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CHAPTER 1

Fields and complex numbers

1.1 Fields ‘ks&r
Z

Afield Kis roughly speaking a number system in which we can add and multiply numbers,
so that the expected properties hold. We will only briefly state the basic facts about fields.
For a more detailed account, we refer to the algebra module.

Definition 1.1 Afield consists of a set K containing distinguished elements Ox # 1k,
as well as two binary operations, addition +x : K x K — K and multiplication
‘k : K x K — K, so that the following properties hold:

« Commutativity of addition
x+xy=y+xx forallx,y € K.
« Commutativity of multiplication
(1.1) xgy=yxgx forallx,yeK
« Associativity of addition
(1.2) (x4+xy)+xz=x+x (y+x z) forallx,y,zec K.
« Associativity of multiplication
(1.3) (xky)kz=x=x(yxz) forallx,y,zecK
« Ok is the identity element of addition
(1.4) X +x Ogx = 0g +x x = x forallx € K.
« 1k is the identity element of multiplication
(1.5) xklg =1g xk x =x forallx € K.

« For any x € K there exists a unique element, denoted by (—x) and called the
additive inverse of x, such that

(1.6) x 4K (—x) = (—x) +x x = Ok.
1

- Forany x € K\ {0k} there exists a unique element, denoted by x~* or 1
called the multiplicative inverse of x, such that

1 1
(1.7) X'K*:*'KX:]-K-
X X

and

« Distributivity of multiplication over addition

(1.8) (x+xy) kz=xxkz+4+xy kz foralx,y zeK

Remark 1.2
« Itis customary to simply speak of a field K, without explicitly mentioning Ok, 1x
and +g, k.



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

« When Kiis clear from the context, we often simply write 0 and 1 instead of Ox and

1k. Likewise, it is customary to write + instead of 4+ and - instead of -k. Often -

is omitted entirely so that we write xy instead of x -k y.

We refer to the elements of a field as scalars.

The set K \ {0k} is usually denoted by K*.

« Forallx,y € Kwewritex —y = x +g (—y) and forallx € Kand y € K* we
write f/ =XK % =X -Ky’l.

- Afield K containing only finitely many elements is called finite. Algorithms in
cryptography are typically based on finite fields.

Example 1.3
(i) The rational numbers or quotients Q, the real numbers R and the complex
numbers C - that we will study more carefully below - equipped with the usual
addition and multiplication are examples of fields.
(i) Theintegers Z (with usual addition and multiplication) are not a field, as only 1
and —1 admit a multiplicative inverse.
(iii) Considering a set I, consisting of only two elements that we may denote by 0
and 1, we define 4+, and -, via the following tables

+r, 011 ‘T, 01
0 |01 and 0|00
1 1]0 1 (0|1

Forinstance, we havel +y, 1 = 0and 1 -r, 1 = 1. Then, one can check that
IF» equipped with these operations is indeed a field. A way to remember these
tables is to think of 0 as representing the even numbers, while 1 represents the
odd numbers. So for instance, a sum of two odd numbers is even and a product
of two odd numbers is odd. Alternatively, we may think of 0 and 1 representing
the boolean values FALSE and TRUE. In doing so, +r, corresponds to the logical
XOR and -, corresponds to the logical AND.

(iv) Considering a set F4 consisting of four elements, say {0, 1, a, b}, we define +,
and -, via the following tables

+r, O|1l|alb T, O|1|alb
0 |0|1]|a|b 0(0|0|0]O
1 |1/0|b]|a and 1 |10|1|a|b
a |a|b|0]1 al|0lalb|l
b |bla|l]0 b|0|b|l]a

Again one can check that IF4 equipped with these operations is indeed a field.

Lemma 1.4 (Field properties) In a field K we have the following properties:
(I) Ok 'k x = 0k forall x € K.

(i) —x = (_]-]K) ‘x x forall x € K.

(iii) Forallx,y € K, ifx -x y = Ok, then x = Og or y = Ox.

(iV) *OK = O]K.

(V) (1K)71 = 1k.

(vi) (—(—x)) = xforallx € K.
(vii) (=x) 'k y =xx (-y) = —(x & y).
(vii) (x~1)~t = x forall x € K*.

10



1.1 —Fields

Proof We will only prove some of the items, the rest are an exercise for the reader.

(i) Using (1.4), we obtain Ox +x Ox = Ok. Hence for all x € K we have
x g Ok = x 'k (Ok + Og) = x 'k Ok +k x 'k Ok,
where the second equality uses (1.8). Adding the additive inverse of x -k Ok, we get
x g Og — x 'k Ox = (X 'k Ox +x X 'k Ox) — X 'k Ox
using the associativity of addition (1.2) and (1.6), this last equation is equivalent to
Og = x ‘g O

as claimed.

