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CHAPTER 1

Fundamental notions WEEK 1

We start by introducing some notions that are fundamental for the study of curved spaces.
Doing so will lead to a deeper understanding of some concepts from Linear Algebra and
Analysis.

1.1 Points, vectors and the tangent space

Recall that we define Rn as ordered n-tuples p = (x1, ... , xn) of scalars xi ∈ R, 1 ⩽ i ⩽ n.
We also consider column vectors of length n with real entries

v⃗ =

x1
...
xn

 .

We write Mm,n(R) for the set of (m × n)-matrices with real entries. A column vector of
length n may be thought of as an (n × 1)-matrix, hence we write Mn,1(R) for the set of
such column vectors. Clearly we have a bijective map

Ψn : Rn → Mn,1(R), (x1, ... , xn) 7→

x1
...
xn


which writes the entries of an n-tuple into a column vector. Because of this map, we
may avoid a distinction between Rn and Mn,1(R) and pretend they are the same thing.
This was done so in Linear Algebra. In geometry, it turns out to be useful to think of Rn

and Mn,1(R) as different sets. The elements of Rn are interpreted as points and will be
denoted by p, q, r .... The elements of Mn,1(R) are interpreted as vectors in Rn that are
attached to the origin 0Rn = (0, 0, ... , 0) ∈ Rn. They will be denoted by u⃗, v⃗ , w⃗ , ....

Already in elementary geometry the situation occurs where we consider vectors in Rn

that are not attached to the origin 0Rn , but rather to some other point p ∈ Rn. Think for
instance of the normal vector of a plane in R3 not containing the origin 0R3 .

v⃗

p

v⃗p

FIGURE 1.1. A vector v⃗ attached at the origin and at the point p.
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In order to deal with vectors that are not attached to the origin, but to a point p ∈ Rn, we
introduce the so-called tangent space of Rn at p,

TpRn = {v⃗p | v⃗ ∈ Mn,1(R)} .

The element v⃗p ∈ TpRn is to be interpreted as attaching the vector v⃗ ∈ Mn,1(R) at
the basepoint p ∈ Rn. The elements of TpRn are called tangent vectors with basepoint
p. Observe that for all p ∈ Rn the tangent space TpRn is a vector space over R when
equipped with vector addition +TpRn : TpRn × TpRn → TpRn defined by the rule

v⃗p +TpRn w⃗p = (v⃗ +Mn,1(R) w⃗)p

for all v⃗p ,w⃗p ∈ TpRn and scalar multiplication ·TpRn : R× TpRn → TpRn defined by the
rule

s ·TpRn v⃗p = (s ·Mn,1(R) v⃗)p

for all s ∈ R and all v⃗p ∈ TpRn. Here +Mn,1(R) denotes usual component-wise addition
of column vectors and ·Mn,1(R) denotes usual component-wise scalar multiplication of a
column vector by a scalar. Clearly, for all p ∈ Rn we have a vector space isomorphism

TpRn → Mn,1(R), v⃗p 7→ v⃗

which simply “forgets“ the basepoint p ∈ Rn. We can thus think of TpRn as a copy of
Mn,1(R) attached to p ∈ Rn. The union of all these copies of Rn is known as the tangent
bundle of Rn

TRn =
⋃
p∈Rn

TpRn =
⋃
p∈Rn

{v⃗p | v⃗ ∈ Mn,1(R)} .

At this point the name tangent space is a bit confusing, since it is unclear to what TpRn is
tangent to. This will be clarified later on. If U ⊂ Rn is an open subset, we define likewise

TU =
⋃
p∈U

TpRn.

Observe that for each p ∈ Rn the tangent space TpRn is equipped with an ordered basis

e(n)p =
(
(e⃗1)p, ... , (e⃗n)p

)
,

where {e⃗1, ... , e⃗n} denotes the standard basis of Mn,1(R). For all p ∈ Rn we call e(n)p the
ordered standard basis of TpRn.

Whenever n is clear from the context we simply write ep instead of e(n)p .

Remark 1.1 Since M1,1(R) is one-dimensional, so is TtR for all t ∈ R and the
ordered standard basis of TtR consists of a single vector which we denote by 1t .

Recall that a pair (V , ⟨·,·⟩) consisting of a vector space V over R and an inner product
⟨·,·⟩ : V × V → R is called a Euclidean space.11 We can turn each tangent space into a
Euclidean space:

Definition 1.2 For all p ∈ Rn, the standard inner product on TpRn is the unique
inner product ⟨·,·⟩p for which ep is an orthonormal basis, that is, we have

⟨(e⃗i )p, (e⃗j)p⟩p = δij =

{
1, i = j ,

0, i ̸= j .

1An inner product on an vector V over R is a positive definite symmetric bilinear form ⟨·,·⟩ : V ×V → R.
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p

Ep(v⃗p)

v⃗p

FIGURE 1.2. The endpoint Ep(v⃗p) of a tangent vector v⃗p .

We will henceforth always assume that TpRn is equipped with ⟨·,·⟩p . Whenever no confu-
sion can arise about the point p at which ⟨·,·⟩p is computed, we will usually simply write
⟨·,·⟩.

Occasionally it is useful to turn a tangent vector v⃗p ∈ TpRn into a point q ∈ Rn. This
is done by mapping a tangent vector v⃗p ∈ TpRn to its “endpoint”. More precisely, we
define:

Definition 1.3 (Endpoint map) For all p ∈ Rn we define

Ep : TpRn → Rn, v⃗p 7→ Ep(v⃗p) = (x1 + v1, ... , xn + vn),

where p = (x1, ... , xn) and

v⃗p =

v1
...
vn


p

1.2 Smooth maps, diffeomorphisms and the differential

We recall some facts from Analysis II, but now with a slightly more geometric perspective.

For n ∈ N we let {e1, ... , en} – here interpreted as points – denote the standard basis of
Rn, that is e1 = (1, 0, 0, ... , 0), e2 = (0, 1, 0, ... , 0) and so on. Let U ⊂ Rn be an open set
and consider a map f : U → Rm. Recall that for all p ∈ U and 1 ⩽ i ⩽ n we define the
partial derivative of f in the coordinate direction i as

∂i f (p) = lim
h→0

1

h
(f (p + hei )− f (p)) ,

provided the limit exists. Recall also from Analysis II that the map f : U → Rm is
continuously differentiable if and only if22 for all 1 ⩽ i ⩽ n

(i) the partial derivative ∂i f (p) exists for all p ∈ U ;
(ii) the map ∂i f : U → Rm, p 7→ ∂i f (p) is continuous.

Recursively, we can define higher derivatives. For k ∈ N, k ⩾ 2 we call f : U →
Rm k-times continuously differentiable if ∂i f : U → Rm is (k − 1)-times continuously
differentiable for all 1 ⩽ i ⩽ n. We write

C k(U,Rm) = {f : U → Rm | f is k-times continuously differentiable}

and

2This is a theorem, not a definition!
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Definition 1.4 We set

C∞(U,Rm) =
⋂
k∈N

Cκ(U,Rm)

and call the elements of C∞(U,Rm) smooth maps from U to Rm.

Throughout this module we will almost exclusively consider smooth maps.

Remark 1.5 (Smooth maps on non-open domains) It is useful to have a notion of
smoothness for maps that are defined on some arbitrary subset X ⊂ Rn. A map
f : X → Rm is called smooth if there exists an open subset U ⊂ Rn containing X
and a smooth function f̂ : U → Rm so that f̂ (p) = f (p) for all p ∈ X .

Definition 1.6 (Differential of a map) Given U ⊂ Rn, let f : U → Rm be smooth
and write f = (f1, ... , fm) for real-valued functions fi : U → R.

(i) The differential of f at p ∈ U is the unique linear map

f∗|p : TpRn → Tf (p)Rm

so that for all

v⃗p =

v1
...
vn


p

∈ TpRn,

we have

f∗|p(v⃗p) = w⃗f (p) =

w1

...
wn


f (p)

with

(1.1)

w1

...
wn

 =

∂1f1(p) · · · ∂nf1(p)
...

. . .
...

∂1fm(p) · · · ∂nfm(p)


v1

...
vn

 .

(ii) Recall that the (n×m)-matrix on the right in (1.11.1) is called the Jacobian matrix
of f at p. We denote it by Jf (p).

(iii) For each p ∈ U we obtain a linear map f∗|p : TpRn → Tf (p)Rm. It is useful to
think of the family {f∗|p}p∈U of all such linear maps as a single map

f∗ : TU → TRm

defined by the rule

f∗(v⃗p) = w⃗f (p), where w⃗ = Jf (p)v⃗ .

That is, for all p ∈ U , the restriction of f∗ to TpRn ⊂ TU is given by f∗|p . The
map f∗ : TU → TRm is called the differential of f .

Example 1.7 Consider the smooth map

f : R2 → R2, p = (x , y) 7→ f (p) = (x2 − y2, xy)
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For the Jacobian we obtain

Jf (p) =

(
2x −2y

y x

)
and hence for

v⃗p =

(
u

w

)
(x ,y)

we have

f∗(v⃗p) =

(
2xu − 2yw

yu + xw

)
(x2−y2,xy)

.

Remark 1.8 (Matrices acting on points) Recall that Ψn : Rn → Mn,1(R) is the map
that turns a point into a column vector. We use Ψn to let an (m× n)-matrix A act on
points of Rn by the rule

Ap := Ψ−1
m (AΨn(p))

for all p ∈ Rn, where on the right hand side A acts on the column vector Ψn(p) by
matrix multiplication.

Example 1.9 Let A ∈ Mm,n(R), b ∈ Rm and consider the map

fA,b : Rn → Rm, p 7→ Ap + b.

Then we have
(fA,b)∗(v⃗p) = (Av⃗)Ap+b.

for all p ∈ Rn and v⃗p ∈ TpRn.

Definition 1.10 (Euclidean motion) A map

fR,q : Rn → Rn, p 7→ Rp + q

for some point q ∈ Rn and orthogonal matrix R ∈ O(n) is called a Euclidean motion.

Example 1.11 For n = 2, q = (y1, y2) and

R =

(
cos(α) − sin(α)

sin(α) cos(α)

)
, α ∈ R,

we have

fR,q(p) = (cos(α)x1 − sin(α)x2 + y1, sin(α)x1 + cos(α)x2 + y2)

where we write p = (x1, x2).

Example 1.12 Consider a Euclidean motion fR,q : Rn → Rn, then

(fR,q)∗(v⃗p) = (Rv⃗)Rp+q.

Notice that this implies that

⟨(fR,q)∗(v⃗p), (fR,q)∗(w⃗p)⟩ = ⟨v⃗p, w⃗p⟩
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for all p ∈ Rn and all v⃗p, w⃗p ∈ TpRn.

Remark 1.13 Let U ⊂ R be open and f : U → R a smooth function. We have the
usual derivative from Analysis I

f ′ : U → R, t 7→ f ′(t) =
df

dt
(t) = lim

h→0

1

h
(f (t + h)− f (t)).

We also have the differential in the sense of Definition 1.6Definition 1.6 which is a map f∗ : TU →
TR. Now notice that for all t ∈ U we have

(1.2) f∗ (1t) = f ′(t)1f (t).

Recommendation: Pause here and think about (1.21.2) until you understand it.

Diffeomorphisms are smooths maps that are bijective and admit a smooth inverse:

Definition 1.14 (Diffeomorphism) Let U ⊂ Rn and V ⊂ Rm be open sets and
f : U → V a smooth map. If f is bijective and f −1 : V → U is smooth as well, then
f : U → V is called a diffeomorphism.

Recall from Analysis that if f : U → V is a diffeomorphism, then n = m and moreover,
for all p ∈ U the linear map f∗|p : TpRn → Tf (p)Rn is invertible.

If f : U → Rm is a smooth and injective map, we say f is a diffeomorphism onto its image,
provided the inverse map f −1 : Im(f ) → U is smooth as well. Here as usual we define

Im(f ) = f (U) = {q ∈ Rm|q = f (p), p ∈ U}.

From the chain rule in Analysis II we conclude:

Proposition 1.15 (Chain rule) Let U ⊂ Rn and V ⊂ Rm be open sets and f : U →
Rm and g : V → Rk be smooth maps with f (U) ⊂ V . Then g ◦ f : U → Rk is
smooth and for all p ∈ U we have

(1.3) (g ◦ f )∗|p = g∗|f (p) ◦ f∗|p.

That is, the differential of the composition g ◦ f at p is given by the composition of
the linear map f∗|p : TpRn → Tf (p)Rm and the linear map g∗|f (p) : Tf (p)Rm →
Tg(f (p))Rk .

Remark 1.16 (Sums and products of smooth maps) The chain rule tells us that
compositions of smooth maps are smooth, so are sums and products. More precisely:

(i) If f , g : U → Rm are smooth, then so is f +C∞(U,Rm) g : U → Rm, where

(f +C∞(U,Rm) g)(p) = f (p) +Rm g(p)

for all p ∈ U .
(ii) If f , g : U → R are smooth, then so is f ·C∞(U,R) g : U → R, where

(f ·C∞(U,R) g)(p) = f (p) ·R g(p)

for all p ∈ U .
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FIGURE 1.3. A visualisation of the vector field p = (x1, x2) 7→
(
−x2
x1

)
p

.

1.3 Vector fields and the gradient

Recall that for all p ∈ Rn the tangent space TpRn is equipped with a basis given by
attaching the standard basis {e⃗1, ... , e⃗n} of Mn,1(R) at p. We may think of attaching the
i -th standard basis vector at p as a map from Rn to TRn. That is, we define

∂

∂xi
: Rn → TRn, p 7→ ∂

∂xi
(p) = (e⃗i )p .

The mappings ∂
∂xi

are examples of vector fields:

Definition 1.17 (Vector field) A vector field on some open subset U ⊂ Rn is a map
X : U → TRn so that X (p) ∈ TpRn for all p ∈ U . For a vector field X : U → TRn

there exists unique functions Xi : U → R, 1 ⩽ i ⩽ n, so that

X (p) =
n∑

i=1

Xi (p)
∂

∂xi
(p)

for all p ∈ U . The vector field is called smooth if the functions Xi are smooth for all
1 ⩽ i ⩽ n.

Remark 1.18 By definition, ∂
∂xi

is a map from Rn → TRn. The notation ∂
∂xi

might
seem strange for a map, it will be motivated below.

A vector field simply attaches a tangent vector vp to every point p of its domain of defini-
tion. Vector fields appear naturally in physics. For instance, an electromagnetic field is
an example of a vector field. Likewise, in the classical Newtonian theory of gravity, the
gravitational field is an example of a vector field.

Example 1.19 Write p = (x1, x2) for an element of R2, then

X : R2 → TR2, p = (x1, x2) 7→
(
−x2
x1

)
p

is a smooth vector field on R2.
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FIGURE 1.4. A visualisation of the gradient of the function p =

(x1, x2) 7→ (x1)
2 + (x2)

2.

Every smooth function gives rise to a vector field:

Definition 1.20 (Gradient) Let U ⊂ Rn and f : U → R be a smooth function. Then
the so-called gradient of f defined by

grad f : U → TRn, p 7→

∂1f (p)
...

∂nf (p)


p

is a smooth vector field on U .

Example 1.21 Consider the smooth function f : R2 → R defined by the rule

f (p) = (x1)
2 + (x2)

2,

where we write p = (x1, x2). Then we have

grad f (p) =

(
2x1
2x2

)
p

.

1.4 The cotangent space and the exterior derivative

Recall from Linear Algebra II that if V is a vector space over R, then its dual vector space
V ∗ consists of the linear maps f : V → R with vector addition defined by the rule

(f +V ∗ g)(v) = f (v) +R g(v)

for all f , g ∈ V ∗ and all v ∈ V and scalar multiplication defined by the rule

(s ·V ∗ f ) = s ·R f (v)

for all f ∈ V ∗, all s ∈ R and all v ∈ V .

We can think of row vectors of length n with real entries, that is the elements of M1,n(R),
as elements of the dual vector space of the vector space Mn,1(R) of column vectors of
length n with real entries. This is done by interpreting ν⃗ ∈ M1,n(R) as a linear map
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Mn,1(R) → R given by
ν⃗(v⃗) = ν⃗v⃗ ∈ R,

where on the right hand side we use matrix multiplication of the row vector ν⃗ and the
column vector v⃗ . In doing so, the standard basis of M1,n(R) given by {ε⃗1, ... , ε⃗n} can be
interpreted as as basis of (Mn,1(R))∗. Here ε⃗i denotes the row vector of length n whose
i -th entry is 1 with all other entries 0.

Let n ∈ N and p ∈ Rn. The dual vector space of the tangent space TpRn is called the
cotangent space at p ∈ M and denoted by T ∗

pRn := (TpRn)∗. We write an element of
T ∗
pRn as ν⃗p with p ∈ Rn and ν⃗ ∈ M1,n(R). Hence we have

T ∗
pRn = {ν⃗p | ν⃗ ∈ M1,n(R)} .

The elements of T ∗
pRn are called cotangent vectors with basepoint p. The union of all

cotangent spaces is the so-called cotangent bundle

T ∗Rn =
⋃
p∈Rn

T ∗
pRn =

⋃
p∈Rn

{ν⃗p | ν⃗ ∈ M1,n(R)} .

As in the case of the tangent space, each cotangent space T ∗
pRn is equipped with an

ordered basis ε(n)p = ((ε⃗1)p, ... , (ε⃗n)p).

Definition 1.22 (Exterior derivative) Let U ⊂ Rn be open and f : U → R a smooth
function.

(i) The exterior derivative of f atp ∈ U is the unique cotangent vectordf |p ∈ T ∗
pRn

so that

(1.4) df |p = ∂1f (p)(ε⃗1)p + · · ·+ ∂nf (p)(ε⃗n)p.

(ii) As in the case of the differential, there exists a unique map

df : TU → R

so that for all p ∈ U , the restriction of df to TpRn ⊂ TU is given by df |p . The
map df : TU → R is called the exterior derivative of f .

Remark 1.23 (Exterior derivative vs the gradient) Notice that for a smooth function
f : U → R we have for all v⃗p ∈ TU

⟨grad f (p), v⃗p⟩ = df (v⃗p).

Remark 1.24 (Exterior derivative vs the differential) Notice that the differential and
the exterior derivative are not the same thing! The differential is defined for smooth
maps f : U → Rm, whereas the exterior derivative is only defined for smooth
functions, that is, smooth maps f : U → R taking values in the real numbers. For a
function f : U → R the two notions are however closely related. The differential of
f is a map

f∗ : TU → TR
and the exterior derivative of f at p is a map

df : TU → R.

Recall that we have a natural basis of Tf (p)R consisting of the vector 1f (p) and with
respect to this basis we have for all v⃗p ∈ TpRn

f∗(v⃗p) = df (v⃗p)1f (p).
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Remark 1.25 (Standard abuse of notation) It is customary in the literature to use
the letter x both for an unspecified element in Rn, as well as for the identity map on
Rn

x = IdRn : Rn → Rn, p 7→ x(p) = p.

This can – and usually does – lead to confusion. Unfortunately this is well established
notation used in almost all books about differential geometry. We will therefore
adopt it as well.
For 1 ⩽ i ⩽ n the projection onto the i -th entry of a point p ∈ Rn is denoted by xi

xi : Rn → R, p = (p1, ... , pn) 7→ xi (p) = pi .

Notice that for 1 ⩽ i , j ⩽ n

∂ixj(p) = δij

and hence

(1.5) dxi |p = (ε⃗i )p.

Combining (1.41.4) and (1.51.5) we obtain for a smooth function f : U → R and all p ∈ U

df |p = ∂1f (p)dx1|p + · · ·+ ∂nf (p)dxn|p.

When omitting the basepoint p, we get

df = ∂1f dx1 + · · ·+ ∂nf dxn.

If f : I → R is a smooth function on an interval, the previous equations become

df |u = f ′(u)dt|u and df = f ′dt,

where here u ∈ I and t denotes the identity map on R.

Example 1.26 (Exterior derivative) Let f : R2 → R be the smooth function defined
by the rule

f (x1, x2) = e2x1 sin(x2).

Then we obtain for the exterior derivative

df = 2e2x1 sin(x2)dx1 + e2x1 cos(x2)dx2.

Definition 1.27 (Directional derivative) Let U ⊂ Rm be open and f : U → R a
smooth function.

(i) For a tangent vector v⃗p ∈ TpRn ⊂ TU , we define the directional derivative of f
at p in the direction v⃗p by df (v⃗p).

(ii) Given a smooth vector field X : U → TRn, we obtain a smooth function

X (f ) : U → R, p 7→ X (f )(p) := df (X (p))

whose value at p ∈ U is given by the directional derivative of f at p in the
direction X (p) ∈ TpRn.

(iii) When X = ∂
∂xi

for 1 ⩽ i ⩽ n it is customary to write

∂f

∂xi
:=

∂

∂xi
(f ).

Notice that
∂f

∂xi
= ∂i f .

for all 1 ⩽ i ⩽ n.

14



(iv) Writing X =
∑n

i=1 Xi
∂
∂xi

for smooth functions Xi : U → R, we obtain

X (f ) =
n∑

i=1

Xi
∂f

∂xi
,

where we use that df |p : TpRn → R is linear.

Example 1.28 For the vector field X defined in Example 1.19Example 1.19 and the function f

defined in Example 1.26Example 1.26 we thus obtain

X (f ) = −x22e
2x1 sin(x2) + x1e

2x1 cos(x2).
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CHAPTER 2

Curves WEEK 2

Curves are among the simplest geometric objects we can study, but they already have
non-trivial properties.

2.1 Definitions and examples

Definition 2.1 (Curve) Let m ∈ N and I ⊂ R be an interval. A curve in Rm is
a continuous map γ = (γi )1⩽i⩽m : I → Rm. The curve γ is called smooth if
γ : I → Rm is a smooth map.

Definition 2.2 (Velocity vector) Let γ = (γi )1⩽i⩽m : I → Rm be a smooth curve.
(i) We define the velocity vector of γ at time t ∈ I by

γ̇(t) = γ∗(1t).

Notice that the velocity vector of γ at time t ∈ I is an element of the tangent
space Tγ(t)Rm at γ(t).

(ii) The map
γ̇ : I → TRm, t 7→ γ̇(t)

is called the velocity vector field along γ.
(iii) A smooth curve γ satisfying γ̇(t) ̸= 0Tγ(t)Rm for all t ∈ I is called an immersed

curve.

Definition 2.3 (Speed and length of a curve) Let γ : I → Rm be a smooth curve.
(i) The speed of γ at time t ∈ I is defined as

∥γ̇(t)∥ =
√
⟨γ̇(t), γ̇(t)⟩.

(ii) If I = [a, b] for real numbers a < b, we define the length of γ as

ℓ(c) =

∫ b

a

∥γ̇(t)∥dt.

Remark 2.4 Let γ : I → Rm be a smooth curve. Then its Jacobian is

Jγ(t) =

γ′
1(t)

...
γ′
m(t)

 .
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In particular, we obtain

γ̇(t) = γ∗(1t) = w⃗γ(t) =

γ′
1(t)

...
γ′
m(t)


γ(t)

where w⃗ = Jγ(t)1. The velocity vector γ̇(t) at time t is thus simply obtained by
computing the usual time derivatives γ′

i (t) of the components γi of γ at time t and
attaching the resulting vector at γ(t).

Example 2.5 (Unit circle) The curve

γ : [0, 2π] → R2, t 7→ (cos(t), sin(t))

is smooth and its image γ([0, 2π]) consists of the circle of radius 1 centred at (0, 0).
The curve γ has velocity vector

γ̇(t) =

(
− sin(t)

cos(t)

)
γ(t)

and speed

∥γ̇(t)∥ =
√

⟨γ̇(t), γ̇(t) =
√
(− sin(t))2 + (cos(t))2 = 1

at time t ∈ [0, 2π], respectively. Therefore, the unit circle has length

ℓ(c) =

∫ 2π

0

∥γ̇(t)∥dt =
∫ 2π

0

1dt = 2π.

Example 2.6 (Non-immersed curve) The curve

γ : R → R2, t 7→ (t3, t2)

is smooth with velocity vector

γ̇(t) =

(
3t2

2t

)
γ(t)

and speed
∥γ̇(t)∥ =

√
9t4 + 4t2.

Since γ′(0) = 0R2 it is not an immersion.

Example 2.7 (Helix) The curve

γ : R → R3, t 7→ (cos(t), sin(t), t)

is smooth and its image γ(R) consists of a helix.

