis of T, M

Proof Ifs;, s, € R are scalars such that
swi|p + s2w2|p = 07 m,
then
0 = sw1(Vp) + S2w2(Vp) = s1(Vp + (€1)p)p + 2(Vp + (€2)p)p = (Vo Wp)»p

forall v, € T,M, where we write w, = s1(€1), + 52(&)p. The vector w, is thus ortho-
gonalto all vectors v, € T, M. Since (-,-),, is non-degenerate this implies that w,, must be
the zero vector. This in turn implies that s; = s, = 0, since (€1),, (&), are linearly inde-
pendent. Therefore, w1 |, w>|, are linearly independent. Since T;Mis two-dimensional,
the claim follows. O

Notice that by construction & : M — M3 1(R) is the Gauss map v of M. In particular the
column vector d&(v,) = di/(Vv,) attached at the base point p € M is tangent to M for all
tangent vectors v, € T, M. This means that there are 1-forms o, 5 on M so that

(5.6) de&(v,) = a(vp)ér + B(vp)é
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Since wi |, wa|, are a basis of Ty M forall p € M there are unique functions A; on M,
1<i,j<2sothat

57) alp = —Au(p)wilp — Arz(p)w2lp,
' Blp = —Aa(p)wilp — An(p)walp.
We now obtain:

Lemma 5.12 The matrix representation of the shape operator S, at p € M with
respect to the ordered orthonormal basis b = ((é1),, (€2),) is given by

__ (Aulp) Aw(p)
M(Sp, b, b) = — <A21(p) A22(P)> '

Remark 5.13

(i) Since S, is self-adjoint and b an orthonormal basis of T,M, the matrix
M(S,, b, b) is symmetric, hence Lemma 5.12 implies that Ax; (p) = A12(p).
(ii) Forthe Gauss curvature at p € M we thus obtain the formula

K(p) = det M(Sp, b, b) = All(p)AZZ(p) — A12(p)2.

Proof of Lemma 5.12 Lemma 3.44 and the definition of the shape operator imply that

d&((8),)- &  dés((&),) - z)
d&((&),) & d&((&),) &)

Dy

M(S,, b, b) = (
For the first entry we thus obtain
d&((é),) - & = [a((&)p)é + B((&)p)&] - & = a((é),)
= —Au(p)wi((é1),) = —Au(p)((€1)p. (€1)p)p = —A11(p).

where we use € - € = §j, (5.3), (5.6) and (5.7). The calculations for the remaining entries
are entirely analogous. O

Combining (5.5) with (5.6) and (5.7) we also have
dé3 = ejwiz + &wx = —(Anwr + Apws)él — (Awr + Axnw»)é,
where we use that A;; = Ap;. Thisimplies
w1z = —ws31 = —Anwr — Appws,
w23 = —w32 = —Apwr — Axpws.
On the other hand, since d2 = 0, we obtain
0=d’V3 =dé Awi + &dwr +dé Aws + &dws
= (&wo1 + Sws1) Awr + é1dwr + (Elwiz + Gwsz) A wa + Edws
Taking the inner product with é; this simplifies to become
0 = dwi + w1z A ws
and taking the inner product with &, we obtain

0 = dwy + wo1 A wy.

Writing 0 := wy; = —w1p We thus obtain the equations
dw; = —wor A G,
d(u'2 =—0A w1.
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Taking the exterior derivative of the identity

3
d& = wiéi
k=1
we conclude likewise that ,
dw,-j = — Zw,-k A Wij-
k=1
In particular, we have
df = dwa1 = —wa3 Awzr = (Arpwr + Axwz) A (Arnwr + Araws)
= A2 w1 Aws + ApAniwy Awr = —(A11Axn — Ad)wr A ws
= —Kuwi A ws.

In summary, we have to so-called structure equations of E. Cartan

dwl = —W? A 9.
(5.8) dwy = —0 Awy,
do = —le N wy.

These equations imply that the Gauss curvature is an intrinsic quantity (i.e. the Theorema
Egregium). Indeed, the first two equations of (5.8) imply that wy, w, uniquely determine
6. Suppose that § is another 1-form on M satisfying the first two equations of (5.8). There
exist real-valued functions a, b on M so that

é:9+aw1+bw2.

The functions a, b exist since wy |, wa|, are basis of T;M forall p € M. By assumption,
we have dw; = —wy A  and hence

O:dwl—dwl:—wz/\9—|—w2/\é:—aw1/\wQ.

Since {(€é1)p, (€2),} are linearly independent for all p € M it follows that the alternating
bilinear form (w1 Aws)|, is never the zero form. This implies that a must vanish identically.
Arguing with the second equation from (5.8) it follows that b must vanish identically as
well, this implies that b =6. Using the third equation, one can conclude similarly that
K is uniquely determined in terms of wy, w», 6. Recall that w1, w; are intrinsic quantities.
Since 6 is uniquely determined by w1, wy, it follows that 6 and hence the Gauss curvature
K are intrinsic as well.
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