(iii) Let x, y € K such that x -x y = Ok. If x = Og then we are done, so suppose x # 0Ok.
Using (1.7), we have 1x = x~! ¢ x. Multiplying this equation with y we obtain

y:y'KlK:y'K(X'Kxil):(y']KX)'KX71:OK']KxilzoK

where we have used (1.5), the commutativity (1.1) and associativity (1.3) of multiplication
as well as (i) from above.

(v) By (1.5), we have 1k -k 1g = 1k, hence 1k is the multiplicative inverse of 1k and since
the multiplicative inverse is unique, it follows that (1x) ! = 1. O

For a positive integer n € N and an element x of a field K, we write

nxX =X4+gX+rg X+ -+ Xx.

nsummands
The field I, has the property that 2x = 0 for all x € FF,. In this case we say the [F, has
characteristic 2. More generally, the smallest positive integer p such that px = 0k for
all x € Kis called the characteristic of the field. In the case where no such integer exists
the field is said to have characteristic 0. So Q, R, C are fields of characteristic 0. It can be
shown that the characteristic of any field is either 0 or a prime number.

Asubset IF of a field K that is itself a field, when equipped with the multiplication and
addition of K, is called a subfield of K.

Example 1.5

(i) The rational numbers Q form a subfield of the real numbers R. Furthermore,
as we will see below, the real numbers R can be interpreted as a subfield of the
complex numbers C.

(i) F> may be thought of as the subfield of F, consisting of {0, 1}.

Throughout your studies in mathematics, you will encounter various mappings having
names ending in morphism, such as homomorphism, isomorphism, endomorphism, auto-
morphism. This is quite confusing and to make things worse, the precise meaning of
*-morphism depends on the structure of the set between which the mapping is defined.
But don’t worry, we will introduce one x-morphism at a time, starting with homomorph-
ism. Broadly speaking, a homomorphism between sets X and ) that are equipped with
some extra structure of the same typeisamap f : X — ) that respects the extra
structure.

In the case of a field KK, the extra structure consists of addition +, multiplication -k, the
identity element of multiplication 1x and the identity element of addition Ox. A field
homomorphism respects this structure. More precisely:

11



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Definition 1.6 (Field homomorphism) Let IF and K be fields. A field homomorphism
is a mapping x : F — K satisfying x(1p) = 1k as well as

X(x+ry)=x(x)+xx(y) and  x(x-ry)=x(x) & x(y)
forallx,y € F.

Example 1.7 From the above tables we see that x : Fo — F, defined by x(1p,) =
1r, and x(Op,) = Op, is a field homomorphism.

Remark 1.8

+ We certainly also want that a field homorphism y : F — K satisfies x(0r) = Ok.
It turns out that we don’t have to ask for this in the definition of a field homo-
morphism, it is automatically satisfied with Definition 1.6. Indeed, we have

X(0r) = x(0r +r Or) = x(O0r) +x X(Or).

Adding the additive inverse of x(0r) in K, we conclude that Ox = x(Op).

+ Afield homomorphism is injective. Suppose x, y € F satisfy x(x) = x(y) so that
X(x — y) = Og. Assume w = x — y # Op, then x(w) ‘x x(w™!) = x(1r) = 1k.
Since by assumption x(w) = O, we thus obtain Ok - x(w 1) = 1k, contradicting
Lemma 1.4 (i). It follows that x = y and hence Y is injective.

1.2 Complex numbers

Video Complex numbers

Historically the complex numbers arose from an interest to make sense of the square root
of a negative number. We may picture the rational numbers Q as elements of an infinite
number line with an origin 0. Positive numbers extending to the right of the origin and
negative numbers to the left. Mathematicians have observed early on that this line of
numbers contains elements, such as 7 or v/2, that are not quotients. Phrased differently,
the rational numbers do not fill out the whole number line, there are gaps consisting
of irrational numbers. In a sense to be made precise in the Analysis module, the real
numbers may be thought of as the union of the rational numbers and the gaps on the
number line, resulting in a gap less line of numbers, known as the complete field of real
numbers.

-1 0 1 2 3

\/

FIGURE 1.1. The real number line.

The square x2 of a real number x is a non-negative real number, x> > 0, hence if we want
to define what the square root of a negative number ought to be, we are in trouble, since
there are no numbers left on the line of numbers that we might use. The solution is to
consider pairs of real numbers instead. A complex number is an ordered pair (x, y) of
real numbers x, y € R. We denote the set of complex numbers by C. We equip C with
the addition defined by the rule

(x1, y1) +c (2, y2) = (x1 + %2, )1 + y2)

12
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1.2 — Complex numbers

forall (x1, y1) and (x2, y») € C and where + on the right denotes the usual addition +g
of real numbers. Furthermore, we equip C with the multiplication defined by the rule

(1.9) (x1,y1) c (2, y2) = (X1 X2 — y1 - Yo, X1 Yo + y1 - X2).

forall (x1, y1) and (x2, y») € C and where - on the right denotes the usual multiplication
-r of real numbers.