Example 2.8 (Figure-eight curve) The curve

γ : [0, 2π] → R3, t 7→ ((2 + cos(2t)) cos(3t), (2 + cos(2t)) sin(3t), sin(4t))

is smooth and its image γ([0, 2π]) consists of a figure-eight knot.
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Remark 2.9 (Curves and the differential) Given U ⊂ R, let f : U → Rm be a
smooth map. For p ∈ U and v⃗p ∈ TpRn we would like to interpret the tangent
vector f∗(v⃗p) ∈ Tf (p)Rm. For ε > 0 consider a smooth curve γ : (−ε, ε) → U with
γ(0) = p and γ̇(0) = v⃗p . For instance the curve

γ : (−ε, ε) → Rn, t 7→ γ(t) = Ep(tv⃗p)

satisfies γ(0) = p and γ̇(0) = v⃗p . Recall that Ep : TpRn → Rn denotes the
endpoint map from Definition 1.3Definition 1.3. The composition of f and γ is then a smooth
curve ξ = f ◦ γ : (−ε, ε) → Rm satisfying ξ(0) = f (γ(0)) = f (p) and velocity
vector

ξ̇(0) = (f ◦ γ)∗(10) = f∗(γ∗(10)) = f∗(γ̇(0)) = f∗(v⃗p),

where the second equality sign uses the chain rule (1.31.3). The image of v⃗p under f∗
can thus be interpreted as the velocity vector at 0 of the curve ξ = f ◦ γ.

If γ : I → Rm is a smooth curve, the map γ̇ : I → TRm, t 7→ γ̇(t) assigns a tangent
vector at γ(t) to every time t ∈ I . This is an example of a vector field along a curve.

Definition 2.10 (Vector field along a curve) Let γ : I → Rm be a curve. A map

X : I → TRm, t 7→ X (t)

is called a vector field along γ if X (t) ∈ Tγ(t)Rm for all t ∈ I . There exist unique
functions Xi : I → R, 1 ⩽ i ⩽ m so that

X (t) =
m∑
i=1

Xi (t)
∂

∂xi
(γ(t)).

The vector field X along γ is called smooth if the functions Xi : I → R are smooth
for all 1 ⩽ i ⩽ m.

2.2 Unit speed curves

Definition 2.11 (Parameter on an interval) A smooth parameter on an interval I is a
smooth injective map φ : I → R which is a diffeomorphism onto its image J = φ(I ).
The inverse map φ−1 : J → I is called a parametrisation of I .

Example 2.12 The sigmoid function

φ : R → (0, 1), t 7→ 1

1 + e−t

is a smooth parameter on R.

Example 2.13
(i) The tangent function

φ : (−π/2,π/2) → R, t 7→ tan(t)

is a smooth parameter on (−π/2,π/2).
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1

1

FIGURE 2.1. The graph of the parameter φ from (ii) for the choice δ =

π/2− 1/5.

(ii) For δ ∈ (0,π/2) we can use the tangent function to define a smooth parameter

φ : [0, 1] → [0, 1], t 7→ tan(−δ + 2tδ)− tan(−δ)

2 tan(δ)

with

φ−1 : [0, 1] → [0, 1], s 7→ 1

2

(
1− arctan(β − 2βs)

arctan(β)

)
,

where β = tan(δ).

Example 2.14 Recall from Linear Algebra that a linear coordinate system on a finite
dimensional vector space V over R is a linear injective map φ : V → Rn, where
n = dim(V ). A linear coordinate system on R –thought of as a 1-dimensional vector
space over R – is thus also a smooth parameter on R.

Remark 2.15 In light of Example 2.14Example 2.14 we can think of a smooth parameter on some
interval I as a coordinate system on I which is allowed to be non-linear. We may
think of this as a notion of non-linear time – see the animation below.

It often simplifies computations if a curve γ : [a, b] → Rn has constant unit speed, that is,
we have ∥γ̇(t)∥ = 1 for all t ∈ [a, b]. Given an immersed curve γ : [a, b] → Rn of length
L, we may thus ask whether there exists a smooth unit speed curve ξ : [0, L] → Rn such
that

(i) ξ([0, L]) = γ([a, b]);
(ii) ξ(0) = γ(a);

(iii) ξ(L) = γ(b).

Intuitively, these conditions mean that ξ travels along the same route as γ (condition (i)),
while starting at the same point ξ(0) = γ(a) (condition (ii)) and ending at the same point
ξ(L) = γ(b) (condition (iii)). In order to find ξ we thus have to find a suitable schedule of
how to move along γ. This leads to the notion of a reparametrisation.
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Definition 2.16 (Reparametrisation of a curve) Let γ : I → Rn be a smooth curve.
A reparametrisation of γ is a smooth curve ξ = γ ◦ φ−1 : J → Rn, where φ : I → J

is a smooth parameter on I .

Proposition 2.17 (Existence of a unit-speed parametrisation) Let γ : [a, b] → Rn

be a smooth immersed curve of length L. Then there exists a smooth parameter
s : [a, b] → [0, L] so that the reparametrisation

ξ = γ ◦ s−1 : [0, L] → Rn

of γ is a unit speed curve.

Proof Consider the map

s : [a, b] → R, t 7→
∫ t

a

∥γ̇(u)∥du.

Clearly, we have s(a) = 0 and s(b) = L =
∫ b

a
∥γ̇(u)∥du. By the fundamental theorem of

calculus, the map s is differentiable and we have

(2.1) s ′(t) = ∥γ̇(t)∥.

Since γ is an immersed curve we have γ̇(t) ̸= 0Tγ(t)Rn for all t ∈ [a, b] and hence s ′(t) =

∥γ̇(t)∥ > 0 for all t ∈ [a, b]. Results from Analysis I imply that s is strictly increasing and
thus a bijective map onto its image [0, L]. Moreover s−1 : [0, L] → [a, b] is differentiable
for all u ∈ [0, L] and we have

(2.2) (s−1)′(u) =
1

s ′(t)
,

where s(t) = u. In particular, s : [a, b] → [0, L] is smooth and moreover a diffeomorph-
ism. It remains to show that ξ = γ ◦ s−1 is a unit speed curve. Using the chain rule we
compute for all u ∈ [0, L]

⟨ξ̇(u), ξ̇(u)⟩ξ(u) = ⟨
(
γ ◦ s−1

)
∗ (1u),

(
γ ◦ s−1

)
∗ (1u)⟩γ(s−1(u))

= ⟨γ∗(s−1
∗ (1u)), γ∗(s

−1
∗ (1u))⟩γ(s−1(u)).

Since by (1.21.2) we have
s−1
∗ (1u) = (s−1)′(u)1s−1(u),

we obtain

⟨ξ̇(u), ξ̇(u)⟩ξ(u) =
[
(s−1)′(u)

]2 ⟨γ∗(1s−1(u)), γ∗(1s−1(u))⟩γ(s−1(u))

=
[
(s−1)′(u)

]2 ∥γ̇(s−1(u))∥2

=
∥γ̇(s−1(u))∥2

[s ′(s−1(u))]2
=

∥γ̇(s−1(u))∥2

∥γ̇(s−1(u))∥2
= 1,

where we use the linearity of γ∗|s−1(u), the bilinearity of ⟨·,·⟩γ(s−1(u)) as well as (2.12.1) and
(2.22.2). □

Remark 2.18 (Arc length)
(i) An arc is any smooth curve joining two points.

(ii) The parameter s : [a, b] → [0, L] associated to a smooth curve γ : [a, b] → Rn

of length L is called the arc length parameter of the curve, since s(t) is the
length of the arc connecting γ(a) and γ(t).
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(iii) The curve γ ◦ s−1 : [0, L] → Rn is called the parametrisation by arc length of
γ. For the curve ξ = γ ◦ s−1 the travel time u ∈ [0, L] agrees with the distance
travelled along ξ from ξ(0) to ξ(u).

Example 2.19 (Logarithmic spiral) For b > 0 and A > 0 and t0 ∈ R consider the
curve

γ : [t0,∞) → R2, t 7→ (Aebt cos(t),Aebt sin(t)).

It has speed
∥γ̇(t)∥ = Aebt

√
b2 + 1

for all t ∈ [t0,∞) and its arc length parameter is given by

s(t) = A
√

b2 + 1

∫ t

t0

ebudu = A

√
b2 + 1

b

(
ebt − ebt0

)
.

for all t ∈ [t0,∞). Notice that

lim
t0→−∞

∫ t

t0

∥γ̇(u)∥du = A

√
b2 + 1

b
ebt ,

so that the arc length parameter is also well defined when we think ofγ being defined
on all of R.

2.3 Curves in the plane

2.3.1 Curvature of a plane curve

Let γ : I → Rm be a smooth curve with unit speed. Then we have for all t ∈ I

1 = ⟨γ̇(t), γ̇(t)⟩ =
m∑
i=1

(γ′
i (t))

2
.

Taking the derivative with respect to t, we obtain

(2.3) 0 =
m∑
i=1

2γ′
i (t)γ

′′
i (t).

Definition 2.20 (Acceleration vector) Let γ : I → Rm be a smooth curve with
velocity vector field γ̇ : I → TRm along γ. Then the acceleration vector field along
γ is defined by

γ̈ : I → TRm, t 7→ γ̈(t) =

γ′′
1 (t)

...
γ′′
m(t)


γ(t)

We call γ̈(t) the acceleration vector of γ at time t ∈ I .

Using the notion of the acceleration vector, (2.32.3) can be written as

0 = 2⟨γ̇(t), γ̈(t)⟩.

We conclude that for a unit speed curve the velocity vector γ̇(t) and the acceleration
vector γ̈(t) are orthogonal for all t ∈ I .

22



Now we consider a smooth unit speed curve γ : I → R2 in the plane R2. For p ∈ R2 let
Jp : TpR2 → TpR2 denote the counter-clockwise rotation by π/2 around 0⃗p ∈ TpR2.11

More precisely, Jp : TpR2 → TpR2 is the unique linear map satisfying

(2.4) Jp((e⃗1)p) = (e⃗2)p and Jp((e⃗2)p) = −(e⃗1)p.

Whenever p is clear from the context we will write J instead of Jp . Since γ̇(t) and γ̈(t) are
orthogonal for all t ∈ I , there exists a unique smooth function κ : I → R so that

(2.5) γ̈(t) = κ(t)J(γ̇(t))

The function κ : I → R is called the signed curvature of γ. Notice that since ∥γ̇(t)∥ = 1

for all t ∈ I we also have ∥J(γ̇(t))∥ = 1 and hence

⟨γ̈(t), J(γ̇(t))⟩ = ⟨κ(t)J(γ̇(t)), J(γ̇(t))⟩ = κ(t)⟨J(γ̇(t)), J(γ̇(t))⟩ = κ(t)

so that we obtain the identity

(2.6) κ(t) = ⟨γ̈(t), J(γ̇(t))⟩

for all t ∈ I .

Example 2.21 (Circle of radius r) For r > 0 consider the unit speed curve

γ : [0, 2πr ] → R2, t 7→ (r cos(t/r), r sin(t/r)) .

The image γ([0, 2πr ]) consists of a circle of radius r centred at 0R2 . We compute

γ̇(t) =

(
− sin(t/r)

cos(t/r)

)
γ(t)

and

γ̈(t) =
1

r

(
− cos(t/r)

− sin(t/r)

)
γ(t)

so that for all t ∈ [0, 2πr ]

κ(t) =
1

r
.

Therefore, a circle of radius r has signed curvature 1/r at all of its points. Notice that
the circle

δ : [0, 2πr ] → R2, t 7→ (r cos(t/r),−r sin(t/r))

which travels clockwise around the origin (0, 0) ∈ R2 has signed curvature −1/r .

Remark 2.22
(i) When γ : I → R2 is injective it is common to say that γ has curvature κ(t) at

the point γ(t) ∈ R2.
(ii) Whenever the acceleration vector is to the left of the velocity vector, the curve

bends counter clockwise and the signed curvature is positive. Whenever the ac-
celeration vector is to the right of the velocity vector, the curve bends clockwise
and the signed curvature is negative.

It is desirable to also have a notion of curvature for a smooth immersed curve γ : [a, b] →
R2 which does not necessarily have unit speed. We can derive such a formula by com-
puting the acceleration of the reparametrisation ξ = γ ◦ s−1 : [0, L] → R2 by arc-length
s : [a, b] → [0, L] of γ. In the proof of Proposition 2.17Proposition 2.17 we obtained the formula

ξ̇(u) =
1

∥γ̇(s−1(u))∥
γ̇(s−1(u))

1Don’t confuse Jp with the Jacobian of a map!
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which holds for all u ∈ [0, L]. Writing t = s−1(u), we equivalently have

ξ̇(s(t)) =
γ̇(t)

∥γ̇(t)∥

where t ∈ [a, b]. Computing the time derivative of the previous equation, we obtain

ξ̈(s(t))s ′(t) = ξ̈(s(t))∥γ̇(t)∥

=
1

∥γ̇(t)∥
γ̈(t) + γ̇(t)

d

dt

(
1

∥γ̇(t)∥

)
(t)

=
1

∥γ̇(t)∥
γ̈(t)− ⟨γ̈(t), γ̇(t)⟩

∥γ̇(t)∥3
γ̇(t)

so that in summary we have

(2.7)
ξ̇(u) =

γ̇(t)

∥γ̇(t)∥

ξ̈(u) =
1

∥γ̇(t)∥2

(
γ̈(t)− ⟨γ̈(t), γ̇(t)⟩

∥γ̇(t)∥2
γ̇(t)

)
,

where again we write u = s(t). Since ∥ξ̇(u)∥ = 1 for all u ∈ [0, L], we have

(2.8)
⟨ξ̈(u), J(ξ̇(u))⟩

∥ξ̇(u)∥3
= ⟨ξ̈(u), J(ξ̇(u))⟩ = ⟨γ̈(t), J(γ̇(t))⟩

∥γ̇(t)∥3
,

where we use (2.72.7) and that ⟨γ̇(t), J(γ̇(t))⟩ = 0.

Definition 2.23 (Curvature of a plane curve) Let γ = (γ1, γ2) : I → R2 be a smooth
curve. The function

(2.9) κ : I → R, t 7→ ⟨γ̈(t), J(γ̇(t))⟩
∥γ̇(t)∥3

=
γ′
1(t)γ

′′
2 (t)− γ′

2(t)γ
′′
1 (t)

(γ′
1(t)

2 + γ′
2(t)

2)3/2

is called the signed curvature of γ. The function

k : I → [0,∞), t 7→ |κ(t)|

is called the curvature of γ. For all t ∈ I , the values κ(t) and k(t) are called the
signed curvature and curvature of γ at t, respectively.

Remark 2.24 The motivation for the definition of the signed curvature as in (2.92.9) is
(2.82.8). This equation states that if γ : I → R2 is a smooth immersed curve with signed
curvature κ : I → R, then the signed curvature κ̂ : I → R2 of the parametrisation
ξ = γ ◦ s−1 by arc length of γ satisfies

(2.10) κ̂(s(t)) = κ(t),

for all t ∈ I . Since ξ(s(t)) = γ(t), we see that ξ and γ have the same signed
curvature at p = γ(t) = ξ(s(t)). Observe that (2.52.5) implies that (2.92.9) agrees with
the definition of curvature for a unit speed curve. We have thus found a notion
of curvature for a plane curve which is unchanged – in the sense of (2.102.10) – after
reparametrisation by arc length and which agrees with the definition of curvature
for a unit speed curve. It thus is the natural definition of curvature for an immersed
curve which does not necessarily have unit speed.

As a special case consider a smooth function h : I → R and the associated smooth
immersed curve

γ : I → R2, t 7→ (t, h(t))
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whose image γ(I ) is the graph of h. In this case we have γ1(t) = t and γ2(t) = h(t) for
all t ∈ I . Consequently, (2.92.9) gives

(2.11) κ(t) =
h′′(t)

(1 + h′(t)2)3/2
.

Example 2.25 (Curvature of the graph of the sine function) The smooth immersed
curve γ : [0, 2π] → R2 associated to the graph of sin : [0, 2π] → R2 has signed
curvature

κ(t) = − sin(x)

(1 + cos(t)2)3/2
.

Example 2.26 (Curvature of the figure 8 curve) Let

γ : [0, 2π] → R2, t 7→ (sin(t), sin(t) cos(t)).

The curve has velocity vectors

γ̇(t) =

(
cos(t)

cos(2t)

)
c(t)

and acceleration vectors

γ̈(t) =

(
− sin(t)

−2 sin(2t)

)
c(t)

for all t ∈ [0, 2π]. The signed curvature is thus given by

κ(t) =
cos(2t) sin(t)− 2 cos(t) sin(2t)

(cos(t)2 + cos(2t)2)3/2
= − 3 sin(t) + sin(3t)

2 (cos(t)2 + cos(2t)2)3/2

for all t ∈ [0, 2π].

2.4 Local geometric properties of plane curves WEEK 3

For a smooth immersed curve γ = (γ1, γ2) : I → R2 we define

T : I → TR2, t 7→ T (t) =
γ̇(t)

∥γ̇(t)∥
and

N : I → TR2, t 7→ N(t) = J(T (t)).

We call T the unit tangent vector field along γ and N the unit normal vector field along γ.

By construction, {T (t),N(t)} forms an orthonormal basis ofTγ(t)R2 for all t ∈ I . A basis
of some vector space is sometimes called a frame and the pair {T ,N} is called a moving
frame along γ, since as time t progresses, the frame {T (t),N(t)} moves along γ.

Suppose the signed curvature κ : I → R of γ is non-vanishing for all t ∈ I and define
ρ = 1/κ : I → R. The curve

δ : I → R2, t 7→ δ(t) = Eγ(t) (ρ(t)N(t))

is called the evolute of γ. The circle with centre δ(t) and radius r(t) = |ρ(t)| is called the
osculating circle of γ at t. We will discuss the osculating circle more thoroughly in the
exercises. Notice that

(2.12) γ(t) = Eδ(t)(−ρ(t)N(t))
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for all t ∈ I , where here we think of N as a vector field along δ.

In what follows we will assume that γ = (γ1, γ2) : I → R2 has unit speed. In this case
we obtain

T : I → TR2, t 7→ T (t) = γ̇(t) =

(
γ′
1(t)

γ′
2(t)

)
γ(t)

and

N : I → TR2, t 7→ N(t) = J(T (t)) =

(
−γ′

2(t)

γ′
1(t)

)
γ(t)

.

We have the following equations known as the Frenet equations

Ṫ = κN, and Ṅ = −κT .

Written in “matrix notation” they become

(2.13)
(
Ṫ

Ṅ

)
=

(
0 κ

−κ 0

)(
T

N

)
.

Exercise 2.27 Derive the Frenet equations (2.132.13) for a unit speed curve γ : I → R2.

Using the Frenet equations we can compute the velocity vector field of the evolute
δ : I → R2 of a unit speed curve γ : I → R2. Explicitly, we have for all t ∈ R

δ(t) =

(
γ1(t)−

γ′
2(t)

κ(t)
, γ2(t) +

γ′
1(t)

κ(t)

)
= (γ1(t)− ρ(t)γ′

2(t), γ2(t) + ρ(t)γ′
1(t))

from which we compute

δ̇(t) =

(
γ′
1(t)− ρ′(t)γ′

2(t)− ρ(t)γ′′
2 (t)

γ′
2(t) + ρ′(t)γ′

1(t) + ρ(t)γ′′
1 (t)

)
δ(t)

= ρ′(t)

(
−γ′

2(t)

γ′
1(t)

)
δ(t)

= ρ′(t)N(t),

where we used the second Frenet equation Ṅ(t) = −κ(t)T (t), which is equivalent to(
−γ′′

2 (t)

γ′′
1 (t)

)
= − 1

ρ(t)

(
γ′
1(t)

γ′
2(t)

)
.

We can use the identity δ̇(t) = ρ′(t)N(t) which holds for all t ∈ I to show:

Theorem 2.28 (Plane curves of constant curvature) Let γ : I → R2 be a smooth
immersed curve whose signed curvature κ : I → R is constant, that is, there exists
c ∈ R such that κ(t) = c for all t ∈ I . Then either

(i) c ̸= 0 and γ(I ) is a segment of a circle of radius 1/c ;
(ii) c = 0 and γ(I ) is a segment of a line.

Proof Without loss of generality, by (2.82.8) we can assume that γ is a unit speed curve.
Suppose c ̸= 0. Since κ is constant, so is ρ and hence δ̇(t) = 0 for all t ∈ I . The velocity
vector of δ thus vanishes for all t ∈ I and therefore δ(I ) consists of a single point q ∈ R2,
that is, δ(t) = q for all t ∈ I . Since for all t ∈ I the tangent vector N(t) has length 1 and
since ρ(t) = 1/c , (2.122.12) implies that all points of the curve γ have the same distance
from q which means that γ(I ) is a segment of a circle of radius 1/c .

Suppose c = 0. Then γ̈(t) = 0 for all t ∈ I which is equivalent to

γ′′
1 (t) = γ′′

2 (t) = 0

26



for all t ∈ I . This implies that γ(t) = (x1 + tv1, x2 + tv2) = Ep(tv⃗p) for some point

p = (x1, x2) ∈ R2 and tangent vector v⃗p =

(
v1
v2

)
p

. Consequently, γ(I ) is a segment of a

straight line. □

It is natural to ask to what extent the signed curvature of a curve in R2 determines the
curve. Phrased differently, can we recover the curve when we know its signed curvature?

Exercise 2.29 Let R ∈ O(2) be an orthogonal 2× 2-matrix, q ∈ R2 and κ : I → R
the signed curvature of a smooth immersed curve γ : I → R2. Show that κ is
invariant under Euclidean motion, that is, the curve

δ : I → R2, t 7→ δ(t) = fR,q(γ(t))

has the same signed curvature as γ.

From Exercise 2.29Exercise 2.29 we learn that the curvature alone is not sufficient to determine the
curve. We can however rule out Euclidean motions by specifying a point on the curve as
well as T and N at this point. More precisely, we have:

Proposition 2.30 Let I = [a, b] be an interval. For a smooth functionκ : I → R there
exists a unique smooth unit speed curve γ : I → R2 such that γ(a) = (0, 0) = 0R2

and

(2.14) T (a) =

(
1

0

)
0R2

and N(a) =

(
0

1

)
0R2

and so that the signed curvature of γ is given by κ.

For the proof we need:

Lemma 2.31 Let δ : [a, b] → R2 be a smooth curve with δ(t) ∈ S1 for all t ∈ [a, b],
where

S1 =
{
(x , y) ∈ R2 | x2 + y2 = 1

}
.

Then there exists a smooth function ϕ : [a, b] → R – called a polar angle function –
so that for all t ∈ [a, b] we have

δ(t) = (cos(ϕ(t)), sin(ϕ(t))) .

Proof Let ϕ0 be a real number so that δ(a) = (cos(ϕ0), sin(ϕ0)). Clearly ϕ0 is unique
up to adding an integer multiple of 2π. We may define ϕ(t) as the sum of ϕ0 and the
distance travelled on S1 from ϕ(a) to ϕ(t), where counter clockwise motion contributes
positively and clockwise motion contributes negatively. First consider the case where δ

moves counter clockwise – and counter clockwise only – around the unit circle S1. In this
case we can define

ϕ(t) = ϕ0 +

∫ t

a

∥δ̇(w)∥dw .

In general, δ may move clock wise as well and we can account for this as follows. Observe
that there exists a unique smooth function ξ : [a, b] → R so that(

δ′1(t)

δ′2(t)

)
= ξ(t)

(
−δ2(t)

δ1(t)

)
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for all t ∈ [a, b]. With this definition we have

∥δ̇(t)∥ = |ξ(t)|
√

δ1(t)2 + δ2(t)2 = |ξ(t)|.

Now define

ϕ(t) = ϕ0 +

∫ t

a

ξ(w)dw ,

then ϕ : [a, b] → R is the desired polar angle function. □

Proof of Proposition 2.30Proposition 2.30 Let γ = (γ1, γ2) : [a, b] → R2 be a unit speed curve. By the
fundamental theorem of calculus we have

(2.15) γ1(t) =

∫ t

a

γ′
1(u)du + const1 and γ2(t) =

∫ t

a

γ′
2(u)du + const2

Recall that

T (t) =

(
γ′
1(t)

γ′
2(t)

)
γ(t)

,

so that we can recover γ – up to translation in R2 by (const1, const2) – from its unit
tangent vector field.

By Lemma 2.31Lemma 2.31 there exists a polar angle function ϕ : [a, b] → R so that

T (t) =

(
cos(ϕ(t))

sin(ϕ(t))

)
γ(t)

and N(t) =

(
− sin(ϕ(t))

cos(ϕ(t))

)
γ(t)

From this we compute using the Frenet equations

Ṫ (t) =

(
− sin(ϕ(t))ϕ′(t)

cos(ϕ(t))ϕ′(t)

)
γ(t)

= κ(t)

(
− sin(ϕ(t))

cos(ϕ(t))

)
γ(t)

,

so that ϕ′(t) = κ(t) for all t ∈ [a, b]. This gives the formula

(2.16) ϕ(t) =

∫ t

a

κ(w)dw + const.