Definition 1.9 (Complex numbers) The set C together with the operations +¢, -¢
and Oc = (0,0) and 1¢ = (1, 0) is called the field of complex numbers.

The mapping x : R — C, x — (x, 0) is a field homomorphism. Indeed,

X(x1 +r x2) = (x1 +r x2,0) = (x1,0) +¢ (x2,0) = x(x1) +c x(x2),
xX(x1 r %) = (31 r X, 0) = (x1,0) «c (%, 0) = x(x1) ¢ x(*),
forall x;, o € Rand x(1) = (1,0) = 1¢.

This allows to think of the real numbers R as the subfield {(x, 0)|x € R} of the complex
numbers C. Because of the injectivity of , it is customary to identify x with x(x), hence
abusing notation, we write (x,0) = x.

Notice that (0, 1) satisfies (0, 1) ¢ (0, 1) = (—1,0) and hence is a square root of the real
number (—1,0) = —1. Thenumber (0, 1) is called the imaginary unit and usually denoted
by i. Sometimes the notation v/—1 is also used. Every complex number (x, y) € C can
now be written as

(x,y) =(x,0) +¢c (0,y) = (x,0) +ci-c (y.0) = x + iy,

where we follow the usual custom of omitting -¢ and writing + instead of +¢ on the right
hand side. With this convention, complex numbers can be manipulated as real numbers,
we just need to keep in mind that i satisfies i> = —1. For instance, the multiplication of
complex numbers x; + iy; and x, + iy» gives

(x1 +iv1) (e +iya) = x1xe + i2yiys +i(xays + y1xe) = x1xe — yiys +i(xays + yix)

in agreement with (1.9). Here we also follow the usual custom of omitting -g on the right
hand side.

Definition 1.10 For a complex number z = x + iy € C with x, y € R we call
+ Re(z) = xits real part;

« Im(z) = y itsimaginary part;

« Z = x — iy the complex conjugate of z;

z| = V/zz = \/x2 + y? the absolute value or modulus of z.

The mapping z — Z is called complex conjugation.

Remark 1.11
» For z € C the following statements are equivalent

zeR <<= Re(z)=z <= Im(z)=0 = =z=2zZ

« We have |z| = 0ifandonlyifz = 0.

13



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Example 1.12 Let z = 23 Then

@560 (2+5)(6+i) 1 i
T 6—n6=n  16-1P =5 (73,

sothat Re(z) = £ and Im(z) = 22. Moreover,

A= () (2Y 2, /2
B 37 37) V31

Remark 1.13

» We may think of a complex number z = a + ib as a point or a vector in the plane
R? with x-coordinate a and y-coordinate b.

« The real numbers form the horizontal coordinate axis (the real axis) and the purely
imaginary complex numbers {iy|y € R} form the vertical coordinate axis (the
imaginary axis).

« The point Z is obtained by reflecting z along the real axis.

+ |z| is the distance of z to the origin 0c = (0,0) € C

+ The addition of complex numbers corresponds to the usual vector addition.

« For the geometric significance of the multiplication, we refer the reader to the
Analysis module.

AR
ibg---mmmm nZ=a+ib
i i
0 1 a [zZ[ R
—ib ¢ sZ=a—ib

FIGURE 1.2. The complex number plane C

We have the following elementary facts about complex numbers:

Proposition 1.14 forall z, w € C we have

(i) Re(z) = 252, Im(z) = 5555
(i) Re(z+ w) = Re(z) + Re(w), Im(z + w) = Im(z2) + Im(w);
(i) ZFW=Z+W,ZW =ZW, z = Zz;
(iv) |z|> = |Z|> = 2z = Re(2)? + Im(2)%;
(V) |ow| = |z]|wl.

Proof Exercise.

14



1.2 — Complex numbers

Exercises

Exercise 1.15 Check that Cisindeed a field.

15






CHAPTER 2

Matrices

2.1 Definitions l%“/r
2

A matrix (plural matrices) is simply a rectangular block of numbers. As we will see below,
every matrix gives rise to a mapping sending a finite list of numbers to another finite list
of numbers. Mappings arising from matrices are called linear and linear mappings are
among the most fundamental objects in mathematics. In the Linear Algebra modules
we develop the theory of linear maps as well as the theory of vector spaces, the natural
habitat of linear maps. While this theory may come accross as quite abstract, it is in fact
at the heart of many real world applications, including optics and quantum physics, radio
astronomy, MP3 and JPEG compression, X-ray crystallography, MRl scans and machine
learning, just to name a few.