Consequently, we can recover the unit tangent vector field – up to rotation by the angle
const – from the signed curvature κ. Combining (2.152.15) and (2.162.16) we thus obtain the
formulas

γ1(t) =

∫ t

a

cos

(∫ u

a

κ(w)dw

)
du and γ2(t) =

∫ t

a

sin

(∫ u

a

κ(w)dw

)
du.

These last two formulas uniquely determine γ up to the choice of integration constants.
The conditions (2.142.14) precisely state that we have to choose all integration constants to
be zero. □

2.5 Global geometric properties of plane curves

In order to compute the curvature of a smooth immersed curve γ : [a, b] → R2 at time
t0 ∈ [a, b], we only need to know the values of γ near t0. We say that the curvature is a
local property of a curve. Local properties are in contrast to global properties which try to
capture geometric properties of the whole curve. The prototypical example of a global
property of a plane curve is its total curvature:

Definition 2.32 (Total curvature of a plane curve) Let γ : [a, b] → R2 be a smooth
unit speed curve. The total curvature of γ is given by the integral of its signed
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curvature over the interval [a, b]. ∫ b

a

κ(t)dt.

A first observation about the total curvature is that it is quantised, that is, it is always an
integer multiple of 2π, provided the curve is closed. Recall that a function f : R → Rm is
called periodic with period L if f (t + L) = f (t) for all t ∈ R.

Definition 2.33 (Closed curve)
(i) Let γ : [a, b] → Rm be a curve. Then γ is called closed if γ(a) = γ(b).

(ii) Let γ : [a, b] → Rm be a smooth curve. Then γ is called closed if there exists
a smooth curve δ : R → Rm which is periodic with period (b − a) so that
γ(t) = δ(t) for all t ∈ [a, b].

Remark 2.34 Notice that if a smooth curve γ : [a, b] → Rm is closed, then

γ(i)(a) = γ(i)(b).

for all i ∈ N, that is, its derivatives agree to all orders at a and b.

Example 2.35 The “right half“ of the figure 8 curve

γ : [0,π] → R2, t 7→ (cos(t), sin(t) cos(t))

is closed as a continuous curve, but not as a smooth curve, since

γ′(0) ̸= γ′(π).

Recall that for the unit tangent vector field T : [a, b] → TR2 of a smooth unit speed
curve γ we have

T (t) =

(
cos(ϕ(t))

sin(ϕ(t))

)
γ(t)

where

ϕ(t) =

∫ t

a

κ(w)dw + const

and κ : [a, b] → R denotes the signed curvature of γ. If γ is closed, then γ(a) = γ(b)

and T (a) = T (b) so that

T (a) =

(
cos(ϕ(a))

sin(ϕ(a))

)
γ(a)

= T (b) =

(
cos(ϕ(b))

sin(ϕ(b))

)
γ(b)

This implies that ϕ(b)− ϕ(a) is an integer multiple of 2π and hence

1

2π

∫ b

a

κ(t)dt =
1

2π
(ϕ(a)− ϕ(b)) = N, N ∈ N.

Definition 2.36 (Rotation index) Let γ : [a, b] → R2 be a smooth closed unit speed
curve with signed curvature κ : [a, b] → R. The integer

Rγ =
1

2π

∫ b

a

κ(t)dt
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is called the rotation index of γ.

Observe that if γ : [a, b] → R2 \{(0, 0)} is a smooth curve, then the curve γ : [a, b] → R2

defined by the rule

δ(t) =
1√

γ1(t)2 + γ2(t)2
(γ1(t), γ2(t))

for all t ∈ [a, b], is smooth and takes values in S1 ⊂ R2. Hence by Lemma 2.31Lemma 2.31 we can
write

δ(t) = (cos(ϕ(t)), sin(ϕ(t)))

for some smooth polar angle function ϕ : [a, b] → R. In the case where γ is closed, it
follows as above that (1/2π) (ϕ(b)− ϕ(a)) is an integer known as the winding number
of γ. It counts the total number of times that γ travels counter clockwise around the
point (0, 0) ∈ R2. A negative winding number indicates, that the curve travels clockwise
around (0, 0).

Example 2.37 (Rotation index as winding number) The rotation index of a smooth
closed unit speed curve γ : [a, b] → R2 can be interpreted as the winding number
of the first derivative γ′ : [a, b] → R2 \ {(0, 0)}.

A closed curve which has no self intersections is called simple:

Definition 2.38 (Simple closed curve) A closed curve γ : [a, b] → Rn is called
simple if the restriction of γ to the half open interval [a, b) is injective. Simple closed
curves are often called Jordan curves.

Intuitively one might expect that the rotation index of a simple closed curve in the plane
is either 1, in the case where the curve moves counter clockwise or −1, in the case where
the curve moves clockwise. This is indeed true, but somewhat tricky to prove.

Theorem 2.39 Let γ : [0, L] → R2 be a smooth unit speed curve that is simple and
closed. Then its rotation index is ±1.

This fact was probably already known to Riemann. We present a proof of H. Hopf.

Proof Without loss of generality we can assume that γ(0) = (0, 0) and that the image of
γ is contained in {(x , y) | x ⩾ 0}. For 0 ⩽ s ⩽ t ⩽ L with t − s < L denote by ϕ(s, t) the
angle between (γ(t)− γ(s)) and (1, 0). Since γ is simple, γ(t)− γ(s) is never equal to
(0, 0). The function ϕ is uniquely determined by the condition to be continuous and that
|ϕ(0, t)| ⩽ π/2 for all t ∈ (0, L). We also have |ϕ(s, L)− π| ⩽ π/2 for all s ∈ (0, L) and

lim
t↑L

ϕ(0, t)− lim
t↓0

ϕ(0, t) = lim
s↑L

ϕ(s, L)− lim
s↓0

ϕ(s, L) = ±π.

Observe that the function

ϕ(t) := lim
s↑t

ϕ(s, t) = lim
r↓t

ϕ(t, r)

is a continuous polar angle function for γ′ : [0, L] → R2, that is

γ′(t) = (cos(ϕ(t)), sin(ϕ(t)))
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for all t ∈ [0, L]. Using ϕ(L) = lims↑L ϕ(s, L) and ϕ(0) = limt↓0 ϕ(0, t) as well as

lim
t↑L

ϕ(0, t) = lim
s↓0

ϕ(s, L),

we compute∫ L

0

κ(t)dt = ϕ(L)− ϕ(0) = lim
s↑L

ϕ(s, L)− lim
t↓0

ϕ(0, t)

= lim
s↑L

ϕ(s, L)− lim
s↓0

ϕ(s, L) + lim
s↓0

ϕ(s, L)− lim
t↓0

ϕ(0, t)

= lim
s↑L

ϕ(s, L)− lim
s↓0

ϕ(s, L) + lim
t↑L

ϕ(0, t)− lim
t↓0

ϕ(0, t)

= ±π ± π = ±2π,

as claimed. □

2.6 Curves in three-dimensional space

The Frenet frame along a smooth unit speed curve in R2 assigns an orthonormal basis
to every tangent space along γ. For a smooth unit speed curve γ : I → R3 into three-
dimensional space we can carry out a similar construction, provided the second derivative
γ′′ : I → R3 is non-vanishing for all t ∈ I . For such a curve – called a Frenet curve – we
define the unit tangent vector field

T : I → TR3, t 7→ T (t) := γ̇(t)

the unit normal vector field

N : I → TR3, t 7→ N(t) =
Ṫ (t)

∥Ṫ (t)∥
and the unit binormal vector field

B : I → TR3, t 7→ B(t) = T (t)× N(t),

where we think of the cross product × as a map Tγ(t)R3 × Tγ(t)R3 → Tγ(t)R3 for all
t ∈ I .

Definition 2.40 For a smooth immersed curve γ = (γ1, γ2, γ3) : I → R3 satisfying
γ̇(t) × γ̈(t) ̸= 0Tγ(t)R3 for all t ∈ I , we define the curvature κ : I → R and torsion
τ : I → R by

κ(t) =
∥γ̇(t)× γ̈(t)∥

∥γ̇(t)∥3
and τ(t) =

⟨γ̇(t), γ̈(t)× ...
γ (t)⟩

∥γ̇(t)× γ̈(t)∥2
,

Exercise 2.41
(i) Given a Frenet curve γ : I → R3. Show that the Frenet equationsṪ

Ṅ

Ḃ

 =

 0 κ 0

−κ 0 τ

0 −τ 0

T

N

B

 .

hold.
(ii) Let R ∈ O(3) and q ∈ R3. Show that the curvature and torsion are invariant

under Euclidean motions. That is, if γ : I → R3 is a smooth immersed curve
with γ̇(t) × γ̈(t) ̸= 0Tγ(t)R3 and curvature κ : I → R and torsion κ : I → R,
then the curve

δ = fR,q ◦ γ
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has the same curvature and torsion as γ.

Similar to the case of plane curves we have:

Proposition 2.42 Let I = [a, b] be an interval. For smooth functions κ : I → R+ and
τ : I → R there exists a unique Frenet curve γ : I → R3 with γ(a) = (0, 0, 0) ∈ R3

and

T (a) =

1

0

0


0R3

, N(a) =

0

1

0


0R3

, B(a) =

0

0

1


0R3

and so that the curvature and torsion of γ are given by κ and τ , respectively.

In order to prove this fact one needs to solve a system of ordinary differential equations
(Proposition 2.42Proposition 2.42 and its proof are not examinable).

Remark 2.43 There is also a notion of Frenet curve into Rm for m > 3. We refer to
the literature for further details.
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CHAPTER 3

Surfaces

3.1 Embedded surfaces WEEK 4

In Linear Algebra I you saw the notion of the kernel of a linear map f : V → W between
vector spaces V ,W . A related notion is that of a level set. Here, for geometric con-
creteness, we restrict ourselves to level sets in R3, but the notion makes sense in any
dimension.

Definition 3.1 Let X ⊂ R3 be a set and f : X → R a function. The level set of f
with level c ∈ R is the subset of X given by

f −1 ({c}) = {p ∈ X | f (p) = c}.

Example 3.2 (2-plane) Let f : R3 → R be a linear function.
(i) The kernel of f is the level set of f with level zero, that is, Ker(f ) = f −1({0}).

If f has rank 1, then f −1({0}) has dimension 2 by the rank-nullity theorem and
hence is a two-dimensional plane through the origin 0R3 .

(ii) Let c ̸= 0 be different from zero. Then f −1({c}) is an affine subspace whose
associated vector space is f −1 ({0})

f −1 ({c}) = f −1 ({0}) + q = {p + q | p ∈ Ker(f )} ,

where q ∈ R3 satisfies f (q) = c .

A 2-plane is not a particularly interesting object from the point of view of geometry.
However, we obtain more interesting surfaces once we consider level sets arising from
non-linear functions.

Example 3.3 (2-sphere) For p = (x , y , z) we consider

f : R3 → R, p 7→ x2 + y2 + z2.

Then for all r > 0 the level set f −1
(
{r2}

)
of f with level r2 is the 2-sphere of radius

r centred at 0R3 . We will denote it by S2(r) with the convention of writing S2 when
r = 1.

Example 3.4 (Torus) Let R > 0 and f : R3 → R be the function defined by the rule

p = (x , y , z) 7→
(
R −

√
x2 + y2

)2
+ z2.

Then for r < R we consider the level set f −1
(
{r2}

)
of f with level r2. This level set

is called a torus.
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FIGURE 3.1. A sphere, a torus and a cylinder.

Example 3.5 (Cylinder) Consider the smooth function

f : R3 → R, p = (x , y , z) 7→ x2 + y2

Then for r > 0 the level set f −1
(
{r2}

)
of f with level r2 is an (infinite) cylinder of

radius r and central axis {(0, 0, z) | z ∈ R}.

Example 3.6 (Paraboloid) For a, b ∈ R+ and p = (x , y , z) consider f : R3 → R
defined by the rule

p 7→ x2

a2
+

y2

b2
− z .

The level set f −1 ({0}) of f with level zero is known as an elliptic paraboloid.

3.2 Tangent planes

For the 2-sphere S2(r) ⊂ R3 we have an intuitive geometric understanding of what the
tangent plane at p = (x , y , z) ∈ S2(r) is, namely the subspace of TpR3 consisting of
those vectors v⃗p where v⃗ is orthogonal to the line passing through the points p and 0R3 .
That is,

TpS
2(r) =

{
v⃗p ∈ TpR3 | v1x + v2y + v3z = 0

}
⊂ TpR3,

where

v⃗p =

v1
v2
v3


p

It is natural to ask how we might define the tangent plane to a point p ∈ f −1 ({c}) for
some level set defined by a function f : X → R. The following example shows that f
needs to satisfy certain conditions so that we obtain a geometrically natural definition of
the tangent plane to a point.

Example 3.7 (Half-cone) For c ∈ R+ and p = (x , y , z) consider f : R3 → Rdefined
by the rule

p 7→ x2

c2
+

y2

c2
− z2.
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FIGURE 3.2. A half-cone. At the vertex of the cone we cannot define the
tangent plane

Let X =
{
p = (x , y , z) ∈ R3 | z ⩾ 0

}
and consider the level set C = f −1 ({0})∩X .

Then C is a cone whose vertex (its tip) is 0R3 . Clearly, we cannot define a tangent
plane at the vertex of the cone in any geometrically natural way. Observe that f is
smooth and that the exterior derivative of f is given by

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz =

2x

c2
dx +

2y

c2
dy − 2zdz .

Recall that df |p : TpR3 → R is a linear map satisfying

df |p(v⃗p) =
2x

c2
v1 +

2y

c2
v2 − 2zv3,

where we write

v⃗p =

v1
v2
v3


p

Therefore

rank df |p =

{
1, p ̸= 0R3 ,

0, p = 0R3 .

The rank of df |p fails to be maximal (i.e. 1) precisely at the vertex, where we cannot
define the tangent plane.

This motivates the following definitions:

Definition 3.8 (Regular point and regular value) Let f : U → R be a smooth
function on the open set U ⊂ R3.

(i) A point p ∈ U is called a regular point of f if df |p has rank 1.
(ii) A real number c ∈ R is called a regular value or a regular level of f if every point

of f −1 ({c}) is a regular point of f .

Recall that we write C∞(U,R) for the smooth functions on U .

Definition 3.9 (Smoothly embedded surface) Let f ∈ C∞(U,R) and c ∈ R a
regular value of f . Then we call

M = f −1 ({c}) ⊂ R3

a smoothly embedded surface in R3.
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Remark 3.10
(i) We call the surface embedded since it is a subset of the larger ambient space

R3.
(ii) As we will see later on, we can also consider a notion of a space which does not

rely on an ambient space R3. Thus, there is a notion of abstract space – usually
called a manifold.

(iii) We will often drop the adverb smoothly and simply speak of an embedded
surface and hence implicitly we always assume that the surface arises as a level
set of a smooth function.

Example 3.11 (Example 3.3Example 3.3 continued) For the 2-sphere we have

df = 2xdx + 2ydy + 2zdz

so that df |p has rank 1 for all points p ̸= 0R3 . Consequently, all r ∈ R+ are regular
values of f . Since f is smooth we conclude that S2(r) is a smoothly embedded
surface for all r ∈ R+. Observe that in this case we have

(3.1) TpS
2(r) = Ker (df |p) .

for all p ∈ S2(r).

We use (3.13.1) as a motivation for the following definition:

Definition 3.12 (Tangent space and tangent bundle) Let M = f −1 ({c}) be an
embedded surface.

(i) for all p ∈ M the tangent space of M at p is defined by

TpM = Ker(df |p) ⊂ TpR3.

The elements of TpM are said to be tangent to M at p.
(ii) By definition, for allp ∈ M the tangent spaceTpM is a subspace ofTpR3 whose

dimension is

dimTpM = dimTpR3 − dim Im(df |p) = 3− rank df |p = 2,

by the rank–nullity theorem.
(iii) The dimension of M is the dimension of any tangent space of M , that is, 2.
(iv) The union of all tangent spaces is called the tangent bundle of M

TM =
⋃
p∈M

{
v⃗p ∈ TpR3 | v⃗p ∈ Ker(df |p)

}
.

Example 3.13 Write p = (x , y , z) for a point in R3 and consider the linear function

f : R3 → R, p 7→ z .

Then M = f −1 ({0}) is an embedded surface, the 2-dimensional vector subspace

M =
{
p ∈ R3 | z = 0

}
⊂ R3

which is isomorphic to R2. The tangent space to p ∈ M is

TpM =
{
v⃗p ∈ TpR3 | v3 = 0

}
.
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p
TpM

FIGURE 3.3. A piece of an embedded surface and its tangent plane at
some point p ∈ M .

Simply forgetting about the third entry, we thus have a vector space isomorphism

TpM ≃ Tp̂R2

where p̂ arises from p by deleting the third entry. The notion of the tangent space of
R2 as defined in the first chapter is thus compatible with Definition 3.12Definition 3.12 when we
think of R2 as the embedded surface of R3 defined by z = 0.

Example 3.14 (Graph of a function) Let U ⊂ R2 be open and h : U → R a smooth
function. Then the graph of h

Gh := {(q, h(q)) | q ∈ U}

is an embedded surface in R3. Indeed, consider X = U × R ⊂ R3 and

f : X → R, p = (q, t) 7→ h(q)− t.

for q ∈ U and t ∈ R. Then

f −1 ({0}) = {(q, h(q)) | q ∈ U} = Gh

and writing q = (u, v), we have

df =
∂h

∂u
du +

∂h

∂v
dv − dt.

Therefore, df |p=(q,t) has rank 1 for all p = (q, t) ∈ U × R and M = f −1 ({0}) is an
embedded surface. The tangent space at (q, h(q)) for q ∈ U is given by

T(q,h(q))M =

{
v⃗(q,h(q)) ∈ T(q,h(q))R3

∣∣∣ v3 = ∂h

∂u
(q)v1 +

∂h

∂v
(q)v2

}
.

Remark 3.15 (Gradient) Let M = f −1 ({c}) be an embedded surface. Recall that
a subspace and its orthogonal complement are in direct sum. This implies that
dim(TpM)⊥ = 1 for all p ∈ M and since

df |p(v⃗p) = ⟨grad f (p), v⃗p⟩

we see that grad f (p) is a basis for (TpM)⊥ for all p ∈ M .

Definition 3.16 (Normal space and normal bundle) Let M = f −1 ({c}) be an em-
bedded surface.
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(i) For allp ∈ M , the orthogonal complement ofTpM ⊂ TpR3 is called the normal
space to M at p

TpM
⊥ = span {grad f (p)} ⊂ TpR3.

(ii) The union of all normal spaces is called the normal bundle of M

TM⊥ =
⋃
p∈M

TpM
⊥.

Remark 3.17 (Velocity vector of curves in a surface) Let M = f −1 ({c}) ⊂ R3 be
an embedded surface. Suppose γ : I → R3 is a smooth curve contained in M , that
is, γ(t) ∈ M for all t ∈ I . Then

γ̇(t) ∈ Tγ(t)M.

for all t ∈ I . Indeed, since γ(t) ∈ M for all t ∈ M , we have f (γ(t)) = c for all t ∈ I .
Taking the time t derivative of this equation we obtain

df |γ(t)(γ̇(t)) = 0

for all t ∈ I . This implies that γ̇(t) is tangent to M at γ(t) for all t ∈ I .

3.3 Orientation

Definition 3.18 (Vector field and unit normal field)
(i) A vector field on M assigns to every point p ∈ M an element of the tangent

space TpM at p, that is, it is a map

X : M → TM ⊂ TR3

so that X (p) ∈ TpM for all p ∈ M .
(ii) A map

N : M → TM⊥ ⊂ TR3

so that N(p) ∈ TpM
⊥ and so that ⟨N(p),N(p)⟩p = 1 for all p ∈ M is called a

unit normal field on M .
Writing a vector field or unit normal field on M as

a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

for functions a, b, c : M → R, the vector field or unit normal field is called smooth if
the functions a, b, c are smooth in the sense of Remark 1.5Remark 1.5.

Example 3.19 Let M = f −1 ({c}) be an embedded surface. The map

N : M → TM⊥, p 7→=
grad f (p)

∥ grad f (p)∥
is a smooth unit normal field on M .

38



Definition 3.20 (Orientation) LetM = f −1 ({c})be an embedded surface. A choice
of smooth unit normal vector field N : M → TM⊥ on M is called an orientation. An
embedded surface equipped with a choice of orientation is called oriented.

3.4 Geodesics

Let M = f −1 ({c}) be an embedded surface.

Definition 3.21 (Geodesic) A smooth curve γ : I → M ⊂ R3 is called a geodesic in
M if

γ̈(t) ∈ Tγ(t)M
⊥

for all t ∈ I . That is, the acceleration vector γ̈(t) is orthogonal to Tγ(t)M for all
t ∈ I .

Example 3.22 (Straight lines – Example 3.13Example 3.13 continued) Think of R2 as the embed-
ded surface M ⊂ R3 consisting of those points p = (x , y , z) for which z = 0. A
curve γ in M is of the form

γ = (γ1, γ2, 0)

for smooth functions γ1, γ2 : I → R. Clearly γ̈(t) ∈ Tγ(t)M
⊥ if and only if γ̈(t) =

0R3 for all t ∈ I . Therefore, the geodesics in R2 are segments of straight lines.

Example 3.23 (Helix on a cylinder) Consider the cylinder of radius r and central
axis {(0, 0, z) | z ∈ R}

M =
{
(x , y , z) ∈ R3 | x2 + y2 = r2

}
= f −1

(
{r2}

)
,

where f : R3 → R is given by f (p) = x2 + y2. For b ∈ R consider the helix

γ : R → M ⊂ R3, t 7→ (r cos(t), r sin(t), bt).

Then, writing p = (x , y , z) we have

grad f (p) =

2x

2y

0


p

as well as

γ̇(t) =

−r sin(t)

r cos(t)

b


γ(t)

and γ̈(t) = −r

cos(t)

sin(t)

0


γ(t)

= −1

2
grad f (γ(t)).

Since grad f (p) is a basis of TpM
⊥ for all p ∈ M , it follows that γ̈(t) ∈ Tγ(t)M

⊥ for
all t ∈ R, hence γ is a geodesic.

Example 3.24 (Great circle on a 2-sphere) The intersection of S2(r) with a 2-
dimensional vector subspace U ⊂ R3 is called a great circle. Let {w1,w2} be an
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orthonormal basis of U . Then U ∩ S2(r) is the image of the curve

γ : R → S2(r) ⊂ R3, t 7→ r cos(t)w1 + r sin(t)w2.

Then
γ̈(t) = −r (cos(t)w⃗1 + sin(t)w⃗2)γ(t)

where here w⃗i denotes the vector obtained by thinking of wi as a column vector.
Since S2(r) = f −1

(
{r2}

)
for the function f : p = (x , y , z) 7→ f (p) = x2 + y2 + z2,

we have

grad f (p) =

2x

2y

2z


p

= 2p⃗p

where again p⃗ denotes p, but thought of as a column vector. Consequently, we have

grad f (γ(t)) = 2r (cos(t)w⃗1 + sin(t)w⃗2)γ(t) = −2γ̈(t),

which shows that γ is a geodesic in S2(r).

Geodesics always have constant speed:

Proposition 3.25 Let γ : I → M be a geodesic. Then ∥γ̇(t)∥ is independent of t ∈ I .

Proof For a geodesic γ̈(t) is always orthogonal to γ̇(t) and hence

d

dt
∥γ̇(t)∥2 = d

dt
⟨γ̇(t), γ̇(t)⟩ = 2⟨γ̇(t), γ̈(t)⟩ = 0. □

As we will see later on, geodesics are locally length minimising in the sense that if γ : I →
M is a geodesic and p, q ∈ γ(I ) are points on the image of γ which are sufficiently close
to each other, then the segment of the geodesic connecting p and q is the shortest curve
in M which connects p and q.

Another interpretation of geodesics is in terms of the notion of a free particle. In classical
mechanics, a free particle is a massive particle upon which no force acts. By Newton’s
second law of motion, a free particle has vanishing acceleration. A geodesic in an embed-
ded surface M describes the movement of a particle that is not free in Newton’s sense,
but the force acting on it merely forces the particle to remain in M . The particle is free in
tangential directions.

3.5 Covariant derivative

If γ : I → M is a smooth curve in an embedded surface, a map X : I → TM is called a
vector field along γ if X (t) ∈ Tγ(t)M for all t ∈ M , with smoothness defined as before.
We would like to have a notion of derivative of a vector field along γ. If we take the usual
time derivative of X , we obtain a map which in general takes values in TR3 and not
TM . For instance, in the case of a smooth curve γ : I → M , the velocity vector field
γ̇ : I → TM is a vector field along γ, but its acceleration γ̈ is not, since γ̈(t) does not
necessarily lie in Tγ(t)M , but rather in Tγ(t)R3.