Throughout the Linear Algebra modules, K stands for either the real numbers R or the
complex numbers C, but almost all statements are also valid over arbitrary fields.

We start with some definitions. In this chapter, m, n, m, i denote natural numbers.

Definition 2.1 (Matrix)
« Arectangular block of scalars Aj; € K, 1 <i<m,1<j<n

A A - A

Ay Axm - Ay
(2.1) A= . .

Aml Am2 e Amn

is called an m x n matrix with entries in K.
« We also say that A is an m-by-n matrix, that A has size m x nand that A has m
rows and n columns.
The entry A;; of A is said to have row index i where 1 < i < m, column index j
where 1 < j < nand will be referred to as the (7, j)-th entry of A.
« Ashorthand notation for (2.1) is A = (Ajj)1<i<mi<j<n-
« For matrices A = (Aij)lgiém,léjgn and B = (Bij)lgigm,lgjgn we write A = B,
provided A;j = Bjforalll </ < mandalll <j < n.

Definition 2.2 (Set of matrices)

« The set of m-by-n matrices with entries in K will be denoted by M,, ,(K).

+ The elements of the set M,,, 1(K) are called column vectors of length m and the
elements of the set M; ,(K) are called row vectors of length n.

17



CHAPTER 2 — MATRICES

« We will use the Latin alphabet for column vectors and decorate them with an
arrow. For a column vector
X1
X2

X = . (S Mml(K)

Xm
we also use the shorthand notation X = (x;)1<i<m and we write [xX]; for the i-th
entry of X, so that [X]; = x; forall1 < i< m.
« We will use the Greek alphabet for row vectors and decorate them with an arrow.
For a row vector
£= (G & - &) € Miy(K)
we also use the shorthand notation E: (&)1<i<n and we write [é],- for the /-th
entry ofg, so that [5],- =¢foralll <7< n

Remark 2.3 (Notation)

« A matrix is always denoted by a bold capital letter, such as A, B, C, D.

« The entries of the matrix are denoted by Aj;, Bj;, Cj;, Dj;, respectively.

« We may think of an m x n matrix as consisting of n column vectors of length m.
The column vectors of the matrix are denoted by a;, 5, c, J,-, respectively.

« We may think of an m x n matrix as consisting of m row vectors of length n. The
row vectors of the matrix are denoted by &, ﬁ, i, 5, respectively.

« For a matrix A we also write [A]; for the (i, j)-th entry of A. So for A =
(A,‘j)lgigmvlggn,we have [A]U = A,J forall 1 < i <m, 1 gj < n.

Example 2.4 For

T V2
A=| -1 5/3] e Msy(R),
log2 3
we have for instance [A]s, = 3, [Al12 = v/2, [A]o; = —1and
™ V2
51: -1 , 52: 5/3 , &2: (—1 5/3), &3: (|0g2 3)
log 2 3

Recall that for sets X and ) we write X x ) for the Cartesian product of X and ), defined
as the set of ordered pairs (x, y) with x € X and y € Y. Moreover, X x X is usually
denoted as X2. Likewise, for a natural number n € N, we write X" for the set of ordered
lists consisting of n elements of X'. We will also refer to ordered lists consisting of n
elements as n-tuples. The elements of X' are denoted by (x1, x2, ..., x,) with x; € X for
all1 < 7 < n. In particular, for all n € N we have a bijective map from K" to M, 1(K)
given by

X1
(2.2) (X1 e Xn)

For this reason, we also write K" for the set of column vectors of length n with entries in
K. The set of row vectors of length n with entries in K will be denoted by K,,.

18



2.2 — Matrix operations

Definition 2.5 (Special matrices and vectors)

« The zero matrix 0, , is the m x n matrix whose entries are all zero. We will also
write 0, for the n x n-matrix whose entries are all zero.

Matrices with equal number n of rows and columns are known as square matrices.
+ Anentry Aj; of a square matrix A € M, ,(K) is said to be a diagonal entry if i = j
and an off-diagonal entry otherwise. A matrix whose off-diagonal entries are all
zero is said to be diagonal.

We write 1, for the diagonal n x n matrix whose diagonal entries are all equal to
1. Using the so-called Kronecker delta defined by the rule

5 = { L=
0 i#J,
we have [1,]; = ¢; forall 1 </, j < n. The matrix 1, is called the unit matrix or
identity matrix of size n.
« Thestandard basis of K" isthe set {é1, &, ..., €,} consisting of the column vectors
of the identity matrix 1, of size n.
« The standard basis of K, is the set {&7, &5, ..., &,} consisting of the row vectors of
the identity matrix 1, of size n.

Example 2.6
(i) Special matrices:

0 0 0 10
02’3_(0 0 o)' 12_(0 1)’ 1 =

(ii) The standard basis of K3 is {&1, &, &}, where

O O =
o = O
—= O O

1 0 0
ee=10], &=1|1 and &= (0
0 0 1

(iii) The standard basis of K3 is {&7, 3, &3}, where

&2=(1 0 0), &=(0 1 0) and &=(0 0 1).

2.2 Matrix operations

We can multiply a matrix A € M,, ,(K) with a scalar s € K. This amounts to multiplying
each entry of A with s:

Definition 2.7 Scalar multiplication in M, ,(KK) is the map

M () - KX M n(K) = M, 5(K), (s,A) = sy, k) A
defined by the rule
(2.3) S “Myo(k) A = (5 Ajj)i<i<m,1<j<n € Mmn(K),

where s - Aj; denotes the field multiplication of scalars s, A; € K.

19



CHAPTER 2 — MATRICES

Remark 2.8 Here we multiply with s from the left. Likewise, we define A - k)
s = (Aj ' S)i<i<mi<j<n, thatis, we multiply from the right. Of course, since
multiplication of scalars is commutative, we have s -y, ) A = A -y, (k) S, thatis,
left multiplication and right multiplication gives the same matrix. Be aware that this
is not true in every number system. An example that you might encounter later on
are the so-called quaternions, where multiplication fails to be commutative.

The sum of matrices A and B of identical size is defined as follows:

Definition 2.9 Addition in M,, ,(K) is the map
F (1) * Minn(K) X Mpn,p(K) = M n(K), (A, B) = A+, @) B
defined by the rule
(2.4) A +u,,,x) B = (Aj +k Bij)i<i<mi<i<n € Mm,n(K),
where A;; +x Bj; denotes the field addition of scalars Aj;, Bjj € K.

Remark 2.10 (Abusing notation)

- Field addition takes two scalars and produces another scalar, thus it is a map
K x K — K, whereas addition of matrices is a map M,, ,(K) x M, ,(K) —
M (K). For this reason we wrote +,,. (k) above in order to distinguish matrix
addition from field addition of scalars. Of course, it is quite cumbersome to always
write +p,. (k) and +, so we follow the usual custom of writing +, both for field
addition of scalars and for matrix addition, trusting that the reader is aware of
the difference.

- Likewise, we simply write - instead of -y, (k) or omit the dot entirely, so that
s-A=sA=s-y ) AforscKandA c My, ,(K).

Example 2.11
(i) Multiplication of a matrix by a scalar:

512_125_5-15-2_510
3 4) \3 4/ \5.3 5.4)  \15 20/

(ii) Addition of matrices:
3 -5 . -3 8\ (0 3
-2 8 7 10) \5 18)°

If the number of columns of a matrix A is equal to the number of rows of a matrix B, we
define the matrix product AB of A and B as follows:

Definition 2.12 (Matrix multiplication — Video) Let A € M,, ,(K) be an m-by-n
matrix and B € M, 5(K) be an n-by-ri matrix. The matrix product of A and B is the

20
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2.2 — Matrix operations

m-by-m matrix AB € M, »(K) whose entries are defined by the rule

n n
[ABJix = Aj1Bik + A2 Bok + - - - + AinBpie = Z AiiBjx = Z[A]U[B]jk-

j=1 j=1
foralll </ <mandalll < k< m

Remark 2.13 (Pairing of row and column vectors) We may define a pairing K,, x
K" — K of a row vector of length nand a column vector of length n by the rule

(g')?)HE)?:§1X1+£2X2+"'+§an

for allg: (&)1<icn € Ky and forall ¥ = (xi)1<i<n € K". So we multiply the first
entry of Ewith the first entry of X, add the product of the second entry of Eand the
second entry of X and continue in this fashion until the last entry of £ and .
The (i, j)-th entry of the matrix product of A € M,, ,(K) and B € M, 5(K) is then
given by the pairing

[AB]; = dib;

of the i-th row vector &, of A and the j-th column vector b; of B.

Remark 2.14 (Matrix multiplication is not commutative — Video) If A'isa m-by-n
matrix and B a n-by-m matrix, then both AB and BA are defined, but in general
AB # BA since AB is an m-by-m matrix and BA is an n-by-n matrix. Even when
n = mso that both A and B are square matrices, it is false in general that AB = BA.

The matrix operations have the following properties:

Proposition 2.15 (Properties of matrix operations)

¢ 0mn+A=Aforall A € M, ,(K);

« 1,A=AandAl,=Aforall A € M, ,(K);

¢ 05mA =04,and A0, 7 = 0, 5 forall A € M, ,(K);

-A+B=B+Aand(A+B)+C=A~+(B+C)forallA B,C <€ M, ,(K);

«0-A=0,,foral A € M, ,(K);

¢+ (s515)A = s1(sxA) forall A € My, ,(K)and all sy, s, € K;

« A(sB) = s(AB) = (sA)Bforall A € M, ,(K) and all B € M, »(K) and all
seK;

+ s(A+B)=sA+sBforall A,B € M, ,(K)and s € K;

e (s1+5)A=s5A+sAforall A € M, ,(K)andforall sy, s, € K;

+ (B+C)A=BA+ CAforallB,C € Msz (K) and forall A € Mp, ,(K);

« A(B+C)=AB+ ACforall A € Ms m(K) and forall B, C € M, ,(K).