An obvious way to solve this problem is to compute the usual time derivative of a vector
field along a curve and then apply an orthogonal projection onto each tangent space.
More precisely:
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Definition 3.26 (Covariant derivative) For a curve γ : I → M and a smooth vector
field X : I → TM along γ, we define the covariant derivative of X as

DX

dt
(t) := Π⊥

Tγ(t)M
(Ẋ (t)),

where for p ∈ M

Π⊥
TpM : TpR3 → TpM

denotes the orthogonal projection ontoTpM with respect to the inner product ⟨·,·⟩p
on TpR3 and where

Ẋ (t) =

X ′
1(t)

X ′
2(t)

X ′
3(t)


γ(t)

∈ Tγ(t)R3

with X =
∑3

i=1 Xi
∂
∂xi

for smooth functions Xi : I → R.

Remark 3.27
(i) Notice that a smooth curve γ : I → M is a geodesic if and only if

Dγ̇

dt
(t) = 0

for all t ∈ I .
(ii) If N : M → TM⊥ is a smooth unit normal field on M and X : I → TM a

smooth vector field along the curve γ : I → M , then
DX

dt
(t) = Ẋ (t)− ⟨N(γ(t)), Ẋ (t)⟩N(γ(t)).

Example 3.28 (Covariant derivative) Consider S2 and γ to be the “equator”

γ : [0, 2π] → S2, t 7→ (cos(t), sin(t), 0).

Observe that the vector fields along γ defined by the rule

E1(t) =

− sin(t)

cos(t)

0


γ(t)

and E2(t) =

0

0

1


γ(t)

span Tγ(t)S
2 for all t ∈ [0, 2π]. Furthermore

N(t) =

cos(t)

sin(t)

0


γ(t)

spans (Tγ(t)S
2)⊥ for all t ∈ [0, 2π] and {E1(t),E2(t),N(t)} is an orthonormal basis

of Tγ(t)R3 for all t ∈ [0, 2π]. Any smooth vector field X : [0, 2π] → TS2 along γ is
of the form

X = s1E1 + s2E2

for smooth functions s1, s2 : R → R which are periodic with period 2π. From this
we compute

Ẋ (t) = s ′1(t)E1(t) + s ′2(t)E2(t)− s1(t)N(t)
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Hence we have
DX

dt
(t) = s ′1(t)E1(t) + s ′2(t)E2(t)− s1(t)N(t)

− ⟨s ′1(t)E1(t) + s ′2(t)E2(t)− s1(t)N(t),N(t)⟩N(t)

which simplifies to become
DX

dt
(t) = s ′1(t)E1(t) + s ′2(t)E2(t).

Definition 3.29 (Parallel vector field along a curve) Let γ : I → M be a curve and
X : I → TM a smooth vector field along γ. Then X is called parallel along γ if
DX
dt (t) = 0 for all t ∈ I .

The velocity vector field of a geodesic γ is thus parallel along γ in the sense of the previous
definition.

Exercise 3.30 Let γ : [0, 2π] → S2, t 7→ (cos(t), sin(t), 0) be the equator. Show
that the vector fields E1,E2 along γ as defined above are parallel along γ.

Proposition 3.31 Let γ : I → M be a curve and X ,Y : I → TM smooth vector
fields along γ and u : I → R a smooth function. Then we have

(i)
D

dt
(X + Y )(t) =

DX

dt
(t) +

DY

dt
(t),

(ii)
D

dt
(uX )(t) = u′(t)X (t) + u(t)

DX

dt
(t).

Proof This follows from the linearity of the usual derivative, the product rule for the
derivative of real-valued functions and the definition of the covariant derivative. □

Remark 3.32 Observe that Proposition 3.31Proposition 3.31 and Exercise 3.30Exercise 3.30 immediately imply
the end result of Example 3.28Example 3.28.

There are various questions related to geodesics. For instance, how many geodesics are
there on an embedded surface? Do geodesics keep moving forever? We will come back to
these questions later.

3.6 Curvature of embedded surfaces WEEK 5

Given an embedded surfaceM ⊂ R3, we may ask how we can define a notion of curvature
at each point of M .

Consider a planeM = f −1 ({0}) ⊂ R3, where f : R3 → R, p = (x , y , z) 7→ Ax+By+Cz

is a linear function and the constants A,B,C are not all zero. In this case a unit normal
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field is given by

p 7→ N(p) =
1√

A2 + B2 + C 2

A

B

C


p

.

Observe that this unit normal field is constant when we forget about the basepoint. That
is, writing

N(p) = (ν(p))p

for some map ν : R3 → M3,1(R), we have

ν(p) =
1√

A2 + B2 + C 2

A

B

C


so that ν(p) is independent of p.

Intuitively a plane is a flat surface. In order to define a notion of curvature we can study
how the unit normal field changes along an embedded surface. This leads to the notion
of the shape operator.

Let M = f −1 ({c}) be an embedded surface and N : M → TM⊥ a unit normal field.
We may take N = grad f /∥ grad f ∥. By assumption grad f (p) is non-zero for all points
p ∈ M . Each point p of M admits an open neighbourhood on which grad f (p) is also
non-zero. This implies that N is well defined on an open subset U ⊂ R3 which contains
M . Again we write

N(p) = ν(p)p

for some function ν : U → M3,1(R). Explicitly we have

ν(p) =

ν1(p)

ν2(p)

ν3(p)


for real-valued functions νi : U → R. Since N is a unit normal field, we have

3∑
i=1

νi (p)
2 = 1

for all p ∈ U . Taking the exterior derivative of this equation, we obtain

(3.2) 0 = 2
3∑

i=1

νi (p)dνi |p.

Defining

[dν(v⃗p)]p :=

dν1(v⃗p)

dν2(v⃗p)

dν3(v⃗p)


p

for all v⃗p ∈ TU , (3.23.2) implies

⟨N(p), [dν(v⃗p)]p⟩ = 0.

Recall that TpM
⊥ is spanned by N(p), hence [dν(v⃗p)]p is an element of TpM for all v⃗p .

In particular, for all p ∈ M we obtain a linear map

Sp : TpM → TpM, v⃗p 7→ [dν(v⃗p)]p.

Definition 3.33 (Shape operator and Gauss map) The mapSp is known as the shape
operator and the map ν : M → S2 ⊂ M3,1(R) is called the Gauss map of M .
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Here S2 denotes the 2-sphere in M3,1(R), that is, those column vectors v⃗ = (vi )1⩽i⩽3 so
that (v1)2 + (v2)

2 + (v3)
2 = 1.

Restricting ⟨·,·⟩p to TpM ⊂ TpR3, each tangent space of M is a Euclidean space and with
respect to this Euclidean space structure we have the following important fact:

Proposition 3.34 For all p ∈ M the shape operatorSp : TpM → TpM is self-adjoint.
That is, for all p ∈ M and all v⃗p, w⃗p ∈ TpM , we have

⟨v⃗p,Sp(w⃗p)⟩ = ⟨Sp(v⃗p), w⃗p⟩.

We thus obtain two symmetric bilinear forms on each tangent space:

Definition 3.35 (First and second fundamental form) Let M ⊂ R3 be an embedded
surface. The first fundamental form of M at p ∈ M is the restriction of the inner
product on TpR3 to TpM , that is, we define

I(v⃗p, w⃗p) := ⟨v⃗p, w⃗p⟩

for all v⃗p, w⃗p ∈ TpM . The symmetric bilinear form on TpM defined by the rule

II(v⃗p, w⃗p) := −⟨Sp(v⃗p), w⃗p⟩

for all v⃗p, w⃗p ∈ TpM is called the second fundamental form of M at p.

Proof of Proposition 3.34Proposition 3.34 Write ξ = 1/∥ grad f ∥ and p = (x1, x2, x3). Then, for all
1 ⩽ i ⩽ 3 we have νi = ξ∂i f and hence

dνi (v⃗p) = ξ(p)
3∑

j=1

∂j∂i f (p)dxj(v⃗p) + ∂i f (p)dξ(v⃗p).

Writing

v⃗p =

v1
v2
v3


p

and w⃗p =

w1

w2

w3


p

,

we thus have

⟨Sp(v⃗p), w⃗p⟩ = ξ(p)
3∑

i=1

3∑
j=1

(wi∂j∂i f (p)dxj(v⃗p)) + dξ(v⃗p)
3∑

i=1

wi∂i f (p).

Now notice that

dξ(v⃗p)
3∑

i=1

wi∂i f (p) = dξ(v⃗p)⟨grad f (p), w⃗p⟩ = 0.

since w⃗p ∈ TpM and grad f (p) ∈ TpM
⊥. Furthermore, dxj(v⃗p) = vj , hence we obtain

⟨Sp(v⃗p), w⃗p⟩ = ξ(p)
3∑

i=1

3∑
j=1

wivj∂j∂i f (p).

In terms of the Hessian matrix Hf (p) of f at p (whose entries are given by [Hf (p)]ij =

∂i∂j f (p)), we can thus write

(3.3) II(v⃗p, w⃗p) = −⟨Sp(v⃗p), w⃗p⟩ = −ξ(p)w⃗THf (p)v⃗ .

Since f is smooth the Hessian matrix is symmetric and this gives

⟨Sp(v⃗p), w⃗p⟩ = ξ(p)w⃗THf (p)v⃗ = ⟨v⃗p,Sp(w⃗p)⟩,

as claimed. □
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Example 3.36 (Shape operator of the 2-sphere) Let M = S2(r) ⊂ R3 be the 2-
sphere of radius r > 0. In this case M = f −1

(
{r2}

)
for the function f : R3 → R

defined by p = (x , y , z) 7→ f (p) = x2 + y2 + z2. Clearly we have

Hf (p) = 2

1 0 0

0 1 0

0 0 1


and

ξ(p) =
1

∥ grad f (p)∥
=

1

2r
.

Therefore, we have for all p ∈ S2(r) and v⃗p, w⃗p ∈ TpS
2

II(v⃗p, w⃗p) = −⟨Sp(v⃗p), w⃗p⟩ = −1

r
v⃗T w⃗ .

It follows that
Sp(v⃗p) =

1

r
v⃗p.

Example 3.37 (Shape operator of a graph) Let I be an interval and h : I → R a
smooth function. We obtain an associated curve

γ : I → R2, t 7→ (t, h(t))

whose image is the graph Gh of h. We want to compute the shape operator of the
graph of h. Recall that Gh is a level set with level 0 for the function

f : I × R → R, p = (t, s) 7→ h(t)− s.

Clearly we have

grad f (p) =

(
h′(t)

−1

)
(t,s)

and hence

Hf (p) =

(
h′′(t) 0

0 0

)
(t,s)

.

Let p = (t, h(t)) be an element of M = Gh. A orthonormal basis of of TpM is given
by

e⃗p =
1√

1 + h′(t)2

(
1

h′(t)

)
p

from which we compute

(3.4) ⟨Sp(e⃗p), e⃗p⟩ =
h′′(t)

(1 + h′(t)2)3/2
.

Notice that TpM is 1-dimensional, from this we conclude that

Sp(v⃗p) =
h′′(t)

(1 + h′(t)2)3/2
v⃗p

for all v⃗p ∈ TpM , where p = (t, h(t)).

Definition 3.38 (Normal curvature) Let M ⊂ R3 be an embedded surface. Then for
all p ∈ M all all v⃗p ∈ TpM with ⟨v⃗p, v⃗p⟩ = 1, we define the normal curvature at p in
the direction v⃗p by

κ(v⃗p) = −II(v⃗p, v⃗p) = ⟨Sp(v⃗p), v⃗p⟩.
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We would like to have a geometric interpretation of κ(v⃗p). By (3.43.4) the normal curvature
of a graph Gh at (t, h(t)) is given by (both for e⃗p and for −e⃗p)

h′′(t)

(1 + h′(t)2)3/2
.

This is precisely the signed curvature at t of the curve γ : I → R2, t 7→ (t, h(t)).

It is tempting to try to interpret κ(v⃗p) as a signed curvature of a plane curve as well. To
this end write

p =

x1
x2
x3

 and N(p) =

v1
v2
v3


p

and v⃗p =

w1

w2

w3


p

and consider the affine 2-plane Uv⃗p ⊂ R3 passing through p and which is spanned by
N(p) and v⃗p

Uv⃗p := {(x1 + s1v1 + s2w1, x2 + s1v2 + s2w2, x3 + s1v3 + s2w3) | s1, s2 ∈ R}

The intersection of this affine 2-plane withM is a plane curve. Let ϵ > 0 and γ : (−ϵ, ϵ) →
Uv⃗p ∩M be a smooth unit speed curve with γ(0) = p and γ̇(0) = v⃗p which is contained
in the intersection Uv⃗p ∩M . In order to apply the definition of the signed curvature of
a plane curve, we choose a vector space isomorphism Ψ : Uv⃗p → R2 and compute the
signed curvature of the curve δ := Ψ ◦ γ : I → R2 at t = 0. Let Ψ : Uv⃗p → R2 be the
vector space isomorphism so that

Ψ((x1 + s1v1 + s2w1, x2 + s1v2 + s2w2, x3 + s1v3 + s2w3)) = (s1, s2)

for all s1, s2 ∈ R. Observe that

Ψ∗(N(p)) = X⃗ and Ψ∗(v⃗p) = Y⃗ ,

where here we simplify notation and write X⃗ , Y⃗ for the standard basis of T0R2
R2

X⃗ =

(
1

0

)
0R2

, Y⃗ =

(
0

1

)
0R2

.

By definition, the signed curvature of δ at t = 0 is the real number κ0 so that

δ̈(0) = κ0J(δ̇(0)),

where J : T0R2
R2 → T0R2

R2 is the unique linear map satisfying

J(X⃗ ) = Y⃗ and J(Y⃗ ) = −X⃗ .

Let ⟨⟨·,·⟩⟩ denote the inner product on T0R2
R2. Since N(p), v⃗p are orthonormal vectors in

TpR3 and X⃗ , Y⃗ are orthonormal vectors in T0R2
R2, it follows that

Ψ∗ : span{v⃗p,N(p)} → T0R2
R2

is an orthogonal transformation. Using this fact we compute

⟨γ̈(0),N(p)⟩ = ⟨⟨Ψ∗(γ̈(0)),Ψ∗(N(p))⟩⟩ = ⟨⟨δ̈(0), X⃗ ⟩⟩ = −κ0⟨⟨J(δ̇(0), J(Y⃗ ))

= −κ0⟨⟨δ̇(0), Y⃗ ⟩⟩ = −κ0⟨⟨Ψ∗(γ̇(0)), Y⃗ ⟩⟩

= −κ0⟨⟨Ψ∗(v⃗p), Y⃗ ⟩⟩ = −κ0⟨⟨Y⃗ , Y⃗ ⟩⟩ = −κ0.

We also have:

Lemma 3.39 Let M be an embedded surface and γ : (−ϵ, ϵ) → M a smooth unit
speed curve with γ(0) = p and γ̇(0) = v⃗p , then

κ(v⃗p) = −⟨γ̈(0),N(p)⟩.
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Proof Let γ = (γ1, γ2, γ3) : I → M ⊂ R3 be a smooth unit speed curve with γ(0) = p

and γ̇(0) = v⃗p . Then

0 =
d

dt

∣∣∣∣
t=0

⟨γ̇(t),N(γ(t))⟩ = d

dt

∣∣∣∣
t=0

3∑
i=1

γ′
i (t)νi (γ(t))

=
3∑

i=1

γ′′
i (0)νi (γ(0)) +

3∑
i=1

γ′
i (0)dνi (γ̇(0))

= ⟨γ̈(0),N(p)⟩+ ⟨Sp(v⃗p), v⃗p⟩.

Hence we obtain the formula

κ(v⃗p) = −⟨γ̈(0),N(p)⟩. □

In summary we see that

κ(v⃗p) = −⟨γ̈(0),N(p)⟩ = κ0

where κ0 is the signed curvature at p of the curve cut out of M by the affine 2-plane Uv⃗p

passing through p and which is spanned by N(p) and v⃗p . Notice that κ(v⃗p) depends on
the choice of unit normal vector field N . Reversing the sign of N(p) reverses the sign of
κ(v⃗p).

Since Sp : TpM → TpM is self-adjoint for all p ∈ M , the Spectral Theorem from M06 Lin-
ear Algebra II implies that TpM admits an ordered orthonormal basis (v⃗p, w⃗p) consisting
of eigenvectors of Sp .

Definition 3.40 (Principal curvatures and principal curvature directions) Let M ⊂
R3 be an embedded surface and p ∈ M . For 1 ⩽ i ⩽ 2, the eigenvalues

κ1(p) := κ(v⃗p) = ⟨Sp(v⃗p), v⃗p⟩ and κ2(p) := κ(w⃗p) = ⟨Sp(w⃗p), w⃗p⟩

of Sp at p ∈ M are called the principal curvatures of M at p. The corresponding
orthonormal eigenvectors v⃗p, w⃗p are called the principal curvature directions of M
at p.

The average trace of the shape operator is known as the mean curvature and the determ-
inant of the shape operator as the Gauss curvature:

Definition 3.41 (Mean curvature and Gauss curvature) LetM ⊂ R3 be an embedded
surface. We define

H : M → R, p 7→ H(p) =
1

2
Tr Sp =

1

2
(κ1(p) + κ2(p)) .

We call H(p) the mean curvature of M at p. We also define

K : M → R, p 7→ K (p) = detSp = κ1(p)κ2(p).

We call K (p) the Gauss curvature of M at p.

Using the principal curvatures we can classify the points of an embedded surface into
different types:

Definition 3.42 Let p ∈ M be a point of an embedded surface. Then p is called an
umbilical point if κ1(p) = κ2(p). If κ1(p) = κ2(p) = 0 we say p is a planar point. If
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K (p) = 0, but H(p) ̸= 0 we say p is a parabolic point. If K (p) > 0 we say p is an
elliptic point and if K (p) < 0 we say p is a hyperbolic point.

Remark 3.43
(i) Notice that changing the sign of N(p) changes the sign of H(p), whereas the

sign of K (p) is unchanged.
(ii) Example 3.36Example 3.36 immediately implies that a 2-sphere of radius r has Gauss

curvature 1/r2 and mean curvature 1/r at each of its points. It consists en-
tirely of elliptic points.

(iii) An affine 2-plane in R3 has vanishing Gauss and mean curvature at each of its
points. Unsurprisingly, it consists entirely of planar points.

(iv) With our convention of taking N = grad f /∥ grad f ∥, it follows that the normal
curvature at p ∈ M in the direction of v⃗p ∈ TpM is positive if the surface bends
away fromN in the direction of v⃗p and it is negative if the surface bends towards
N in the direction v⃗p . In particular, p ∈ M is an elliptical point if the surface
bends away from N in both principal curvature directions or bends towards
N in both principal curvature directions, whereas p is a hyperbolic point if it
bends towards N in one principal curvature direction and bends away from N

in the other.

Lemma 3.44 Let M ⊂ R3 be an embedded surface, p ∈ M and b = (v⃗p, w⃗p) an
ordered orthonormal basis of TpM . Then with respect to b the shape operator has
matrix representation

M(Sp,b,b) =

(
⟨Sp(v⃗p), v⃗p⟩ ⟨Sp(v⃗p), w⃗p⟩
⟨Sp(w⃗p), v⃗p⟩ ⟨Sp(w⃗p), w⃗p⟩

)

Proof Exercise! □

Example 3.45 (Cylinder) Consider the cylinder of radius r > 0, which is the level set
M = f −1

(
{r2}

)
with level r2 of the function f : R3 → R, p = (x , y , z) 7→ x2 + y2.

Here we obtain

grad f (p) =

2x

2y

0


p

and hence

Hf (p) =

2 0 0

0 2 0

0 0 0

 .

At p = (x , y , z) ∈ M an ordered orthonormal basis of TpM is given by b = (v⃗p, w⃗p),
where

v⃗p =

0

0

1


p

and w⃗p =
1

r

−y

x

0


p

Using (3.33.3) and Lemma 3.44Lemma 3.44 we compute

M(Sp,b,b) =

(
0 0

0 1/r

)
.
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We conclude that v⃗p is a principal curvature direction with principal curvature 0, w⃗p

is a principal curvature direction with principal curvature 1/r . The Gauss curvature
of the cylinder is 0 = 0 · 1/r at each point of M and the mean curvature is 1/(2r) at
each point of M . It follows that M consists entirely of parabolic points.

Example 3.46 (Hyperbolic paraboloid) Consider the hyperbolic paraboloid which
is the level set with level 0 of the function f : R3 → R, p = (x , y , z) 7→ xy − z . Here
we obtain

grad f (p) =

 y

x

−1


p

and hence

Hf (p) =

0 1 0

1 0 0

0 0 0


At p = (x , y , xy) ∈ M = f −1 ({0}) an ordered orthonormal basis of TpM is given
by b = (v⃗p, w⃗p), where

v⃗p =
1√

1 + y2

1

0

y


p

and w⃗p =
1√

1 + x2 + y2

−xy/
√

1 + y2√
1 + y2

x/
√
1 + y2


p

.

Using (3.33.3) and Lemma 3.44Lemma 3.44 we compute

M(Sp,b,b) =
1

1 + x2 + y2

(
0 1

1 − 2xy√
1+x2+y2

)
so that at p = (x , y , xy) ∈ M we have Gauss curvature

(3.5) K (p) = detM(Sp,b,b) = − 1

(1 + x2 + y2)2

and mean curvature

(3.6) H(p) =
1

2
trM(Sp,b,b) = − xy

(1 + x2 + y2)3/2
.

Notice that the Gauss curvature of M is negative at each point of M and hence M

consists entirely of hyperbolic points.

Example 3.47 (Elliptic paraboloid) Consider an elliptic paraboloid which is the level
set with level 0 of the function f : R3 → R, p = (x , y , z) 7→ x2

2 + y2

2 − z . Here we
obtain

grad f (p) =

 x

y

−1


p

and

Hf (p) =

1 0 0

0 1 0

0 0 0


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At p = (x , y , (x2 + y2)/2) ∈ M = f −1 ({0}) an ordered orthonormal basis of TpM

is given by b = (v⃗p, w⃗p), where

v⃗p =
1√

1 + x2

1

0

x


p

and w⃗p =
1√

1 + x2 + y2

−xy/
√
1 + x2√

1 + x2

y/
√
1 + x2


p

.

Using (3.33.3) and Lemma 3.44Lemma 3.44 we compute

M(Sp,b,b) =
1

(1 + x2)
√

1 + x2 + y2

·

(
1 −xy/

√
1 + x2 + y2

−xy/
√

1 + x2 + y2 (x4 + x2(2 + y2) + 1)/(1 + x2 + y2)

)
.

This gives

K (p) =
1

(1 + x2 + y2)2
and H(p) =

2 + x2 + y2

2(1 + x2 + y2)3/2
.

The Gauss curvature is positive at each point of M , hence M consists entirely of
elliptic points.

Lemma 3.48 Let M ⊂ R3 be an embedded surface, p ∈ M and let κ1(p) ⩽ κ2(p)

denote the principal curvatures of M at p and v⃗p, w⃗p the corresponding principal
curvature directions. Then

κ1(p) = min
e⃗p∈TpM, ∥e⃗p∥=1

κ(e⃗p) κ2(p) = max
e⃗p∈TpM, ∥e⃗p∥=1

κ(e⃗p)

Proof Every e⃗p ∈ TpM with ∥e⃗p∥ = 1 can be written as

e⃗p = cos(α)v⃗p + sin(α)w⃗p

for some real number α ∈ R. From this we compute
κ(e⃗p) = ⟨Sp(cos(α)v⃗p + sin(α)w⃗p), cos(α)v⃗p + sin(α)w⃗p⟩

= cos(α)2⟨Sp(v⃗p), v⃗p⟩+ 2 cos(α) sin(α)⟨Sp(v⃗p), w⃗p⟩+ sin(α)2⟨Sp(w⃗p), w⃗p⟩

= cos(α)2κ1(p) + sin(α)2κ2(p).

Since κ1(p) ⩽ κ2(p) we obtain

κ1(p) ⩽ cos(α)2κ1(p) + sin(α)2κ2(p) = κ(e⃗p) ⩽ κ2(p)

and κ1(p) = κ(e⃗p) for the choice α = 0 and κ2(p) = κ(e⃗p) for the choice α = π/2. □

Remark 3.49 Lemma 3.48Lemma 3.48 and the self-adjointness of the shape operator
(Proposition 3.34Proposition 3.34) have quite a remarkable geometric consequence. Together they
imply that when we pick any point p on an embedded surface M and determine the
tangential directions e⃗p to M at p in which the surface bends the most and the least,
then the two directions are always orthogonal.