Proof We only show the second and the last property. The proofs of the remaining
ones are similar and/or elementary consequences of the properties of addition and
multiplication of scalars.
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CHAPTER 2 — MATRICES

To show the second property consider A € M,, ,(K). Then, by definition, we have for all
1<k<mandalll < j<n

[1nAly = Y [LwlulAly =D 6kAy = Ay = [Ali,
i=1 i=1

where the second last equality uses that §4; is 0 unless i = k, in which case §x, = 1. We
conclude that1,,A = A. Likewise, we obtainforalll </ < mandalll < k<n

[ALJw = > [Alj[Lalk = > Ajdi = Ai = [Al

=1 j=1

sothat Al, = A. The identities

m n
Z 5k;A,'J' = Akj and Z A,'J'(Sjk = A,'k
i=1 j=1

are used repeatedly in Linear Algebra, so make sure you understand them.

For the last property, applying the definition of matrix multiplication gives

AB = (i AkiBij) and  AC = (i Ak Ci
i=1 1

i=1 )1@@3,1@@
so that

1

<k<m1Li<n

i=1 i=1 n
i=1 1<k<m1<<n

where we use that
B+C= (B,'j + Cij)1gigm,1<j§" '
]

Finally, we may flip a matrix along its “diagonal entries”, that is, we interchange the role
of rows and columns. More precisely:

Definition 2.16 (Transpose of a matrix)

- The transpose of a matrix A € M,, ,(K) is the matrix AT € M, ,(K) satisfying
[AT], = [Al;
foralll </i<nandl <j<m
- Asquare matrix A € M, ,(K) that satisfies A = AT is called symmetric.
- Asquare matrix A € M, ,(K) that satisfies A = —AT is called anti-symmetric.

Example 2.17 If
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Remark 2.18 (Properties of the transpose)
« For A € M,, ,(K) we have by definition (AT)T = A.
« ForA € M, ,(K) and B € M, »(K), we have

(AB)" =BTAT,

Indeed, by definition we haveforalll < /i< mandalll <j<m

[(AB)T], = [AB]; = > [Alx[Bli =) _[BT], [AT], = [BTAT].

k=1 k=1

2.3 Mappings associated to matrices

Definition 2.19 (Mapping associated to a matrix) For an (m x n)-matrix A =
(Aij)icicmi<j<n € Mpmo(K) with column vectors ai, ..., a, € K™ we define a
mapping

fa:K"— K™, X — AX,
where the column vector AX € K™ is obtained by matrix multiplication of the matrix
A € M, ,(K) and the column vector X = (x;)1<i<n € K"

Auxy + Awxp + - -+ ArpXn

LS . . Aoixy + Axpxp + -+ - + AopXp
AX = a1x1 + axo + -+ apx, = .

Am1X1 + Am2X2 +- Aman

Recallthatiff : X — Y and g : X — ) are mappings from a set X into a set ), then we
write f = g if f(x) = g(x) for all elements x € X.

The matrix A € M,, »,(K) uniquely determines the mapping fa:

Proposition 2.20 Let A, B € M,, ,(K). Then fa = fg ifand only if A = B.

Proof If A = B, then A; = Bjforalll < i < m1 < j < n, hence we conclude
that fa = fg. In order to show the converse direction we consider the standard basis
& = (djj)igj<n i = 1,..., nof K". Now by assumption

Ari Byj

. Aoj . Boi
fae)=1 . | =f(eé) =] .

Am,‘ Bmi

Since this holds for all / = 1, ..., n, we conclude A; = Bjforallj = 1,...,mand
i =1, ..., n. Therefore, we have A = B, as claimed. O

Recallthatif f : X — Y isamappingfromaset X' intoaset)Yandg : Y — Z amapping
from ) into a set Z, we can consider the composition of g and f

gof . X — Z, x — g(f(x)).
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The motivation for the Definition 2.12 of matrix multiplication is given by the following
theorem which states that the mapping fag associated to the matrix product AB is the
composition of the mapping fa associated to the matrix A and the mapping fg associated
to the matrix B. More precisely:

Theorem 2.21 Let A € M), ,(K) and B € M, 5(K) so that fa : K" — K™ and
fg : K™ > K"and fag : K™ — K™. Then fag = fa o fg.