3.7 Local parametrisations WEEK 6

An affine 2-plane in R3 is the set M of solutions to an equation of the form

Ax + By + Cz = D
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figures/Figure83D.pdf

FIGURE 3.4. The image of the injective immersionF : (0, 2π)×(0, 1) →
R3 defined by (u, v) 7→ (sin(u), sin(u) cos(u), v).

for some coefficients A,B,C not all zero. We thus obtain the plane as the level set of the
smooth function the defined by the rule p = (x , y , z) 7→ f (p) = Ax + By + Cz , that is,
M = f −1 ({D}).

Alternatively, we can describe the affine plane as the image of a smooth map

F : R2 → R3, q = (u, v) 7→ p0 + uw1 + vw2,

for points p0,w1,w2 ∈ R3 such that f (p0) = D and f (w1) = f (w2) = 0.

Many surfaces are much easier to describe as the image of a smooth map, rather than as
a level set. Unfortunately, it is exceptional that the whole surface is the image of single
map, as it is the case for an affine 2-plane in R3. In general one needs several maps that
parametrise a surface. This leads to the notion of a local parametrisation.

Definition 3.50 (Local parametrisation of a surface) Given an embedded surface
M ⊂ R3, a smooth map F : U → R3 defined on some open subset U ⊂ R2 so that

(i) Im(F ) ⊂ M ;
(ii) F is injective;

(iii) F is an immersion. This means that F∗|q : TqU → TF (q)R3 is injective for all
q ∈ U ;

(iv) F is a homeomorphism onto its image. This means that there exists an open
subsetW ofR3 which contains the image of F and a continuous mapΦ : W →
U so that Φ(F (q)) = q for all q ∈ U ;

is called a local parametrisation of M (or more precisely a local parametrisation of
Im(F )). The restriction of Φ to W ∩M is called a local coordinate system on W ∩M .

Exercise 3.51 Consider the injective immersion F : (0, 2π)× (0, 1) → R3 defined
by (u, v) 7→ (sin(u), sin(u) cos(u), v). Show that F is not a homeomorphism onto
its image (compare Figure 4.1Figure 4.1).

Exercise 3.52 Write q = (u, v) for a point of U ⊂ R2. Show that F∗|q is injective if
and only if the cross product

∂F

∂u
(q)× ∂F

∂v
(q) :=

∂F1

∂u (q)
∂F2

∂u (q)
∂F3

∂u (q)

×

∂F1

∂v (q)
∂F2

∂v (q)
∂F3

∂v (q)


is non-vanishing, where we write F = (F1,F2,F3) for smooth functions Fi : U → R.
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Example 3.53 (Stereographic projection) Consider the 2-sphere S2 and the map

F : R2 → R3, q = (u, v) 7→
(

2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
Clearly F is smooth and injective and we have

∂F

∂u
(q) =

1

(1 + u2 + v2)2

2− 2u2 + 2v2

−4uv

4u


and

∂F

∂v
(q) =

1

(1 + u2 + v2)2

 −4uv

2(1 + u2 − v2)

4v


From which we obtain

∂F

∂u
(q)× ∂F

∂v
(q) = − 1

(1 + u2 + v2)3

 8u

8v

4(−1 + u2 + v2)

 ̸= 0R3

so that F : R2 → R3 is an immersion. Notice that the image of F is contained in
S2 ⊂ R3, it does however not contain the north pole (0, 0, 1) ∈ S2. Consider the
open subset of R3 defined by W = R3 \ {(x , y , 1) | x , y ∈ R} and

(3.7) Φ : W → R2, p = (x , y , z) 7→ Φ(p) =

(
x

1− z
,

y

1− z

)
.

The map Φ is called the stereographic projection from the north pole. It is continuous
and moreover, a direct calculation shows that Φ(F (q)) = q for all q ∈ R2. It follows
that F : R2 → R3 is a local parametrisation of S2 with the north pole removed.
Likewise, consider the map

F̂ : R2 → R3, q = (u, v) 7→
(

2u

1 + u2 + v2
,

−2v

1 + u2 + v2
,
1− u2 − v2

1 + u2 + v2

)
As above, one chan check that F̂ is a smooth injective immersion and defining
Ŵ = R3 \ {(x , y ,−1) | x , y ∈ R} and

Φ̂ : Ŵ → R2, p = (x , y , z) 7→ Φ̂(p) =

(
x

1 + z
,

−y

1 + z

)
.

we have Φ̂(F̂ (p)) = p for allp ∈ R2. The map Φ̂ is called the stereographic projection
from the south pole and the F̂ is a local parametrisation of S2 with the south pole
removed. We conclude that we can parametrise S2 in terms of two maps F and F̂ .

Exercise 3.54 Show that for a point p = (x , y , z) ∈ S2 \ {(0, 0, 1)}, the equatorial
plane {(x , y , 0) | x , y ,∈ R} ⊂ R3 intersects the straight line through (0, 0, 1) and p

in the point (
x

1− z
,

y

1− z
, 0

)
.

Because of this fact the map Ψ from (3.73.7) is called the stereographic projection from
the north pole. Likewise, the straight line through (0, 0,−1) andp ∈ S2\{(0, 0,−1)}
intersects the equatorial plane in the point(

x

1 + z
,

−y

1 + z
, 0

)
.

Another local parametrisation of the sphere is given by the following map:
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Example 3.55 (Spherical coordinates) The 2-sphere S2(r) with half a meridian
removed is parametrised by the map F : (0, 2π) × (−π/2,π/2) → S2(r) ⊂ R3

defined by the rule

(u, v) 7→ (r cos(v) cos(u), r cos(v) sin(u), r sin(v)).

The coordinates associated with this parametrisation are known as spherical co-
ordinates.

Example 3.56 (Torus) Recall that the torus is the level set of the function f (p) =(
R −

√
x2 + y2

)2
+ z2 with level r2. A local parametrisation of the torus is given

by the map F : (0, 2π)× (0, 2π) → R3 defined by the rule

(u, v) 7→ ((R + r cos(v)) cos(u), (R + r cos(v)) sin(u), r sin(v)).

Example 3.57 (Graph of a function) Let U ⊂ R2 be an open set and h : U → R a
smooth function. Recall that the graph Gh of h is an embedded surface. Consider

F : U → R3, q = (u, v) 7→ (u, v , h(u, v)).

Then F is smooth, injective and moreover an immersion since

∂F

∂u
(q)× ∂F

∂v
(q) =

− ∂h
∂u (q)

− ∂h
∂v (q)

1

 ̸= 0R3

Let W = U × R ⊂ R3 and define

Φ : W → R2, p = (x , y , z) 7→ Φ(p) = (x , y).

Clearly Φ is continuous and Φ(F (q)) = q for all q ∈ U . It follows that the graph Gh

of h is parametrised by F .

Remark 3.58 Choosing the function h(u, v) = uv in the previous example gives
the hyperbolic paraboloid.

Having the notion of a local parametrisation of a surface, we should make sure that
sufficiently small pieces of an embedded surface admit a local parametrisation. This is a
consequence of the implicit function theorem.

Theorem 3.59 (Special case of the implicit function theorem) Every embedded
surface M ⊂ R3 is locally the composition of a Euclidean motion and the graph of
a smooth function. That is, for every point p ∈ M there exists a Euclidean motion
fR,q : R3 → R3, an open set W ⊂ R3 containing Rp + q, an open set U ⊂ R2 and a
smooth function h : U → R so that W ∩ fR,q(M) = Gh.

Proof Notice that if A is an invertible 3× 3-matrix and b ∈ R3, then fA,b(M) is also an
embedded surface. Fix p ∈ M and choose a Euclidean motion fR,q : R3 → R3 so that
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fR,q(p) = 0R3 and so that the tangent space of M̃ = fR,q(M) at 0R3 is spanned by1

0

0


0R3

and

0

1

0


0R3

.

We want to argue that M̃ is locally a graph near 0R3 . For q = (u, v) ∈ R2 consider the
curve γq through (u, v , 0) which is perpendicular to the plane {(x , y , 0) |x , y ∈ R}

γq : R2 → R3, q = (u, v) 7→ γq(t) = (u, v , t)

Since the tangent plane of M̃ at 0R3 is horizontal, the curve γq will intersect M̃ for suffi-
ciently small values of (u, v) = q. Mapping q = (u, v) to the smallest (in absolute value)
time t for which γq intersects M̃ , we obtain a smooth real-valued function h on some
open neighbourhood U of 0R2 . By construction, M̃ is locally the graph of h, that is, there
exists an open set W ⊂ R3 so that W ∩ M̃ = Gh. □

Exercise 3.60 Show that Theorem 3.59Theorem 3.59 is still true when the Euclidean motion is
replaced with fPσ : R3 → R3 and Pσ ∈ M3,3(R) denotes the permutation matrix of
a permutation σ : {1, 2, 3} → {1, 2, 3}.

Given an embedded surface M ⊂ R3, we can conclude from Theorem 3.59Theorem 3.59 that for each
point p ∈ M we can find an open setW ⊂ R3 containing p so thatW ∩M is parametrised
by the map

F : U → R3, q = (u, v) 7→ fR,q(u, v , h(u, v)),

where fR,q : R3 → R3 is a Euclidean motion and h : U → R a smooth function defined
on some open set U ⊂ R2. A sufficiently small piece of an embedded surface thus always
admits a local parametrisation.

3.8 Calculations in local parametrisations

If M = f −1 ({c}) is an embedded surface and F : U → R3 a local parametrisation of M ,
we have that f (F (q)) = c for all q ∈ U . Taking the exterior derivative of this identity, we
conclude that

df |F (q)(F∗|q(w⃗q)) = 0

for all w⃗q ∈ TqU . Since F∗|q is injective, this means that

TF (q)M = {F∗|q(w⃗q) | w⃗q ∈ TqU} .

That is, the linear map F∗|q : TqU → TF (q)R3 maps the tangent space of U at q ∈ U

onto the tangent space of M at F (q). In particular, writing

∂1F (q) :=
∂F

∂u
(q) and ∂2F (q) :=

∂F

∂v
(q)

it follows that
bF (q) =

(
(∂1F (q))F (q) , (∂2F (q))F (q)

)
is an ordered basis bF (q) of TF (q)M for all q ∈ U .

With respect to a choice of local parametrisation F of M we can thus encode the first
fundamental form I of M in terms of a map g on U with values in the symmetric 2× 2-
matrices g : U → M2,2(R). The map g assigns to a point q ∈ U the matrix representation
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of the inner product IF (q) = ⟨·,·⟩F (q) with respect to the ordered basis bF (q)

q 7→ g(q) = M(IF (q),bF (q)) =

(
∂1F (q) · ∂1F (q) ∂1F (q) · ∂2F (q)
∂2F (q) · ∂1F (q) ∂2F (q) · ∂2F (q)

)
,

where · denotes the standard scalar product of column vectors. For 1 ⩽ i , j ⩽ 2 we write
gij(q) =

[
M(⟨·,·⟩F (q),bF (q)

]
ij

so that

(3.8)

g11(q) = ∂1F (q) · ∂1F (q),
g12(q) = ∂1F (q) · ∂2F (q) = ∂2F (q) · ∂1F (q) = g21(q),

g22(q) = ∂2F (q) · ∂2F (q).

or written more succintly (while surpressing the base point)

(3.9) gij = ∂iF · ∂jF

Example 3.61 Consider the local parametrisation of the 2-sphere of radius 1 given
in Example 3.55Example 3.55

F (u, v) = (cos(v) cos(u), cos(v) sin(u), sin(v)).

In this case we obtain

∂1F (q) =

− cos(v) sin(u)

cos(v) cos(u)

0

 and ∂2F (q) =

− sin(v) cos(u)

− sin(v) sin(u)

cos(v)


where we write q = (u, v). From this we compute

g11(q) = (− cos(v) sin(u))2 + (cos(v) cos(u))2 + (0)2 = cos(v)2

and likewise g12 = 0 and g22 = 1 so that

g(q) =

(
cos(v)2 0

0 1

)
.

Example 3.62 For the parametrisation of the hyperbolic paraboloid

F : R2 → R3, q = (u, v) 7→ (u, v , uv)

we obtain

g(q) =

(
1 + v2 uv

uv 1 + u2

)
.

Exercise 3.63 Show that for the parametrisation of the torus given in Example 3.56Example 3.56
we obtain

g(q) =

(
(R + r cos(v))2 0

0 r2

)
where we write q = (u, v).

We can also encode the second fundamental form II of M in terms of a matrix-valued
map on U . We define

A : U → M2,2(R), q 7→ A(q) = M(IIF (q),bF (q)).
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To compute the matrix entries of A explicitly, first observe that we may choose the unit
normal field N : M → TM⊥ so that

(3.10) G (q) := ν(F (q)) =
∂1F (q)× ∂2F (q)

|∂1F (q)× ∂2F (q)|
,

where we write N(p) = (ν(p))p for some smooth function ν : M → S2 ⊂ M3,1(R) and
where |w⃗ | =

√
w⃗ · w⃗ for w⃗ ∈ M3,1(R). This follows from the fact that the cross-product

of two linearly independent vectors is orthogonal to the 2-plane spanned by the vectors.
Recall that ν : M → S2 is called the Gauss map of M and – by abusing language –
G : U → S2 is sometimes also called Gauss map. Observe that

(∂1F (q))F (q)) = F∗((e⃗1)q) and (∂2F (q))F (q)) = F∗((e⃗2)q)

where {(e⃗1)q, (e⃗2)q} denotes the standard basis of TqR2. Suppressing base points to
simplify notation and denoting the entries of A(q) by Aij(q) for 1 ⩽ i , j ⩽ 2, we have

Aij(q) = −⟨dν(F∗(e⃗i )),F∗(e⃗j)⟩ = −⟨d(ν ◦ F )(e⃗i ),F∗(e⃗j)⟩
= −⟨dG (e⃗i ),F∗(e⃗j)⟩,

where the second equality follows from the chain rule and the third equality uses that
G = ν ◦ F . Explicitly we thus have

A11(q) = −∂1G (q) · ∂1F (q),
A12(q) = −∂1G (q) · ∂2F (q) = −∂2G (q) · ∂1F (q) = A21(q),

A22(q) = −∂2G (q) · ∂2F (q),

where we write

∂1G (q) :=
∂G

∂u
(q) and ∂2G (q) :=

∂G

∂v
(q)

Since G (q) · ∂1F (q) = 0 for all q ∈ U , we have
∂

∂u
(G · Fu) (q) = 0 = ∂1G (q) · ∂1F (q) + G (q) · ∂2

11F (q)

so that ∂1G (q) · ∂1F (q) = −G (q) · ∂2
11F (q), where we write

∂2
11F (q) :=

∂2F

∂u∂u
(q)

Using corresponding notation, we obtain likewise

∂2G (q) · ∂2F (q) = −G (q) · ∂2
22F (q)

and

∂1G (q) · ∂2F (q) = −G (q) · ∂2
12F (q) = −G (q) · ∂2

21F (q) = ∂2G (q) · ∂1F (q).

In summary, we thus have

(3.11)

A11(q) = G (q) · ∂2
11F (q),

A12(q) = G (q) · ∂2
12F (q) = G (q) · ∂2

21F (q) = A21(q),

A22(q) = G (q) · ∂2
22F (q),

or written more succintly (while surpressing the base point)

(3.12) Aij = G · ∂2
ijF .

We next derive explicit identities for the functions K ◦ F : U → R and H ◦ F : U → R.
Recall that for all q ∈ U the matrix g(q) is the matrix representation with respect to
the basis bF (q) of the inner product ⟨·,·⟩F (q) on TF (q)R3 restricted to TF (p)M . From M06
Linear Algebra II we know that the restriction of an inner product to a subspace is non-
degenerate. This is equivalent to g(q) being an invertible matrix for all q ∈ U . We write
g−1 : U → M2,2(R) for the map which assign to a point q ∈ U the inverse matrix of g(q),
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that is, for all q ∈ U we have g−1(q)g(q) = 12, where 12 denotes the identity matrix of
size 2.

Fix q ∈ U and letS(q) ∈ M2,2(R) denote the matrix representation of the shape operator
SF (q) at F (q) with respect to the ordered basis bF (q) of TF (q)M

S(q) = M(SF (q),bF (q))

Write S(q) = (Sij(q))1⩽i ,j⩽2 for unique scalars Sij(q) ∈ R. Moreover let X1,X2 denote
the basis vectors of the ordered basis bF (q). Then we have

Sp(Xi ) =
2∑

k=1

Ski (q)Xk

Using this we compute

Aij(q) = −⟨Sp(Xi ),Xj⟩ = −

〈
2∑

j=1

Ski (q)Xk ,Xj

〉
= −

2∑
k=1

Ski (q)⟨Xk ,Xj⟩

= −
2∑

k=1

Ski (q)gkj(q) = −
2∑

k=1

gjkSki (q) = Aji (q).

In matrix notation we thus obtain the identity

(3.13) A(q) = −g(q)S(q) ⇐⇒ S(q) = −g−1(q)A(q).

Recall that the Gauss curvature at p ∈ M is the determinant of Sp . Hence we conclude

K (F (q)) = detS(q) = det
(
−g−1(q)A(q)

)
= det

(
g−1(q)A(q)

)
=

detA(q)

det g(q)
,

where the third equality uses that the determinant of a2×2-matrix is unchanged when the
matrix is multiplied by −1 and the last equality uses the product rule for the determinant.

For the mean curvature we obtain correspondingly H(F (q)) = − 1
2 Tr

(
g−1(q)A(q)

)
so

that in summary we have for all q ∈ U

(3.14)
K (F (q)) =

detA(q)

det g(q)
,

H(F (q)) = −1

2
Tr
(
g−1(q)A(q)

)
.

Example 3.64 For the hyperbolic paraboloid with F (q) = (u, v , uv) where q =

(u, v) we compute

G (q) =
1√

1 + u2 + v2

−v

−u

1

 .

From this one can calculate that

A(q) =

(
0 1√

1+u2+v2

1√
1+u2+v2

0

)
and Example 3.62Example 3.62 gives

g(q) =

(
1 + v2 uv

uv 1 + u2

)
.

From this we obtain det g(q) = 1 + u2 + v2 so that at F (q) = (u, v , uv) we have
Gauss curvature

K (F (q)) = − 1

(1 + u2 + v2)2

57



which is in agreement with (3.53.5). We also obtain

H(F (q)) =
uv

(1 + u2 + v2)3/2
,

which differs from (3.63.6) by a minus sign. This is no error however, since G (q) =

− grad f (F (q)) for all q ∈ U , where f : R3 → R, p = (x , y , z) 7→ xy − z is the
defining function of the hyperbolic paraboloid.

Example 3.65 (Torus) For the torus we obtain

G (q) =

cos(u) cos(v)

cos(v) sin(u)

sin(v)


and we can compute

A(q) = −
(
cos(v)(R + r cos(v)) 0

0 r

)
From which we deduce together with Exercise 3.63Exercise 3.63

K (F (q)) =
cos(v)

r(R + r cos(v))

and
H(F (q)) =

1

2

(
1

r
+

cos(v)

R + r cos(v)

)
.

3.9 Immersed surfaces

All the calculations in the previous section also make sense if F is a smooth injective
immersion. This motivates:

Definition 3.66 (Immersed surface) Let U ⊂ R3 be open and F : U → R3 a smooth
injective immersion. Then:

(i) the image M := F (U) ⊂ R3 is called an immersed surface;
(ii) the tangent space of M at p = F (q) is defined as

TF (q)M := span{(∂1F (q))F (q), (∂2F (q))F (q)}.

Remark 3.67
(i) In what follows, whenever we speak of a surfaceM ⊂ R3 we mean an immersed

or embedded surface.
(ii) While we can define the tangent space at each point of an immersed surface, we

have to be aware that immersed surfaces can have self intersections, compare
with Figure 4.1Figure 4.1.

(iii) The Gauss curvature, mean curvature, shape operator, first and second funda-
mental form and Gauss map are defined in terms of the expressions from the
previous sections. Often, these quantities are interpreted as being defined onU .
For instance, the Gauss curvature of an immersed surface is often interpreted
as a function K : U → R.
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FIGURE 3.5. A (subset of the) helicoid.

(iv) We will occasionally also allow U to be non open, provided there exists an open
subset Ũ ⊂ R2 containing U and a smooth immersion F̃ : Ũ → R3 so that the
restriction of F̃ to U ⊂ Ũ is injective.

Example 3.68 (Helicoid) Consider

F : R2 → R3, q = (u, v) 7→ F (q) = (u cos(v), u sin(v), v)

Clearly, F is smooth and injective and a calculation shows that F is an immersion,
hence M = F (R2) ⊂ R3 is an immersed surface called the Helicoid. Here we
compute

g(q) =

(
1 0

0 1 + u2

)
and G (q) =

1√
1 + u2

 sin(v)

− cos(v)

u


as well as

A(q) =

(
0 − 1√

1+u2

− 1√
1+u2

0

)
.

Which gives

K (q) = − 1

(1 + u2)2
and H(q) = 0.

The mean curvature of a Helicoid is identically 0. Such surfaces are called minimal
surfaces.

Definition 3.69 (Minimal surface) An immersed or embedded surface M ⊂ R3

whose mean curvature is identically 0 is called a minimal surface.

Remark 3.70 Minimal surfaces are mathematical idealisations of soap films and
belong to the most intensively studied surfaces in geometry. Despite having math-
ematical origins that date back to the 18th century, they are still actively studied.

An interesting class of immersed surfaces arises from rotating a curve in the xz-plane
around the z-axis.
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Example 3.71 (Surface of revolution) Let I be an interval and γ = (γ1, γ2) : I → R2

a smooth injective immersed curve with γ1(t) > 0 for all t ∈ I . Consider F :

[0, 2π)× I → R3 defined by

(u, v) 7→ fRu (γ1(v), 0, γ2(v)) = (γ1(v) cos(u), γ1(v) sin(u), γ2(v))

where Ru is the matrix corresponding to rotation around the z-axis with angle u

Ru =

cos(u) − sin(u) 0

sin(u) cos(u) 0

0 0 1

 .

Then, one can easily check that M = Im(F ) ⊂ R3 is an immersed surface known
as a surface of revolution. We compute the Gauss and mean curvature in the case
where γ is a unit speed curve. We have

∂1F (q) =

−γ1(v) sin(u)

γ1(v) cos(u)

0

 and ∂2F (q) =

γ′
1(v) cos(u)

γ′
1(v) sin(u)

γ′
2(v)

 .

from which we compute

g(q) =

(
γ1(v)

2 0

0 1

)
and G (q) =

cos(u)γ′
2(v)

sin(u)γ′
2(v)

−γ′
1(v)


as well as

A(q) =

(
−γ1(v)γ

′
2(v) 0

0 γ′′
1 (v)γ

′
2(v)− γ′

1(v)γ
′′
2 (v)

)
.

Hence we obtain

K (q) =
γ′
2(v) (γ

′
1(v)γ

′′
2 (v)− γ′′

1 (v)γ
′
2(v))

γ1(v)

Differentiating
γ′
1(v)

2 + γ′
2(v)

2 = 1

with respect to v we deduce

γ′
1(v)γ

′′
1 (v) = −γ′

2(v)γ
′′
2 (v),

so that
K (q) =

−γ′′
1 (v)γ

′
1(v)

2 − γ′′
1 (v)γ

′
2(v)

2

γ1(v)
= −γ′′

1 (v)

γ1(v)
.

For the mean curvature we obtain

H(q) =
1

2

(
γ′
2(v)

γ1(v)
+ γ′

1(v)γ
′′
2 (v)− γ′

2(v)γ
′′
1 (v)

)
.

Notice that if κ : I → R denotes the signed curvature of the plane curve γ =

(γ1, γ2) : I → R2, then we can write

H(q) =
1

2

(
κ(v) +

γ′
2(v)

γ1(v)

)
.

Exercise 3.72 (Catenoid) The surface of revolution arising from γ1(v) = cosh(v)

andγ2(v) = v is known as the Catenoid. Show that the Catenoid has mean curvature
identical to 0. Warning: The formula for H from Example 3.71Example 3.71 cannot be used, since
γ = (γ1, γ2) : R → R2 is not a unit speed curve.
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Remark 3.73 The Catenoid is the first non-trivial example of a minimal surface (the
plane is a trivial example). It was discovered in 1744 by the Swiss Mathematician
Leonard Euler.

Exercise 3.74 Show that the surface of revolution arising from the tractrix – known
as the pseudo-sphere – has constant negative Gauss curvature.
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CHAPTER 4

Intrinsic surface geometry WEEK 7

An important observation in geometry is that the Gauss curvature of an embedded surface
can be expressed in terms of the first fundamental form only. Gauss, who discovered
this fact, was so astonished by it that he called it a “Theorema Egregium” (Latin for
“Remarkable Theorem”). Geometric quantities associated to a surface which can be
obtained from computing inner products between tangent vectors – that is, quantities
that are computable once we know the first fundamental form – are called intrinsic.
Intrinsic quantities are in contrast to extrinsic quantities which cannot be computed from
knowing the first fundamental form alone. Prototypical examples of extrinsic quantities
associated to an embedded surface M ⊂ R3 are the second fundamental form, the
mean curvature and the unit normal field. The intuition for intrinsic vs extrinsic is that
intrinsic quantities do not rely on the ambient spaceR3 in which the surface is embedded,
whereas extrinsic quantities do.