Proof For X = (x)1<k<m € K™ we write ¥ = fg(X). Then, by definition, y = BX =
(¥1)1<j<n Where

I
(2.5) yi = Bixi + Bpxo + - + Bimxin = Z Bijx.-
k=1

Hence writing Z = fa(y) = Ay, we have Z = (z;)1<i<m, Where

n n m
zi=Any1 + Ao + - 4 Ainyn = Z Ay = Z Ajj Z Bjixic
=1 =1 k=1

n

:Z ZAUBJk Xk

i
k=1 \ j=1

and where have used (2.5). Since AB = (Cix)1<i<m1<k<m With

n
Ci = »_ AjBi,
=1

we conclude that Z = fag(X), as claimed. O

Combining Theorem 2.21 and Proposition 2.20, we also obtain:

Corollary 2.22 LetA € M,, ,(K), B € M, »(K) and C € M (K). Then
(AB)C = A(BC),

that is, the matrix product is associative.

Proof Using Proposition 2.20 it is enough to show that
fag © fc = fa o fgc.
Using Theorem 2.21, we get for all X € K7
(fas o fc) (x) = fa(fc(X)) = fa(fa(fc(X))) = fa(fac(X)) = (fa o fac) (X).

Remark 2.23 For all A € M, ,(K), the mapping fa : K" — K" satisfies the
following two very important properties
(X + y) = fa(X) + fa(y), (additivity),
(2.6) . S .
fa(s-X) =s- fa(X), (1-homogeneity),
forall x, y € K" and s € K. Indeed, using Proposition 2.15 we have
fa(X +¥) = A(X+5) = AX+ Ay = fa(X) + fa(¥)
and
fa(s-x) = A(sx) =s- (Ax) = s - fa(x).
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Mappings satisfying (2.6) are called linear.

Example 2.24 Notice that “most” functions R — R are neither additive nor 1-
homogeneous. As an example, consider a mapping f : R — R which satisfies the
1-homogeneity property. Let a = f(1) € R. Then the 1-homogeneity implies that
forallx € R = R! we have

f(x)=Ff(x-1)=x-f(1)=a-x,

showing that the only 1-homogeneous mappings from R — R are of the form
x > ax, where a is a real number. In particular, sin, cos, tan, log, exp, / and all
polynomials of degree higher than one are not linear.
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CHAPTER 3

Vector spaces and linear maps

3.1 Vector spaces "?Q.lr
3

We have seen that to every matrix A € M, ,(K) we can associate a mapping fa : K" —
K™ which is additive and 1-homogeneous. Another example of a mapping which is
additive and 1-homogeneous is the derivative. Consider P(R), the set of polynomial
functions in one real variable, which we denote by x, with real coefficients. That is, an
element p € P(R) is a function

n
p:R — R, Xr—>anx”+a,,_1X”*1+~~+alx+ao:g akxk,
k=0

where n € N and the coefficients a, € Rfork = 0,1, ..., n. The largest m € NU {0} such
that a,, # 0 is called the degree of p. Notice that we consider polynomials of arbitrary,
but finite degree. A power series x — Y .~ aix¥, that you encounter in the Analysis
module, is not a polynomial, unless only finitely many of its coefficients are different
from zero.

Clearly, we can multiply p with a real number s € R to obtain a new polynomial s -p(r) p
(3.1) spmr)P:R—R, x = s p(x)

sothat (s-pr) p)(X) = D_4_g sakx” forall x € R. Here s - p(x) is the usual multiplication
of the real numbers s and p(x). If we consider another polynomial

qg:R—R, xHZbkxk
k=0

with by € Rfor k =0,1, ..., n, the sum of the polynomials p and q is the polynomial
(3.2) p+er)q:R—R, x = p(x)+ q(x)

so that (p +p(r) 9)(x) = >_,_o(ak + bi)x* forall x € R. Here p(x) + q(x) is the usual
addition of the real numbers p(x) and g(x). We will henceforth omit writing +p(r) and
-p(r) and simply write + and -.

We may think of the derivative with respect to the variable x as a mapping

d
—: P(R P(RR).
- P(R) > P(R)
Now recall that the derivative satisfies
d d d .
63 wPta)=-(p)+ 4 (q) (additivity),
’ d d .
&(S -p)=s- &(p) (1-homogeneity).

Comparing (2.6) with (3.3) we notice that the polynomials p, g take the role of the vectors
X, y and the derivative takes the role of the mapping fa. This suggests that the mental
image of a vector being an arrow in K" is too narrow and that we ought to come up with
a generalisation of the space K” whose elements are abstract vectors.
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Video Vector spaces

In order to define the notion of a space of abstract vectors, we may ask what key structure
the set of (column) vectors K” carries. On K", we have two fundamental operations,

+:K"xK"—= K" (X,¥)— X+, (vectoraddition),

K xK'= K", (s,X)—s-X, (scalar multiplication).