Recall that the Gauss curvature is the product of the principal curvatures which can be
computed as the signed curvature of the curve cut out of the surface by intersecting it
with a suitable affine 2-plane. At p ∈ M the affine 2-plane is spanned by a unit normal
vector N(p) and a tangent vector v⃗p . The unit normal vector N(p) being an extrinsic
quantity, it is not clear at all that the Gauss curvature can be expressed without involving
N(p), this is however the case as we will see below. Gauss’ Theorema Egregium lead
mathematicians to consider geometric spaces which are not necessarily embedded in
a surrounding ambient space such as R3. This point of view is relevant in particular in
physics. As far as we know our universe does not sit inside a larger ambient universe, but
is a geometric space in itself.

4.1 The Gauss–Codazzi equations

Specifying an immersed surface F : U → R3 involves choosing 3 functions F1,F2,F3 :

U → R. Recall that to an immersed surface F : U → R3 we associated two maps
g ,A : U → M2,2(R) taking values in the symmetric 2× 2-matrices. The map g encodes
the first fundamental form and the mapA encodes the second fundamental form. We can
change our view point and prescribe two matrix-valued maps g ,A on an open setU ⊂ R2

and ask whether g and A arise from an immersion F : U → R3 via the expressions given
in (3.83.8) and (3.113.11). Thinking of gij ,Aij for 1 ⩽ i , j ⩽ 2 as given and F1,F2,F3 as unknown
functions, the equations (3.83.8) and (3.113.11) are a system of partial differential equations.
Partial differential equations are the (generally speaking more complicated) counterparts
to ordinary differential equations, the key difference being that the sought after functions
are allowed to depend on more than one variable. Many important laws of nature can
be phrased as partial differential equations, in particular, the so-called Einstein field
equations describing gravity, the Schrödinger equation arising in quantum mechanics
and the Maxwell equations governing the laws of electromagnetism. Understanding
partial differential equations is a fundamental part of modern mathematics.
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The two systems (3.83.8) and (3.113.11) give us 6 equations for 3 unknown functions F1,F2,F3.
Roughly speaking, whenever we have more equations (here 6) than unknowns (here 3)
we should expect some compatibility conditions among the equations so that we can
find any solutions. For historical reasons, in the theory of partial differential equations
compatibility conditions are often called integrability conditions.

In what follows we derive such conditions. That is, we derive conditions for the functions
gij ,Aij (and their derivatives) that are necessary for (3.83.8) and (3.113.11) to have a solution
F1,F2,F3. They appear in Proposition 4.5Proposition 4.5 below.

Let F : U → R3 be an immersed surface so that

c(q) := (∂1F (q), ∂2F (q),G (q))

is an ordered basis of M3,1(R) for all q ∈ U . For all q ∈ U and all 1 ⩽ i , j ⩽ 2, the vector
∂2
ijF (q) ∈ M3,1(R) can thus be written as a linear combination of the elements of c(q).

We can therefore find unique functions Γkij : U → R and Bij : U → R for 1 ⩽ i , j , k ⩽ 2

so that

(4.1) ∂2
ijF (q) = Γ1ij(q)∂1F (q) + Γ2ij(q)∂2F (q) + Bij(q)G (q).

Taking the inner product with G we obtain

Aij = G · ∂2
ijF = Γ1ij (G · ∂1F ) + Γ2ij (G · ∂2F ) + Bij (G · G ) = Bij ,

where we suppress the base point, we use (3.123.12), G (q) · G (q) = 1 and that G (q) is
orthogonal to ∂1F (q) and to ∂2F (q). Taking inner products with ∂1F and ∂2F we obtain

∂1F · ∂2
ijF = Γ1ij (∂1F · ∂1F ) + Γ2ij (∂1F · ∂2F ) = Γ1ijg11 + Γ2ijg12

and
∂2F · ∂2

ijF = Γ1ij (∂2F · ∂1F ) + Γ2ij (∂2F · ∂2F ) = Γ1ijg21 + Γ2ijg22,

where we use (3.83.8).

Remark 4.1 (Einstein Summation convention) In what follows we employ a useful
notational convention going back to A. Einstein. Whenever an index appears as
an upper index as well as a lower index in the same term, then it is automatically
summed over. For instance, in the expression Γlijgkl the index l occurs both as an
upper index and a lower index, hence we have

Γlijgkl = Γ1ijgk1 + Γ2ijgk2.

Using the Einstein summation convention, the above equations can be written as

∂kF · ∂2
ijF = Γlijgkl .

Now notice that for 1 ⩽ i , j , k ⩽ 2 we have

∂igjk = ∂i (∂jF · ∂kF ) = ∂2
ijF · ∂kF + ∂jF · ∂2

ikF .

From this we compute

∂igjk + ∂jgik − ∂kgij = ∂2
ijF · ∂kF + ∂jF · ∂2

ikF + ∂2
jiF · ∂kF + ∂iF · ∂2

jkF

− ∂2
kiF · ∂jF − ∂iF · ∂2

kjF

so that
∂igjk + ∂jgik − ∂kgij = 2∂kF · ∂2

ijF ,

where we use that ∂2
ijF = ∂2

jiF . In summary we have

(4.2) Γlijgkl =
1

2
(∂igjk + ∂jgik − ∂kgij) .
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Recall that we write g−1 : U → M2,2(R) for the map which assigns to q ∈ U the inverse
of the matrix g(q). It is customary to write

g−1 =

(
g11 g12

g21 g22

)
for functions g ij : U → R which satisfy g12 = g21. By definition, we have

g rkgkl = g r1g1l + g r2g2l =

{
1, r = l ,

0, r ̸= l .

Using this we can compute

g rkΓlijgkl = Γlijg
rkgkl = Γrij .

Finally, using (4.24.2) we thus have

Γrij =
1

2
g rk (∂igjk + ∂jgik − ∂kgij) .

Definition 4.2 (Christoffel symbols) The functions Γlij : U → R defined by

Γlij =
1

2
g lk (∂igjk + ∂jgik − ∂kgij) 1 ⩽ i , j , k, l ⩽ 2.

are the Christoffel symbols associated to the immersion F : U → R3.

Notice that the Christoffel symbols satisfy

Γlij = Γlji .

Example 4.3 (Example 3.71Example 3.71 continued) For a surface of revolution, we computed
that

g(q) =

(
γ1(v)

2 0

0 1

)
so that

g−1(q) =

(
1

γ1(v)2
0

0 1

)
.

Moreover, we have
∂2g11(q) = 2γ1(v)γ

′
1(v)

and ∂igjk = 0 otherwise. It follows that

Γ111 = Γ122 = Γ212 = Γ221 = Γ222 = 0

and
Γ112(q) = Γ121(q) =

1

2
g11(q) (∂1g12(q) + ∂2g11(q)− ∂1g12(q))

=
1

2
g11(q)∂2g11(q) =

2γ1(v)γ
′
1(v)

2γ1(v)2
=

γ′
1(v)

γ1(v)

as well as

Γ211(q) =
1

2
g22(q) (∂1g12(q) + ∂1g12(q)− ∂2g11(q))

= −1

2
g22(q)∂2g11(q) = −1

2
2γ1(v)γ

′
1(v) = −γ1(v)γ

′
1(v).

Example 4.4 (Example 3.68Example 3.68 continued) For the Helicoid we compute that

g(q) =

(
1 0

0 1 + u2

)
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so that

g−1(q) =

(
1 0

0 1
1+u2

)
.

Moreover, we have
∂1g22(q) = 2u

and ∂igjk otherwise. It follows that

Γ222 = Γ211 = Γ121 = Γ112 = Γ111 = 0

and
Γ212(q) = Γ221(q) =

1

2
g22(q) (∂1g22(q) + ∂2g12(q)− ∂2g12(q)))

=
1

2
g22(q)∂1g22(q) =

2u

2(1 + u2)
=

u

1 + u2
,

as well as

Γ122 =
1

2
g11(q) (2∂2g12(q)− ∂1g22(q)) = −1

2
g11(q)∂1g22(q)

= −1

2
2u = −u.

We now return to our problem of determining integrability conditions for findingF : U →
R3 when we are given the functions gij ,Aij on U . Using the summation convention, we
can write (4.14.1) as

∂2
jkF = AjkG + Γljk∂lF .

Using this we compute

Qjikm : =
[
∂i
(
∂2
jkF
)]

· ∂mF =
[
∂i
(
AjkG + Γljk∂lF

)]
· ∂mF

= ∂iAjk G · ∂mF︸ ︷︷ ︸
=0

+Ajk ∂iG · ∂mF︸ ︷︷ ︸
=−Aim

+∂iΓ
l
jk ∂lF · ∂mF︸ ︷︷ ︸

=glm

+Γljk ∂
2
ilF · ∂mF︸ ︷︷ ︸
=Γr

ilgmr

= −AjkAim + ∂iΓ
l
jkglm + ΓljkΓ

r
ilgmr .

Indices that are summed over can be given new “names”, so that

ΓljkΓ
r
ilgmr = ΓajkΓ

r
iagmr = ΓajkΓ

b
iagmb = ΓrjkΓ

b
irgmb = ΓrjkΓ

l
irgml .

Since gml = glm we thus obtain

Qjikm = −AjkAim +
(
∂iΓ

l
jk + ΓrjkΓ

l
ir

)
glm.

Using that third derivatives commute, we have ∂j(∂
2
ikF ) = ∂i (∂

2
jkF ) and hence

0 = Qijkm − Qjikm =
(
∂jΓ

l
ik − ∂iΓ

l
jk + ΓrikΓ

l
jr − ΓrjkΓ

l
ir

)
glm − (AikAjm − AjkAim).

Writing

(4.3) Rijkm =
(
∂jΓ

l
ik − ∂iΓ

l
jk + ΓrikΓ

l
jr − ΓrjkΓ

l
ir

)
glm,

we have the so-called Gauss equations

(4.4) Rijkm = AikAjm − AjkAim,

which must hold for all 1 ⩽ i , j , k ,m ⩽ 2. The functions Rijkm depend on the glm and the
Christoffel symbols only, thus they can be computed from knowing the functions gij . If
we are given functions gij ,Aij on U , then the Gauss equations are necessary conditions
for the existence of an immersion F : U → R3 realising gij ,Aij . We can derive more
necessary conditions as follows: Consider

(4.5)
Pjik : =

[
∂i
(
∂2
jkF
)]

· G =
[
∂i
(
AjkG + Γljk∂lF

)]
· G

= ∂iAjk G · G︸ ︷︷ ︸
=1

+Ajk∂iG · G + ∂iΓ
l
jk ∂lF · G︸ ︷︷ ︸

=0

+Γljk∂
2
ilF · G .
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Since G (q) · G (q) = 1, it follows as before that ∂iG (q) · G (q) = 0 for all q ∈ U and
i = 1, 2. Therefore (4.54.5) together with (4.14.1) gives

Pjik = ∂iAjk + Γljk (Γ
m
il ∂mF + AilG ) · G = ∂iAjk + ΓljkAil .

Again, using that third partial derivatives commute, we arrive at

0 = Pijk − Pjik = ∂jAik − ∂iAjk + ΓlikAjl − ΓljkAil .

Equivalently, at the so-called Codazzi equations

(4.6) ∂jAik − ∂iAjk = ΓljkAil − ΓlikAjl ,

which must hold for all 1 ⩽ i , j , k ⩽ 2. This shows:

Proposition 4.5 (Gauss–Codazzi equations) Let U ⊂ R2 be an open subset and
gij ,Aij : U → R smooth functions for 1 ⩽ i , j ⩽ 2 with g12 = g21 and A12 = A21.
Then the Gauss – and Codazzi equations

(4.7) Rijkm = AikAjm − AjkAim and ∂jAik − ∂iAjk = ΓljkAil − ΓlikAjl ,

are necessary conditions for the existence of a smooth immersion F : U → R3 whose
associated functions via (3.93.9) and (3.123.12) are gij and Aij .

Remark 4.6
(i) A theorem which goes beyond the scope of this course states that if U is so-

called simply connected (which is in particular the case if U is a rectangle), then
the equations (4.74.7) are also sufficient, provided gij(q) is positive definite for
all q ∈ U . That is, if gij ,Aij are given functions on U satisfying (4.74.7) and gij is
positive definite, then there exists an immersion F : U → R3 realising gij and
Aij and moreover, the image of this immersion if unique up to post composition
by a Euclidean motion.

(ii) Loosely speaking this all states that the functions gij and Aij capture an im-
mersed surface up to Euclidean motion.

(iii) In the case of a curve inR2, we saw that the signed curvature captures the curve
up to Euclidean motion. We can prescribe any smooth function as the signed
curvature of a plane curve, whereas in the case of a surface the functions gij ,Aij

that we prescribe must satisfy the integrability conditions (4.74.7).

4.2 The covariant derivative revisited

Recall that (
g11(q) g12(q)

g12(q) g22(q)

)
and

(
A11(q) A12(q)

A12(q) A22(q)

)
are the matrix representations of the first – and second – fundamental form IF (q), IIF (q) at
F (q) with respect to the ordered basis ((∂1F (q))F (q), (∂2F (q))F (q)) of TF (q)M , respect-
ively. It is natural to wonder whether the Christoffel symbols Γijk also encode a natural
map.

Recall that if M ⊂ R3 is an embedded surface and γ : I → M a smooth curve and
X : I → TM a vector field along γ, so thatX (t) ∈ Tγ(t)M , then we defined the covariant
derivative of X as

DX

dt
(t) = Π⊥

Tγ(t)M
(Ẋ (t))
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for all t ∈ I . Phrased differently, DX
dt (t) is the tangential component of the vector Ẋ (t) ∈

Tγ(t)M with respect to the direct sum decomposition

Tγ(t)R3 = Tγ(t)M ⊕ Tγ(t)M
⊥.

We can use the covariant derivative of a vector field along a curve to define a directional
derivative of a vector field. If Y : M → TM is a smooth vector field on M and v⃗p ∈ TM ,
we define the derivative of the vector field Y in the tangent direction v⃗p by

∇v⃗pY :=
D

dt
(Y ◦ γ)(0),

where γ : (−ϵ, ϵ) → M is a smooth curve with γ(0) = p, γ̇(0) = v⃗p and ϵ > 0. We have
to make sure that the choice of γ does not matter, that is ∇v⃗pY does only depend on Y

and v⃗p . Write

Y (p) =

Y 1(p)

Y 2(p)

Y 3(p)


p

for smooth functions Y i : M → R. Then by definition

∇v⃗pY = Π⊥
TpM(Ż (0)),

where Z = Y ◦ γ. We have

Ż (0) =

(Y 1 ◦ γ)′(0)
(Y 2 ◦ γ)′(0)
(Y 3 ◦ γ)′(0)


γ(0)

=

dY 1(γ̇(0))

dY 2(γ̇(0))

dY 3(γ̇(0))


γ(0)

=

dY 1(v⃗p)

dY 2(v⃗p)

dY 3(v⃗p)


p

.

We conclude that Ż (0) does only depend on Y and v⃗p , and hence so does ∇v⃗pY , since
Π⊥

TpM
does not depend on the choice of curve γ.

Let X(M) denote the set of smooth vector fields on M . We define addition in the natural
way, that is, for X ,Y ∈ X(M), we define for all p ∈ M

(X + Y )(p) := X (p) + Y (p).

Moreover, for a smooth function f : M → R we define

(fX )(p) := f (p)X (p).

For two vector fields X ,Y ∈ X(M) and all p ∈ M , we define

(∇XY )(p) := ∇X (p)Y ∈ TpM.

With these rules in place we can think of ∇ as a map ∇ : X(M)×X(M) → X(M) defined
by

(X ,Y ) 7→ ∇XY

The map ∇ is also called the covariant derivative.

Lemma 4.7 Let X1,X2,Y1,Y2 ∈ X(M) and f : M → R a smooth function. Then the
covariant derivative satisfies:

(i) ∇X1+X2Y1 = ∇X1Y1 +∇X2Y1;
(ii) ∇X1(Y1 + Y2) = ∇X1Y1 +∇X2Y2;

(iii) ∇fX1Y1 = f∇X1Y1;
(iv) ∇X1(fY1) = f∇X1Y1 + df (X1)Y1.

Proof Exercise. □
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Remark 4.8 In Lemma 4.7Lemma 4.7, df (X1) is the smooth function on M defined by

df (X1) : M → R, p 7→ df (X1(p)).

By construction the covariant derivative ∇ does depend on the first fundamental form
only, it is thus an object of intrinsic surface geometry. In fact, the Christoffel symbols do
encode ∇, more precisely, we have the following statement:

Proposition 4.9 Let M ⊂ R3 be a surface and F : U → M a local parametrisation
of M with Christoffel symbols Γkij : U → R for i , j , k = 1, 2. Then on Im(F ) ⊂ M we
obtain vector fields Bi for i = 1, 2 defined by the rule

Bi (F (q)) = (∂iF (q))F (q)

for all q ∈ U . For these vector fields we have

(∇BiBj)(F (q)) = Γkij(q)Bk(F (q))

for all q ∈ U and where we employ the summation convention.

Remark 4.10 Since F : U → M is an immersion, it follows that {B1(p),B2(p)} is a
basis of TpM for all p ∈ F (U).

For the proof we need the following:

Lemma 4.11 Let M ⊂ R3 be a surface and F : U → M a local parametrisation of
M . Suppose c = (c1, c2) : I → U is a smooth curve and X : I → M is a vector field
along the curve γ = F ◦ c : I → M . Writing

(4.8) X (t) = X j(t)Bj(γ(t))

for unique smooth functions X i : I → R, we have

(4.9)
DX

dt
(t) =

(
dX l

dt
(t) + Γlij(c(t))X

j(t)
dc i

dt
(t)

)
Bl(γ(t)),

where in (4.84.8) and (4.94.9) we employ the summation convention.

Proof Taking the time derivative of (4.84.8), we obtain

Ẋ (t) =

(
dX j

dt
(t)∂jF (c(t)) + X j(t)

dc j

dt
(t)∂2

ijF (c(t))

)
γ(t)

.

Since ∂2
jiF = Γlji∂lF + AjiG , we get

Ẋ (t) =

(
dX j

dt
(t)∂jF (c(t))

+X j(t)
dc i

dt
(t)
(
Γlij(c(t))∂lF (c(t)) + Aij(c(t))G (c(t))

))
γ(t)

The tangential component of Ẋ (t) is thus given by

DX

dt
(t) =

(
dX l

dt
(t) + Γlij(c(t))X

j(t)
dc i

dt
(t)

)
Bl(γ(t)),

as claimed. □
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Proof of Proposition 4.9Proposition 4.9 In order to compute (∇BiBj)(F (q)) we can choose a curve
γ : (−ϵ, ϵ) → M so that γ̇(0) = Bi (F (q)) and then evaluate D

dtX (0) using the formula
(4.94.9) for X := Bj ◦γ. Let e1, e2 denote the standard basis of R2, interpreted as points, and
consider the curve c : (−ϵ, ϵ) → U defined by the rule c(t) = q + tei for ϵ sufficiently
small. Notice that γ = F ◦ c satisfies γ(0) = F (q) and moreover γ̇(0) = Bi (F (q)). Since

X (t) = Bj(γ(t)) =
(
∂jF (c(t))

)
γ(t)

it follows that the functionsX i in (4.84.8) are given byX i (t) = δij for all t ∈ (−ϵ, ϵ). Moreover,
we also have

dck

dt
(t) = δki .

Renaming indices in (4.94.9) and evaluating at t = 0 we obtain

(∇BiBj)(F (q)) =
DX

dt
(0) =

(
dX l

dt
(0) + Γlrm(c(0))X

m(0)
dc r

dt
(0)

)(
∂lF (c(0))

)
γ(0)

=
(
Γlrm(q)δ

m
j δ

r
i

) (
∂lF (q)

)
F (q)

= Γlij(q)Bl(F (q)),

as claimed. □

Recall that a geodesicγ : I → M must satisfy Dγ̇
dt (t) = 0 for all t ∈ I . From Proposition 4.9Proposition 4.9

we thus obtain:

Corollary 4.12 Let M ⊂ R3 be a surface and F : U → M a local parametrisation of
M . Suppose c = (c1, c2) : I → U is a smooth curve. Then γ = F ◦ c : I → M is a
geodesic if and only if c satisfies the so-called geodesic equation

(4.10)
d2c l

dt2
(t) + Γlij(c(t))

dc i

dt
(t)

dc j

dt
(t) = 0

for all t ∈ I and where we employ the summation convention.

Proof This follows immediately from (4.94.9) for X = γ̇ so that X i (t) = dc i

dt (t). □

Also, for vector fields X ,Y ∈ X(M) we obtain a function

⟨X ,Y ⟩ : M → R, p 7→ ⟨X (p),Y (p)⟩p

and with this definition we have for all Z ∈ X(M)

(4.11) d (⟨X ,Y ⟩) (Z ) = ⟨∇ZX ,Y ⟩+ ⟨X ,∇ZY ⟩,

which can again be deduced from (4.94.9).

Example 4.13 (Geodesics on the helicoid – Example 4.4Example 4.4 continued) For explicit
calculations it is often convenient to write u(t) instead of c1(t) and v(t) instead of
c2(t). Doing so we obtain for the geodesic equation on the helicoid

0 =
d2u

dt2
(t)− u(t)

dv

dt
(t)

dv

dt
(t),

0 =
d2v

dt2
(t) +

2u(t)

1 + u(t)2
du

dt
(t)

dv

dt
(t)

or, using primes to indicate derivatives and omitting writing t, we have

u′′ = uv ′v ′ and v ′′ = − 2u

1 + u2
u′v ′.
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Example 4.14 (Geodesics on the torus) We can parametrise the torus in terms of

F : (0, 2π)× (0, 2πr), (u, v) 7→ (cos(u)γ1(v), sin(u)γ1(v), γ2(v))

where γ1(v) = R + r cos(v/r) and γ2(v) = r sin(v/r). Since γ = (γ1, γ2) :

(0, 2πr) → R is a unit speed curve, we obtain for the geodesic equation

u′′ = −2
γ′
1(v)

γ1(v)
u′v ′ = 2

sin(v/r)

R + r cos(v/r)
u′v ′

and
v ′′ = γ1(v)γ

′
1(v)u

′u′ = −(R + r cos(v/r)) sin(v/r)u′u′,

where we use the identities from Example 4.3Example 4.3.

Remark 4.15 We refer to M12 for techniques to solve systems of ordinary differential
equations. Generally speaking, it is rather exceptional that one can explicitly write
down a solution to a geodesic equation.

4.3 Curvature tensor and the Theorema Egregium WEEK 8

In the previous section we saw that the Christoffel symbols Γijk : U → R, defined with
respect to a local parametrisation F : U → R3, encode the covariant derivative ∇. It is
natural to ask what object the functions Rijkl : U → R encode. We first define:

Definition 4.16 (Commutator of two vector fields) The commutator of the two
vector fields X ,Y ∈ X(M) is the vector field [X ,Y ] ∈ X(M) defined by

(4.12) [X ,Y ] = ∇XY −∇YX .

Remark 4.17 The previous definition is a pedagogical simplification of the notion
of the commutator of two vector fields. The commutator is usually defined in terms
of the so-called flows of the vector fields. We refer to the literature for further details.

We let C∞(M) denote the smooth functions on a surface M , that is, f ∈ C∞(M) is a
function f : M → R which is smooth. Using the commutator we now define:

Definition 4.18 (Curvature tensor) The mapR : X(M)×X(M)×X(M)×X(M) →
C∞(M) defined by the rule

R : (X ,Y ,Z ,W ) 7→ ⟨∇X (∇YZ )−∇Y (∇XZ )−∇[X ,Y ]Z ,W ⟩

is called the curvature tensor of M .

The curvature tensor satisfies:

Proposition 4.19 For a local parametrisation F : U → M we have for all q ∈ U

R(Bi ,Bj ,Bk ,Br )(F (q)) = Rjikr (q).
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Proof We first want to compute ∇Bi (∇BjBk)(F (q)) for all q ∈ U and all 1 ⩽ i , j , k ⩽
2. From Proposition 4.9Proposition 4.9 we know that (∇BjBk)(F (q)) = Γljk(q)Bl(F (q)). In order to
compute ∇Bi (∇BjBk)(F (q)) we proceed as in the proof of Proposition 4.9Proposition 4.9 and choose a
curve γ : (−ϵ, ϵ) → M so that γ(0) = q and γ̇(0) = Bi (F (q)). We then compute

D

dt

( (
∇BjBk

)
◦ γ
)
(0)

by using (4.94.9). Recall that we can choose γ = F ◦ c , where c : (−ϵ, ϵ) → U is given
by t 7→ q + tei for ϵ sufficiently small. Write X =

(
∇BjBk

)
◦ γ, then (∇BjBk)(F (q)) =

Γljk(q)Bl(F (q)) implies that
X l(t) = Γljk(c(t))

and hence
dX l

dt
(0) = ∂iΓ

l
jk(q).

Writing (4.94.9) as

DX

dt
(t) =

(
dX l

dt
(t) + Γlrm(c(t))X

m(t)
dc r

dt
(t)

)(
∂lF (c(t))

)
γ(t)

,

we obtain
DX

dt
(0) =

(
∂iΓ

l
jk(q) + Γlrm(q)Γ

m
jk(q)δ

r
i

) (
∂lF (q)

)
F (q)

where we use that dc r

dt (0) = δri . In total, we get

(4.13) ∇Bi (∇BjBk)(F (q)) =
(
∂iΓ

l
jk(q) + Γlim(q)Γ

m
jk(q)

)
Bl(F (q)).

Since Γljk = Γlkj , it follows that ∇BjBk = ∇Bk
Bj and hence (4.124.12) implies [Bj ,Bk ] = 0.

Using the definition of R and (4.134.13) we thus obtain

R(Bi ,Bj ,Bk ,Br )(F (q)) =
〈
∇Bi (∇BjBk)(F (q))−∇Bj (∇BiBk)(F (q)),Br (F (q))

〉
=
〈(

∂iΓ
l
jk(q) + Γlim(q)Γ

m
jk(q)− ∂jΓ

l
ik(q)− Γljm(q)Γ

m
ik(q)

)
Bl(F (q)),Br (F (q))

〉
.

Since ⟨Bl(F (q)),Br (F (q))⟩ = glr (q), this becomes

R(Bi ,Bj ,Bk ,Br )(F (q)) =
(
∂iΓ

l
jk(q) + Γlim(q)Γ

m
jk(q)− ∂jΓ

l
ik(q)− Γljm(q)Γ

m
ik(q)

)
glr (q)

= Rjikr (q),

where we use the definition (4.34.3) of the functions Rjikr : U → R. □

Remark 4.20
(i) Proposition 4.19Proposition 4.19 implies that the functions Rijkl encode the curvature tensor

with respect to a choice of a local parametrisation F : U → M .
(ii) Notice that R does depend on ∇ and the first fundamental form only, it is thus

an object of the intrinsic geometry of a surface.
(iii) (♡ – not examinable) Recall that second partial derivatives of a twice continu-

ously differentiable function f : U → R commute, that is, we have ∂2
ij f (q) =

∂2
ji f (q) for all q ∈ U and all 1 ⩽ i , j ⩽ n. This is not true any more for second

covariant derivatives. That is, in general we have ∇X (∇YZ ) ̸= ∇Y (∇XZ ).
The curvature tensor may be thought of as measuring the failure of second
order covariant derivatives to commute. The additional term −∇[X ,Y ]Z in the
curvature tensor makes sure that R is a multilinear map.

Finally, we have
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Theorem 4.21 (Theorema Egregium) Let M ⊂ R3 be a surface. The Gauss curvature
of M does depend on the first fundamental form only and with respect to a choice of
local parametrisation F : U → M we have for all q ∈ U

K (F (q)) =
R1212(q)

det g(q)
.

Proof From (3.143.14) and (4.74.7) we conclude that

K (F (q)) =
detA(q)

det g(q)
=

A11(q)A22(a)− A12(q)
2

det g(q)
=

R1212(q)

det g(q)
.

We can thus express the Gauss curvature of M in terms of the curvature tensor and
the first fundamental form only. Since the curvature tensor is built from ∇ and ∇ does
depend on the first fundamental form only, the Gauss curvature does depend on the first
fundamental form only. □

Exercise 4.22 Show that the functions Rijkl satisfy the following symmetries

Rijkl = −Rjikl = −Rijlk = Rklij .

Hint: Use the Gauss equations (4.44.4).

From the previous exercise we conclude that

R11kl(q) = R22kl(q) = Rij11(q) = Rij22(q) = 0

for all q ∈ U and all 1 ⩽ i , j , k , l ⩽ 2. Theorem 4.21Theorem 4.21 implies

R1212(q) = −R2112(q) = −R1221(q) = R2121(q) = K (F (q)) det g(q)

We thus obtain the formula

Rijkl = K (gikgjl − gjkgil)

which holds for all 1 ⩽ i , j , k , l ⩽ 2 and where we omit the base point q ∈ U .

For vector fields X ,W1,W2 ∈ X(M) and functions f1, f2 ∈ C∞(M), we have from the
bilinearity of ⟨·,·⟩p for all p ∈ M that

⟨X , f1W1 + f2W2⟩ = f1⟨X ,W1⟩+ f2⟨X ,W2⟩

This implies that for all X ,Y ,Z ,W1,W2 ∈ X(M) and f1, f2 ∈ C∞(M) we have

R(X ,Y ,Z , f1W1 + f2W2) = f1R(X ,Y ,Z ,W1) + f2R(X ,Y ,Z ,W2)

Exercise 4.23 Show that for all Z1,Z2,W ∈ X(M) and all f1, f2 ∈ C∞(M) we have

R(B1,B2, f1Z1 + f2Z2,W ) = f1R(B1,B2,Z1,W ) + f2R(B1,B2,Z2,W ).

Remark 4.24 The statement from the previous exercise is still true if we replace
B1,B2 with arbitrary vector fields X ,Y , we will however not need this fact.
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4.4 Geodesic curvature

As in the case of a plane curve, a closed curveγ : [a, b] → M in a surfaceM is called simple
if the restriction of γ to the half-open interval [a, b) is injective. Recall from Theorem 2.39Theorem 2.39
that a smooth unit speed curve in R2 that is simple and closed has rotation index ±1 – or
equivalently – total (signed) curvature ±2π. It is natural to ask whether this is still true
for simple closed curves on a surface M . In order to turn this into a sensible question we
need a notion of curvature for a curve on a surface. This leads to the notion of geodesic
curvature.

Let M ⊂ R3 be a surface equipped with a unit normal field N : M → TM⊥. We define

Definition 4.25 (Geodesic curvature) Let γ : I → M be a smooth unit speed curve.
The geodesic curvature of γ is the function

κg : I → R, t 7→
〈
Dγ̇

dt
(t),N(γ(t))× γ̇(t)

〉
.

The geodesic curvature for a curve in a surface M is indeed a natural replacement for the
signed curvature of a plane unit speed curve:

Example 4.26 (Geodesic curvature of a plane curve) Let M = {(x , y , 0) | x , y ∈ R}
and γ = (γ1, γ2, 0) : I → M be a unit speed curve, where γi : I → R are smooth
functions for i = 1, 2. Taking

N(p) =

0

0

1


p

for all p ∈ M , we obtain

N(γ(t))× γ̇(t) =

0

0

1

×

γ′
1(t)

γ′
2(t)

0


γ(t)

=

−γ′
2(t)

γ′
1(t)

0


γ(t)

and

Dγ̇

dt
(t) =

γ′′
1 (t)

γ′′
2 (t)

0


so that

κg (t) = −γ′′
1 (t)γ

′
2(t) + γ′′

2 (t)γ
′
1(t)

which is the signed curvature of the unit speed curve γ = (γ1, γ2) : I → R2 (see
(2.92.9)).

Exercise 4.27 Show that γ : I → M is a geodesic if and only if κg (t) = 0 for all
t ∈ I .

Remark 4.28 Let p ∈ M and v⃗p ∈ TpM . Having a unit normal field N , we let Jp(v⃗p)
be the unique vector inTpM so that v⃗p×Jp(v⃗p) = N(p). The properties of the cross
product imply that this defines a linear map Jp : TpM → TpM which corresponds
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FIGURE 4.1. A simple closed curve on a helicoid.

to “counter clockwise rotation by π/2”. In particular, J(v⃗p) is orthogonal to v⃗p , has
the same length as v⃗p and we have the formula

N(p)× v⃗p = J(v⃗p).

In terms of Jp , the formula for the geodesic curvature thus becomes

κg (t) =

〈
Dγ̇

dt
(t), Jγ(t)(γ̇(t))

〉
,

Notice that this precisely corresponds to the signed curvature of a unit speed curve
(2.62.6), where the acceleration γ̈ is replaced with the covariant derivative Dγ̇

dt of the
velocity vector γ̇.

For what follows it is convenient to slightly simplify notation:

Remark 4.29 (Notation)
(i) For a vector field X on M we write JX for the vector field defined by

JX (p) := Jp(X (p))

for all p ∈ M . Likewise, for a vector field Y along a curve γ we write JY for the
vector field along γ defined by the rule

JY (t) := Jγ(t)(Y (t))

for all t ∈ I .
(ii) For a curve γ : I → M we write Xγ for the vector field along γ obtained by

restricting X to γ(I ), that is,

Xγ(t) := X (γ(t))

for all t ∈ I .

Having the notion of geodesic curvature we can ask: Given a simple closed smooth
unit speed curve γ : [0, L] → M of length L and denoting its geodesic curvature by
κg : [0, L] → R, is it still true that∫ L

0

κg (t)dt = ±2π?

To answer this question we need the notion of integrating a function over a surface M .

Let f : M → R be a function and F : U → M a local parametrisation of M . Suppose
Ω ⊂ U is a subset so that the function defined on Ω by the rule

h(q) := f (F (q))
√

det(g(q))
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is measurable in the sense of Lebesgue. Then we define

(4.14)
∫
F (Ω)

f dA :=

∫
Ω

(f ◦ F )
√
det(g)dµ,

provided the right hand side is finite and where integration is carried out with respect to
the Lebesgue measure.

The motivation for the factor
√
det g is a follows: Recall that {B1(p),B2(p)} is a basis for

all p ∈ F (U). Consequently, B1(p)× B2(p) spans TpM
⊥ for all p ∈ F (U). Therefore we

may take

N(p) =

(
B1(p)× B2(p)

∥B1(p)× B2(p)∥

)
p

as a unit normal field on F (U) ⊂ M .

A direct calculation shows that the cross product of two column vectors v⃗ , w⃗ ∈ M3,1(R)
satisfies

∥v⃗ × w⃗∥2 = (v⃗ × w⃗) · (v⃗ × w⃗) = (v⃗ · v⃗)(w⃗ · w⃗)− (v⃗ · w⃗)2.

which implies that for all q ∈ U

∥B1(p)× B2(p)∥ =
√
⟨B1(p),B1(p)⟩⟨B2(p),B2(p)⟩ − ⟨B1(p),B2(p)⟩2

=

√
(∂1F (q) · ∂1F (q)) (∂2F (q) · ∂2F (q))− (∂1F (q) · ∂2F (q))2

=
√

g11(q)g22(q)− g12(q)2 =
√
det(g(q)),

where we write p = F (q).

Recall that the quantity ∥v⃗ × w⃗∥ equals the area of the parallelogram whose sides are
given by the vectors v⃗ , w⃗ . The factor

√
det(g(q)) thus gives the surface area of the

parallelogram in TF (q)M whose sides are given by B1(F (q)) and B2(F (q)).

Example 4.30 (Surface area of the 2-sphere) Let M = S2 be the 2-sphere of radius
1 and take f : S2 → R to be the function assuming the value 1 everywhere. For
the parametrisation F : U → S2 ⊂ R3 from Example 3.55Example 3.55 with U = (0, 2π) ×
(−π/2,π/2) we computed

g(q) =

(
cos(v)2 0

0 1

)
.

where q = (u, v). Since cos(v) > 0 for v ∈ (−π/2,π/2) we thus obtain∫
F (U)

dA =

∫
U

cos(v)dµ =

∫ 2π

0

(∫ π/2

−π/2

cos(v)dv

)
du

=

∫ 2π

0

sin(v)
∣∣∣π/2
−π/2

du =

∫ 2π

0

2du = 4π.

If Ũ ⊂ R2 is an open set and φ : Ũ → U a diffeomorphism, then one obtains another
parametrisation of M given by F̃ := F ◦ φ : Ũ → M . Denoting by Ω̃ the subset of Ũ so
that φ(Ω̃) = Ω, we have

(4.15)
∫
Ω̃

(f ◦ F̃ )
√

det(g̃)dµ =

∫
Ω

(f ◦ F )
√

det(g)dµ,

where g̃ : Ũ → M2,2(R) encodes the first fundamental form with respect to F̃ . For a
proof of (4.154.15) we refer to a book about measure theory. A consequence of (4.154.15) is that
the definition (4.144.14) is independent of the parametrisation F : U → M and we can
thus define the integral of a smooth function f : M → R over (sufficiently nice) subsets
D ⊂ M .
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4.5 First version of the Gauss–Bonnet Theorem WEEK 9

We are now able to answer the question from the previous section.

Theorem 4.31 (First version of the Gauss–Bonnet Theorem) Let γ : [0, L] → M be a
smooth simple closed unit speed curve of length L whose image is contained in F (U)

for some local parametrisation F : U → M . Let D ⊂ M denote the region enclosed
by γ and assume that J γ̇(t) points into the interior of D for all t ∈ [0, L]. Then∫ L

0

κg (t)dt = 2π −
∫
D

K dA,

where κg denotes the geodesic curvature of γ and K the Gauss curvature of M .

The proof of the Gauss–Bonnet Theorem relies on Green’s theorem which we will prove
in the study week 13 of this course.

Lemma 4.32 Let Y : [0, L] → M be a vector field along the curve γ : [0, L] → M

satisfying ⟨Y (t),Y (t)⟩ = 1 for all t ∈ [0, L], then we have for all t ∈ [0, L]

(4.16)
DJY

dt
(t) = Jγ(t)

(
DY

dt
(t)

)
,

where Jγ(t) is defined as in Remark 4.28Remark 4.28.

Proof In what follows, all identities hold for all t ∈ [0, L], we will however omit writing t

each time to lighten notation. Since 1 = ⟨Y ,Y ⟩ = ⟨JY , JY ⟩, taking the time derivative
implies

(4.17)
〈
DY

dt
,Y

〉
= 0 and

〈
DJY

dt
, JY

〉
= 0.

We also have
⟨Y , JY ⟩ = 0

and taking the time derivative again, this implies

0 =

〈
DY

dt
, JY

〉
+

〈
Y ,

DJY

dt

〉
.

Applying J to the left summand, we obtain〈
Y ,

DJY

dt

〉
= −

〈
J

(
DY

dt

)
, J(JY )

〉
=

〈
Y , J

(
DY

dt

)〉
,

where we use that J(JY ) = −Y . We thus have

(4.18) 0 =

〈
Y ,

DJY

dt
− J

(
DY

dt

)〉
.

Applying J to the first identity in (4.174.17) we also have

0 =

〈
J

(
DY

dt

)
, JY

〉
Using the second identity in (4.174.17) we conclude

(4.19) 0 =

〈
JY ,

DJY

dt
− J

(
DY

dt

)〉
Since {Y (t), JY (t)} is a basis of Tγ(t)M for all t ∈ [0, L], (4.184.18) and (4.194.19) imply that the
vector

DJY

dt
(t)− Jγ(t)

(
DY

dt
(t)

)
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is orthogonal to all vectors of Tγ(t)M . Since ⟨·,·⟩γ(t) is non-degenerate this implies the
claim. □

We also need:

Lemma 4.33 Let F : U → M be a local parametrisation of the surface M ⊂ R3

with associated vector fields B1,B2 on F (U) ⊂ M , X a smooth vector field on M and
c : I → U a smooth curve. Writing γ = F ◦ c , we have

DXγ

dt
=

dc1

dt
(∇B1X )(γ) +

dc2

dt
(∇B2X )(γ).

Proof Since{B1(p),B2(p)} is a basis ofTpM for allp ∈ F (U), there exist unique smooth
functions X 1,X 2 : F (U) → R so that

X (p) = X 1(p)B1(p) + X 2(p)B2(p) = X i (p)Bi (p),

for all p ∈ F (U), where we use the summation convention on the right hand side. This
gives for j = 1, 2

∇BjX = ∇Bj (X
iBi ) = dX i (Bj) +∇BjBi = dX i (Bj)Bi + X iΓkijBk ,

where we use Lemma 4.7Lemma 4.7 Item (iv) as well as Proposition 4.9Proposition 4.9 and omit writing base points.
Consequently, we have

dc j

dt
(t)(∇BjX )(γ(t)) =

dc j

dt
(t)
(
dX i (Bj(γ(t)))Bi (γ(t)) + X i (γ(t))Γkij(c(t))Bk(γ(t))

)
=

DXγ

dt
(t)− Bk(γ(t))

(
d

dt
(X k ◦ γ)(t)

− dc j

dt
(t)dX k(Bj(γ(t))

) ,

where we use (4.94.9). The claim thus follows provided we show that for k = 1, 2 and all
t ∈ I we have

d

dt
(X k ◦ γ)(t) = dX k(Bj(γ(t)))

dc j

dt
(t).

Since γ = F ◦ c , the chain rule gives

(4.20)
d

dt

(
X k ◦ F ◦ c

)
(t) =

(
∂1X

k(γ(t)) ∂2X
k(γ(t)) ∂3X

k(γ(t))
)

∂1F1(c(t)) ∂2F1(c(t))

∂1F2(c(t)) ∂2F2(c(t))

∂1F3(c(t)) ∂2F3(c(t))

( dc1

dt (t)
dc2

dt (t)

)

which agrees with

dX k(B1(γ(t)))
dc1

dt
(t) + dX k(B2(γ(t)))

dc2

dt
(t) = dX k(Bj(γ(t)))

dc j

dt
(t),

since Bj(γ(t)) =
(
∂jF (c(t))

)
γ(t)

. □

Proof of Theorem 4.31Theorem 4.31 Let Z be the vector field defined on F (U) by the rule

Z (F (q)) =
∂1F (q)√
g11(q)F (q)

for all q ∈ U . Notice that ⟨Z (F (q)),Z (F (q))⟩ = 1 and

Z (F (q)) =
B1(F (q))√

g11(q)

for all q ∈ U .
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Since γ : [0, L] → M is a unit speed curve, there exists a polar angle function ϕ : [0, L] →
R so that

(4.21) γ̇ = cos(ϕ)Zγ + sin(ϕ)JZγ

where here and henceforth we omit writing the time t ∈ [0, L]. From this we compute

Dγ̇

dt
= sin(ϕ)

(
DJZγ

dt
− ϕ′Zγ

)
+ cos(ϕ)

(
DZγ

dt
+ ϕ′JZγ

)
.

Using this identity and Lemma 4.32Lemma 4.32 together with

J γ̇ = cos(ϕ)JZγ − sin(ϕ)Zγ ,

We can calculate that

κg =

〈
Dγ̇

dt
, J γ̇

〉
= ϕ′ +

〈
DZγ

dt
, JZγ

〉
.

We next want to evaluate DZγ

dt using Lemma 4.33Lemma 4.33. For this we need expressions for ∇BiZ

for i = 1, 2. We obtain
0 = d (⟨Z ,Z ⟩) = 2⟨∇BiZ ,Z ⟩,

where we use (4.114.11). It follows that (∇BiZ )(p) is orthogonal to Z (p) for all p ∈ F (U) and
hence there exist unique functions P : U → R and Q : U → R so that

(∇B1Z )(F (q)) = P(q)JZ (F (q)) and (∇B2Z )(F (q)) = Q(q)JZ (F (q))

Let c : [0, L] → U be the smooth curve so that γ = F ◦ c . Using Lemma 4.33Lemma 4.33 we thus
obtain

DZγ

dt
(t) =

dc1

dt
(t)P(c(t))JZ (γ(t)) +

dc2

dt
Q(c(t))JZ (γ(t))

hence we have〈
DZγ

dt
(t), JZγ(t)

〉
=

dc1

dt
(t)P(c(t)) +

dc2

dt
(t)Q(c(t)).

Now Green’s theorem states that∫ L

0

(
dc1

dt
(t)P(c(t)) +

dc2

dt
(t)Q(c(t))

)
dt =

∫
D

∂1Q(q)− ∂2P(q)dµ.

Using the expressions for ∇BiZ we compute

(∇B1(∇B2Z )) (F (q)) = ∂1Q(q)JZ (F (q)) + Q(q)J∇B1Z (F (q)),

= ∂1Q(q)JZ (F (q))− P(q)Q(q)Z (F (q))

and
(∇B2(∇B1Z )) (F (q)) = ∂2P(q)JZ (F (q)) + P(q)J∇B2Z (F (q)),

= ∂2P(q)JZ (F (q))− P(q)Q(q)Z (F (q))

so that
∂1Q(q)− ∂2P(q) = ⟨∇B1(∇B2Z )−∇B1(∇B2Z ), JZ ⟩(F (q))

= R(B1,B2,Z , JZ )(F (q)),

where we use that [B1,B2] = 0, since the Christoffel symbols satisfy Γijk = Γikj .

It remains to compute R(B1,B2,Z , JZ ). Recall that

Z =
B1√
g11

.

From the conditions ⟨Z , JZ ⟩ = 0, ⟨JZ , JZ ⟩ = 1 and Z × JZ = N we obtain with a
calculation that we must have

JZ =
1√

det(g)
√
g11

(g11B2 − g12B1) .
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Using these expressions, we obtain

R(B1,B2,Z , JZ ) =
1√

det(g)g11
R(B1,B2,B1, g11B2 − g12B1)

=
1√

det(g)
R(B1,B2,B1,B2) =

R2112√
det(g)

= − R1212√
det(g)

= −K
√
det g

where we use Proposition 4.19Proposition 4.19, Theorem 4.21Theorem 4.21 and Exercise 4.22Exercise 4.22. In summary, we have
calculated that ∫ L

0

κg (t)dt =

∫ L

0

ϕ′(t)dt −
∫
D

KdA.

Since J γ̇(t) points into the interior of D for all t ∈ [0, L], it follows with Theorem 2.39Theorem 2.39
that

∫ L

0
ϕ′(t)dt = 2π. □

4.6 Second version of the Gauss–Bonnet Theorem

Recall that one of the fundamental theorems of elementary geometry states that the sum
of the interior angles of a triangle equals π. A triangle consists of three distinct points
(often called vertices) in the plane R2 which are connected by segments of straight lines
(often called edges). In the context of a surface M ⊂ R3, the notion of a straight line is
replaced by the notion of a geodesic. This leads to the notion of a geodesic triangle.

Definition 4.34 (Geodesic triangle) A geodesic triangle ∂∆ on an oriented surface
M ⊂ R3 consists of three distinct points p1, p2, p3 ∈ M connected by segments
of geodesics. That is, there exist geodesics γi : [0, ℓi ] → M with γi (0) = pi and
γi (ℓi ) = pi+1 (with the convention that p4 = p1). Furthermore, γi : [0, ℓi ] → M is
assumed to be injective.

We define the exterior angle at pi to be the angle between the vectors γ̇i−1(ℓi−1) and
γ̇i (0) with the convention γ0 = γ3 and ℓ0 = ℓ3. The exterior angle is negative when
γ̇i−1(ℓi−1)× γ̇i (0) is a negative multiple ofN(pi ). Here and henceforth we always assume
that −π < ϑi < π. The interior angle αi at pi is then defined to be αi = π − ϑi .

Example 4.35 (Geodesic triangle on the sphere) On S2 ⊂ R3 we consider a octant,
that is, the region enclosed by a geodesic triangle with p1 = (1, 0, 0), p2 = (0, 1, 0)

and p3 = (0, 0, 1). Here we may take geodesics

γ1(t) : [0,π/2] → S2, t 7→ cos(t)p1 + sin(t)p2,

γ2(t) : [0,π/2] → S2, t 7→ cos(t)p2 + sin(t)p3,

γ3(t) : [0,π/2] → S2, t 7→ cos(t)p3 + sin(t)p1.

It follows with a simple calculation that α1 = α2 = α3 = π/2 so that

α1 + α2 + α3 =
3π

2
> π.

For a geodesic triangle ∂∆ it is thus not true anymore that the sum of interior angles is
always π. It is natural to guess that the angle deficit between π and the sum of interior
angles is related to the curvature of the enclosed region ∆. This suggests to look into
a version of the Gauss–Bonnet Theorem for curves γ that are only piecewise smooth.
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p1 p2

p3
ϑ3

Tp3S
2

FIGURE 4.2. A geodesic triangle on the 2-sphere enclosing an octant
and its exterior angle ϑ3.

Roughly speaking, these are curves that are smooth except for finitely many exception
points, called corners.

Definition 4.36 (Piecewise smooth curve) A curve γ : [a, b] → M is called piecewise
smooth if there exists k ∈ N and times a = T0 < T1 < · · · < Tk = b so that
γ|[Ti ,Ti+1] : [Ti ,Ti+1] → M is smooth.

Notice that if γ : [a, b] → M is a geodesic and φ : R → R a smooth parameter of the
form φ(t) = st + t0 for real numbers s, t0, then γ ◦ φ is also a geodesic.

We define the exterior angle at the corner of a piecewise smooth curve as in the case of a
geodesic triangle.

Example 4.37 A geodesic triangle may be thought of as a piecewise smooth curve.

We now have:

Theorem 4.38 (Second version of the Gauss–Bonnet Theorem) Let γ : [0, L] → M

be a simple closed unit speed curve of length Lwhich is piecewise smooth with exterior
angles ϑ1, ... ,ϑk at the corners p1, ... , pk of γ and whose image is contained in F (U)

for some local parametrisation F : U → M . Let D denote the region enclosed by γ
and assume that J γ̇(t) points into the interior of D for all t ∈ [0, L] with the exception
of the corner points. Then∫ L

0

kg (t)dt +
k∑

i=1

ϑi = 2π −
∫
D

KdA,

where kg denotes the geodesic curvature of γ and K the Gauss curvature of M .

This version of the Gauss–Bonnet Theorem implies:
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Corollary 4.39 Let ∂∆ ⊂ F (U) be a geodesic triangle enclosing the region D ⊂ M

and let αi denote the interior angle at the corner piof ∂∆, where i = 1, 2, 3. Then

α1 + α2 + α3 = π +

∫
D

KdA.

Proof Since ∂∆ is geodesic triangle, the geodesic curvature terms in Theorem 4.38Theorem 4.38 are
all zero, hence we obtain

ϑ1 + ϑ2 + ϑ3 = 2π −
∫
D

KdA.

Since the exterior angle αi satisfies αi = π − ϑi we have equivalently

3π − α1 − α2 − α3 = 2π −
∫
D

KdA ⇐⇒ α1 + α2 + α3 = π +

∫
D

KdA.

□

Sketch of a proof of Theorem 4.38Theorem 4.38 The curve γ is the image of a piecewise smooth
curve c : [0, L] → U . Let q1, ... , qk ∈ U denote the corners of c . We can smoothen the
curve γ as follows. For ϵ > 0 sufficiently small we remove the part of c whose image
is contained in a disk of radius ϵ around qi and glue in a smooth curve piece to obtain a
smooth curve cϵ : [0, L] → U with corresponding smooth image curve γϵ = F ◦ cϵ. We
then apply Theorem 4.31Theorem 4.31 to γϵ and consider the limit as ϵ goes to zero. Letϕϵ : [0, L] → R
denote the polar angle function of γϵ as defined by (4.214.21) and kg ,ϵ : [0, L] → R the
geodesic curvature of γϵ. Applying Theorem 4.31Theorem 4.31 we have

(4.22)
∫ L

0

κg ,ϵ(t)dt =

∫ L

0

ϕ′
ϵ(t)dt −

∫
Dϵ

KdA,

where Dϵ denote the region enclosed by γϵ. As ϵ tends to zero the polar angle function ϕϵ

converges to a function which jumps by the exterior angle ϑi at each corner pi and hence
misses the contribution of ϑi at each corner pi . Taking the limit as ϵ goes to 0 in (4.224.22) we
thus arrive at ∫ L

0

κg (t)dt = 2π −
k∑

i=1

ϑi −
∫
D

KdA.

□

Example 4.40 (Example 4.35Example 4.35 continued) For the 2-sphere S2 of radius 1 we have
K = 1 and hence for the octant ∆ from Example 4.35Example 4.35 we have

α1 + α2 + α3 =
3π

2
= π +

∫
∆

KdA = π +

∫
∆

dA,

so that
∫
∆
dA = π/2, that is, the octant has surface area π/2 and hence the whole

sphere has surface area 8 · π/2 = 4π, which is in agreement with the calculation in
Example 4.30Example 4.30.

Exercise 4.41 Use the Gauss–Bonnet theorem to conclude that on a surface M with
K (p) < 0 two geodesics γ1 : [0, L1] → M and γ2 : [0, L2] → M can intersect in at
most one point.
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4.7 Global version of the Gauss–Bonnet Theorem WEEK 10

It is natural to wonder whether the Gauss–Bonnet Theorem considered so far has any
implications on the total Gauss curvature of an embedded surfaceM ⊂ R3. This is indeed
the case. In case M is compact (recall this this is equivalent to M ⊂ R3 being a closed
and bounded subset), the total Gauss curvature is always an integer multiple of 2π. The
integer is called the Euler characteristic of M . It can be computed in terms of a so-called
triangulation of M . A subset ∆ of a surface M is called a triangle if ∆ is the image of
a simple closed curve which is a piecewise smooth curve and which has 3 corners. A
triangulation of a surface M is a finite set T = {∆i ⊂ M | 1 ⩽ i ⩽ N} of triangles on M

so that

(i)
⋃N

i=1 ∆i = M ;
(ii) if for a pair of indices i ̸= j we have ∆i ∩∆j ̸= ∅, then ∆i ∩∆j consists of a common

edge or of a common vertex.

For a given triangulation T of M we call

χ = V − E + F

the Euler characteristic of the triangulation T . Here F = N denotes the number of faces
(i.e. triangles) of T . The number V denotes the number of vertices and E the number of
edges of T .

An important theorem from a course about topology states that every compact embedded
surface M ⊂ R3 admits a triangulation T and moreover χ = χ(M) is independent of T .
Furthermore, one can show that χ(M) is related to the (roughly speaking) number g of
holes of the surface via the relation

χ(M) = 2− 2g .

Example 4.42 For the 2-sphere S2 ⊂ R3 we obtain a triangulation T in terms of its
octants and for this triangulation we have

χ(S2) = V − E + F = 6− 12 + 8 = 2.

A sphere has no hole, hence χ(M) = 2− 2 · 0 = 2, which is in agreement with the
value obtained in terms of a triangulation.

Example 4.43 The torus T ⊂ R3 has 1 hole, hence

χ(T ) = 2− 2 · 1 = 0.

Considering surfaces with more than one hole we obtain surfaces whose Euler character-
istic is negative.

We can now state:

Theorem 4.44 (Global version of the Gauss–Bonnet theorem) Let M ⊂ R3 be a
compact embedded surface with Gauss curvature K , then

1

2π

∫
M

KdA = χ(M).
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Sketch of a proof Since M is compact we can find a triangulation T of M so that each
triangle ∆i ∈ T is contained in the image of a local parametrisation of M . Applying the
local version of the Gauss–Bonnet Theorem 4.38Theorem 4.38, we obtain∫

∆i

KdA+

∫
∂∆i

κg (t)dt = 2π −
3∑

j=1

ϑij ,

where here
∫
∂∆i

κg (t)dt stands for the first summand in Theorem 4.38Theorem 4.38 with γ : [0, L] →
M being a simple closed unit speed curve travelling counter clockwise around the triangle
∆i . Moreover ϑij denotes the j -th exterior angle of the i -th triangle ∆i . Having F triangles
in our triangulation, we thus obtain

F∑
i=1

(∫
∆i

KdA+

∫
∂∆i

κg (t)dt

)
= 2πF −

F∑
i=1

3∑
j=1

ϑij .

In the second summand, the geodesic curvature is integrated over each edge twice, with
opposing orientation. Consequently

0 =
F∑
i=1

∫
∂∆i

κg (t)dt

and we obtain
F∑
i=1

∫
∆i

KdA =

∫
M

KdA = 2πF −
∑
i ,j

ϑij = 2πF −
∑
i ,j

(π − αij),

where αij denotes the j-th interior angle of the i -th triangle ∆i and where we write
∑

i ,j

instead of
∑F

i=1

∑3
j=1 Notice that the sum of all interior angles at each vertex of T is

2π. This implies that
∑

i ,j αij = 2πV , where V denotes the number of vertices of the
triangulation T . We thus arrive at∫

M

KdA = 2π

(
F + V − 3

2
F

)
,

where we use that
∑

i ,j π = 3Fπ. Since every edge of the triangulation belongs two
exactly two triangles and a triangle has 3 edges, we must have

3F = 2E

so that
1

2π

∫
K

dA = V − E + F = χ(M),

as claimed. □

84



CHAPTER 5

Further topics

In this chapter we provide an outlook to some further topics in differential geometry
which are typically studied in depth in a master course. The content of this chapter is not
examinable.

5.1 Differential forms

The proof of Gauss’ Theorema Egregium can be simplified by using so-called differential
forms. We start with a brief introduction to differential forms.

Recall that a vector field associates to every point p of its domain of definition a tangent
vector X (p) in the corresponding tangent space. Closely related is the notion of a 1-form:

Definition 5.1 (1-form) Let X ⊂ Rn be a subset. A 1-form α on X is a map α : X →
T ∗Rn so that α|p := α(p) ∈ T ∗

pRn for all p ∈ U . Writing

α|p = α1(p)dx1|p + · · ·+ αn(p)dxn|p
for functions αi : X → R, where 1 ⩽ i ⩽ n. We call α smooth if the functions αi are
smooth for all 1 ⩽ i ⩽ n.

Example 5.2 (Exterior derivative) Let f : X → R be a smooth function, then its
exterior derivative df is a smooth 1-form on X .

1-forms can be added and multiplied with functions in the obvious way. Ifα,β are1-forms
on X and f : X → R a function, then we define

(α+ β)(v⃗p) = α(v⃗p) + β(v⃗p),

(f α)(v⃗p) = (αf )(v⃗p) = f (p)α(v⃗p)

for all p ∈ X and v⃗p ∈ TpRn.

Given 1-forms α,β : X → T ∗Rn, we can define a symmetric and alternating bilinear
form on each tangent space TpRn for p ∈ X . For all p ∈ X and v⃗p, w⃗p ∈ TpRn, we define
(αβ)|p : TpRn × TpRn → R by the rule

(αβ)|p(v⃗p, w⃗p) =
1

2
(α(v⃗p)β(w⃗p) + β(w⃗p)α(v⃗p)) .

Notice that for all p ∈ X the map (αβ)|p is a symmetric bilinear form on TpRn. Similarly
we can define an alternating bilinear form (α ∧ β)p : TpRn × TpRn → R by the rule

(α ∧ β)|p(v⃗p, w⃗p) = α(v⃗p)β(w⃗p)− β(v⃗p)α(w⃗p).
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Definition 5.3 (Wedge product) We call α∧β the wedge product of the two 1-forms
α,β.

Exercise 5.4 Let α,β, ξ be 1-forms on X and f , h : X → R functions. Show that
(i) α ∧ β = −β ∧ α so that α ∧ α = 0;

(ii) (α+ β) ∧ ξ = α ∧ ξ + β ∧ ξ;
(iii) (f α) ∧ β = α ∧ (f β) = f (α ∧ β).

For an R-vector space V we write Λ2(V ∗) for the (vector space of) alternating bilinear
forms on V and

Λ2(T ∗Rn) :=
⋃
p∈Rn

Λ2(T ∗
pRn)

Likewise we write S2(V ∗) for the symmetric bilinear forms on V and

S2(T ∗Rn) :=
⋃
p∈Rn

S2(T ∗
pRn)

Definition 5.5 (2-form) Let X ⊂ Rn be a subset. A 2-form on X is a map

ξ : X → Λ2(T ∗Rn)

so that ξ|p := ξ(p) ∈ Λ2(T ∗
pRn).

A 2-form thus assigns to each point p ∈ X an alternating bilinear map on TpRn. The
wedge productα∧β of two 1-formsα,β is a 2-form. Moreover, we can turn every smooth
1-form into a 2-form by taking the exterior derivative:

Definition 5.6 (Exterior derivative for 1-forms) Letα be a smooth 1-form onX ⊂ Rn

so that α =
∑n

i=1 αidxi for smooth functions αi : X → R, where 1 ⩽ i ⩽ n. The
exterior derivative dα of α is the 2-form defined as

dα|p =
n∑

j=1

n∑
i=1

∂αi

∂xj
(p)(dxj ∧ dxi )|p.

Recall that second derivatives of a twice continuously differentiable function commute
and this has the important consequence that d2 = 0, that is:

Lemma 5.7 Let f : X → R be a smooth function. Then

d2f := d(df ) = 0.

Proof By definition we have

df |p =
n∑

i=1

∂f

∂xi
(p)dxi |p

and hence

d(df )|p =
n∑

j=1

n∑
i=1

∂2f

∂xj∂xi
(p)(dxi ∧ dxj)|p.

86



Since f is twice continuously differentiable, it follows that
∂2f

∂xj∂xi
(p) =

∂2f

∂xi∂xj
(p),

but since (dxi ∧ dxj)|p = −(dxj ∧ dxi )|p we conclude that d(df ) = 0. □

We also have:

Lemma 5.8 (Product rule for the exterior derivative) For a smooth 1-form α on X
and a smooth function f : X → R we have

d (f α) = df ∧ α+ f dα.

Proof Writing α = αidxi for smooth functions αi : X → R, we have

d(f α) = d

(
n∑

i=1

f αidxi

)
=

n∑
j=1

n∑
i=1

∂(f αi )

∂xj
dxj ∧ dxi

=
n∑

j=1

n∑
i=1

(
∂f

∂xj
αi + f

∂αi

∂xj

)
dxj ∧ dxi

=

 n∑
j=1

∂f

∂xj
dxj

 ∧

(
n∑

i=1

αidxi

)
+ f

n∑
j=1

n∑
i=1

∂αi

∂xj
dxj ∧ dxi

= df ∧ α+ f dα,

as claimed. □

Remark 5.9 (Notation for vector-valued maps and forms)
(i) Whenever we have a smooth map f : X → Mn,1(R) we write df for the 1-form

with values in Mn,1(R) defined by the rule

df (v⃗p) =

df1(v⃗p)
...

dfn(v⃗p)

 where f =

f1
...
fn


for smooth functions fi : X → R, 1 ⩽ i ⩽ n and where v⃗p in TpRn for p ∈ X .

(ii) If α is a vector-valued 1-form on X so that

α =

α1

...
αn


for 1-forms αi on X , 1 ⩽ i ⩽ n, then we write

α · f = f · α = f1α1 + · · ·+ fnαn.

(iii) If β is a 1-form on X , then we write

df ∧ β =

df1 ∧ β
...

dfn ∧ β



5.2 The Theorema Egregium revisited

We will next give a proof of the Theorema Egregium using differential forms.
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Recall that {(e⃗1)p, (e⃗2)p, (e⃗3)p} denotes the standard basis on TpR3 for each p ∈ R3.
In the presence of a surface M ⊂ R3 it is useful to modify this basis so that for p ∈ M

the vectors {(e⃗1)p, (e⃗2)p} are an orthonormal basis of TpM and so that (e⃗3)p spans the
normal space TpM

⊥. We will call such a basis adapted to TpM . Unfortunately it is
not always possible to find an adapted basis for each tangent space of M which varies
continuously over the whole surface. A theorem which goes beyond the content of this
course – sometimes called the Hairy ball theorem – states that on the 2-sphere every
continuous vector field must attain the zero tangent vector at some point. This implies in
particular that we cannot find a basis {(e⃗1)p, (e⃗2)p} for each tangent space of S2 which
varies continuously over all of S2. We do however obtain an adapted basis locally. To see
this we choose a local parametrisation F : U → M ⊂ R3 and compute Fu,Fv : U →
M3,1(R). Recall that {(Fu)F (q), (Fu)F (q)} is basis of TF (q)M for all q ∈ U . Applying the
Gram-Schmidt orthonormalisation procedure we thus obtain an orthonormal basis on
each tangent space TpM where p ∈ F (U). Taking the cross product of the two tangent
vectors we obtain an adapted basis for each tangent space in F (U). If we forget about
the base points we obtain three column vector-valued maps

e⃗i : M → M3,1(R), i = 1, 2, 3

where here – for notational simplicity – we pretend that these maps are defined on all of
M .

Recall the map Ψn : Rn → Mn,1(R) which turns a point into a column vector

Ψn : Rn → Mn,1(R), (x1, ... , xn) 7→

x1
...
xn


For what follows we consider the case n = 3 write Ψ3 : R3 → M3,1(R) as

Ψ3 =

x

y

z


where the functions x , y , z : R3 → R denote the projection onto the respective compon-
ent. Observe that

(5.1) [dΨ3(v⃗p)]p =

dx(v⃗p)

dy(v⃗p)

dz(v⃗p)


p

= v⃗p

for all v⃗p ∈ TR3. This implies that for each v⃗p ∈ TpM we have [dΦ(v⃗p)]p ∈ TpM , hence
there are unique smooth 1-forms ω1,ω2 on M so that

(5.2) dΨ3(v⃗p) = e⃗1(p)ω1(v⃗p) + e⃗2(p)ω2(v⃗p)

for all p ∈ M and all v⃗p ∈ TpM . Notice that for all p ∈ M and all v⃗p ∈ TpM we have

(5.3) ω1(v⃗p) = ⟨v⃗p, (e⃗1)p⟩p and ω2(v⃗p) = ⟨v⃗p, (e⃗2)p⟩p

so that the 1-forms ω1,ω2 are intrinsic quantities. Notice the identities

(5.4) ω1 =

dx

dy

dz

 · e⃗1 and ω2 =

dx

dy

dz

 · e⃗2.

which follow from computing the inner product of (5.25.2) with e⃗1,e⃗2, respectively and using
(5.15.1).
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Example 5.10 Recall that for the hyperbolic paraboloid at p = (x , y , xy) ∈ M an
orthonormal basis of TpM is given by

(e⃗1)p =
1√

1 + y2

1

0

y


p

and (e⃗2)p =
1√

1 + x2 + y2

−xy/
√
1 + y2√

1 + y2

x/
√

1 + y2


p

.

Using (5.45.4) we compute that

ω1 =
1√

1 + y2
(dx + ydz)

and

ω2 =
1√

1 + x2 + y2

(
− xy√

1 + y2
dx +

√
1 + y2dy +

x√
1 + y2

dz

)

Likewise, there exist unique 1-forms ωij on M for 1 ⩽ i , j ⩽ 3 so that

de⃗i (v⃗p) =
3∑

k=1

e⃗k(p)ωki (v⃗p)

for all p ∈ M and v⃗p ∈ TpM . Omitting the tangent vector v⃗p we have

(5.5) de⃗i =
3∑

k=1

e⃗kωki .

Since e⃗i · e⃗j = δij we obtain

0 = d (e⃗i · e⃗j) =

(
3∑

k=1

e⃗kωki

)
· e⃗j + e⃗i ·

(
3∑

k=1

e⃗kωkj

)
= ωji + ωij

so that
ωij = −ωji .

We also have:

Lemma 5.11 At each point p ∈ M the two cotangent vectors ω1|p,ω2|p ∈ T ∗
pM are

linearly independent and hence a basis of T ∗
pM .

Proof If s1, s2 ∈ R are scalars such that

s1ω1|p + s2ω2|p = 0T∗
p M ,

then

0 = s1ω1(v⃗p) + s2ω2(v⃗p) = s1⟨v⃗p + (e⃗1)p⟩p + s2⟨v⃗p + (e⃗2)p⟩p = ⟨v⃗p, w⃗p⟩p

for all v⃗p ∈ TpM , where we write w⃗p = s1(e⃗1)p + s2(e⃗2)p . The vector w⃗p is thus ortho-
gonal to all vectors v⃗p ∈ TpM . Since ⟨·,·⟩p is non-degenerate this implies that w⃗p must be
the zero vector. This in turn implies that s1 = s2 = 0, since (e⃗1)p, (e⃗2)p are linearly inde-
pendent. Therefore, ω1|p,ω2|p are linearly independent. Since T ∗

pM is two-dimensional,
the claim follows. □

Notice that by construction e⃗3 : M → M3,1(R) is the Gauss map ν of M . In particular the
column vector de⃗3(v⃗p) = dν(v⃗p) attached at the base point p ∈ M is tangent to M for all
tangent vectors v⃗p ∈ TpM . This means that there are 1-forms α,β on M so that

(5.6) de⃗3(v⃗p) = α(v⃗p)e⃗1 + β(v⃗p)e⃗2.
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Since ω1|p,ω2|p are a basis of T ∗
pM for all p ∈ M there are unique functions Aij on M ,

1 ⩽ i , j ⩽ 2 so that

(5.7)
α|p = −A11(p)ω1|p − A12(p)ω2|p,
β|p = −A21(p)ω1|p − A22(p)ω2|p.

We now obtain:

Lemma 5.12 The matrix representation of the shape operator Sp at p ∈ M with
respect to the ordered orthonormal basis b = ((e⃗1)p, (e⃗2)p) is given by

M(Sp,b,b) = −
(
A11(p) A12(p)

A21(p) A22(p)

)
.

Remark 5.13
(i) Since Sp is self-adjoint and b an orthonormal basis of TpM , the matrix

M(Sp,b,b) is symmetric, hence Lemma 5.12Lemma 5.12 implies that A21(p) = A12(p).
(ii) For the Gauss curvature at p ∈ M we thus obtain the formula

K (p) = detM(Sp,b,b) = A11(p)A22(p)− A12(p)
2.

Proof of Lemma 5.12Lemma 5.12 Lemma 3.44Lemma 3.44 and the definition of the shape operator imply that

M(Sp,b,b) =

(
de⃗3((e⃗1)p) · e⃗1 de⃗3((e⃗1)p) · e⃗2
de⃗3((e⃗2)p) · e⃗1 de⃗3((e⃗2)p) · e⃗2

)
.

For the first entry we thus obtain

de⃗3((e⃗1)p) · e⃗1 =
[
α((e⃗1)p)e⃗1 + β((e⃗1)p)e⃗2

]
· e⃗1 = α((e⃗1)p)

= −A11(p)ω1((e⃗1)p) = −A11(p)⟨(e⃗1)p, (e⃗1)p⟩p = −A11(p),

where we use e⃗i · e⃗j = δij , (5.35.3), (5.65.6) and (5.75.7). The calculations for the remaining entries
are entirely analogous. □

Combining (5.55.5) with (5.65.6) and (5.75.7) we also have

de⃗3 = e⃗1ω13 + e⃗2ω23 = −(A11ω1 + A12ω2)e⃗1 − (A12ω1 + A22ω2)e⃗2,

where we use that A12 = A21. This implies

ω13 = −ω31 = −A11ω1 − A12ω2,

ω23 = −ω32 = −A12ω1 − A22ω2.

On the other hand, since d2 = 0, we obtain

0 = d2Ψ3 = de⃗1 ∧ ω1 + e⃗1dω1 + de⃗2 ∧ ω2 + e⃗2dω2

= (e⃗2ω21 + e⃗3ω31) ∧ ω1 + e⃗1dω1 + (e⃗1ω12 + e⃗3ω32) ∧ ω2 + e⃗2dω2

Taking the inner product with e⃗1 this simplifies to become

0 = dω1 + ω12 ∧ ω2

and taking the inner product with e⃗2, we obtain

0 = dω2 + ω21 ∧ ω1.

Writing θ := ω21 = −ω12 we thus obtain the equations

dω1 = −ω2 ∧ θ,

dω2 = −θ ∧ ω1.
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Taking the exterior derivative of the identity

de⃗i =
3∑

k=1

ωik e⃗k

we conclude likewise that

dωij = −
3∑

k=1

ωik ∧ ωkj .

In particular, we have
dθ = dω21 = −ω23 ∧ ω31 = (A12ω1 + A22ω2) ∧ (A11ω1 + A12ω2)

= A2
12ω1 ∧ ω2 + A22A11ω2 ∧ ω1 = −(A11A22 − A2

12)ω1 ∧ ω2

= −Kω1 ∧ ω2.

In summary, we have to so-called structure equations of E. Cartan

(5.8)

dω1 = −ω2 ∧ θ,

dω2 = −θ ∧ ω1,

dθ = −Kω1 ∧ ω2.

These equations imply that the Gauss curvature is an intrinsic quantity (i.e. the Theorema
Egregium). Indeed, the first two equations of (5.85.8) imply that ω1,ω2 uniquely determine
θ. Suppose that θ̂ is another 1-form on M satisfying the first two equations of (5.85.8). There
exist real-valued functions a, b on M so that

θ̂ = θ + aω1 + bω2.

The functions a, b exist since ω1|p,ω2|p are basis of T ∗
pM for all p ∈ M . By assumption,

we have dω1 = −ω2 ∧ θ̂ and hence

0 = dω1 − dω1 = −ω2 ∧ θ + ω2 ∧ θ̂ = −aω1 ∧ ω2.

Since {(e⃗1)p, (e⃗2)p} are linearly independent for all p ∈ M it follows that the alternating
bilinear form (ω1∧ω2)|p is never the zero form. This implies that amust vanish identically.
Arguing with the second equation from (5.85.8) it follows that b must vanish identically as
well, this implies that θ̂ = θ. Using the third equation, one can conclude similarly that
K is uniquely determined in terms of ω1,ω2, θ. Recall that ω1,ω2 are intrinsic quantities.
Since θ is uniquely determined by ω1,ω2, it follows that θ and hence the Gauss curvature
K are intrinsic as well.
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