Avector space is roughly speaking a set where these two operations are defined and obey
the expected properties. More precisely:

Definition 3.1 (Vector space) A K-vector space, or vector space over K is a set V
with a distinguished element 0y, (called the zero vector) and two operations

+v:VxV =V (v,vw)—wv+ywv (vectoraddition)

and
wv:KxV =V (s,v)—s-yv (scalarmultiplication),

so that the following properties hold:
- Commutativity of vector addition

vitvva=w+yv (forall v, v, € V),
« Associativity of vector addition
vitv(va+vvi)=(vi+vw)+yvvs (forall vi, vy, vz € V),
- Identity element of vector addition
(3.4) Ov+vv=v+4+y0y=v (forallve V)
« Identity element of scalar multiplication
l.yv=v (forallve V),
« Scalar multiplication by zero
(3.5) O-vv=0y (forallve V)
« Compatibility of scalar multiplication with field multiplication
(s12) 'vv=s1-v(s2:vv) (foralls,s €K, ve V)
- Distributivity of scalar multiplication with respect to vector addition
sviitvw)=s-vvit+vs-yvwn (forallseK vi,vs € V),
« Distributivity of scalar multiplication with respect to field addition
(s1+s)vv=si-vvF+ys-yvv (foralls,seK veV).

The elements of V are called vectors.

Example 3.2 (Field) Afield Kis a K-vector space. We may take V = K, 0y = Og
and equip V with addition +, = 4+ and scalar multiplication -y = k. Then the
properties of a field imply that V = Kis a K-vector space.

Example 3.3 (Vector space of matrices) Let V = M, ,(K) denote the set of m x
n-matrices with entries in K and 0y, = 0,,, denote the zero vector. It follows
from Proposition 2.15 that V equipped with addition +y : V x V — V defined
by (2.4) and scalar multiplication -y : K x V — V defined by (2.3) is a K-vector
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space. In particular, the set of column vectors K" = M,, 1 (K) is a K-vector space as
well.

Example 3.4 (Vector space of polynomials) The set P(R) of polynomials in one
real variable and with real coefficients is an R-vector space, when equipped with
addition and scalar multiplication as defined in (3.1) and (3.2) and when the zero
vector Op(r) is defined to be the zero polynomial o : R — R, that is, the polynomial
satisfying o(x) = 0 forall x € R.

More generally, functions form a vector space:

Example 3.5 (Vector space of functions) We follow the convention of calling a
mapping with values in K a function. Let | C R be anintervalandleto : | — K
denote the zero function defined by o(x) = 0 forall x € /. We consider V = F(/, K),
the set of functions from / to K with zero vector 0 = o given by the zero function
and define addition + : V x V — V asin (3.2) and scalar multiplication - :
K x V — Vasin (3.1). It now is a consequence of the properties of addition and
multiplication of scalars that F(/, K) is a K-vector space. (The reader is invited to
check this assertion!)

Example 3.6 (Vector space of sequences) A mapping x : N — K from the natural
numbers into a field K called a sequence in K (or simply a sequence, when K is clear
from the context). It is common to write x, instead of x(n) for n € N and to denote a
sequence by (xp)nen = (x1, X2, X3, ...). We write K for the set of sequences in K.
For instance, taking K = R, we may consider the sequence

1y _(pititl
n neN_ 234’57

(\/ﬁ)neN = (1, V2,v/3,2,/5, ) )

If we equip K> with the zero vector given by the zero sequence (0, 0,0,0,0, ...),
addition given by (x,)nen + (Vn)nen = (Xn + ¥n)nen and scalar multiplication given
by s - (xn)nen = (5Xn)nen for s € K, then K* is a K-vector space.

or the sequence

Example 3.7 (Zero vector space) Consider a set V = {x} consisting of a single
element. We define Oy = x, addition by x + x = x and scalar multiplication by
s-v x = x. Then all the properties of Definition 3.1 are satisfied. We write V = {0y}
orsimply V = {0} and call V the zero vector space (over K).

The notion of a vector space is an example of an abstract space. Later in your studies you
will encounter further examples, like topological spaces, metric spaces and manifolds.

Remark 3.8 (Notation & Definition) Let V be a K-vector space.
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« Forv € Vwewrite —v = (=1) -y vandforv;, v, € V wewritev; — v, =
vi +v (—w). In particular, using the properties from Definition 3.1 we have (check
which properties we do use!)

v—v=v+y(—v)=v+y(-1)yv=(1-1)-yv=0-yv=0y

For this reason we call —v the additive inverse of v.

« Again, it is too cumbersome to always write +y/, for this reason we often write
vi + v instead of vi +v wvo.

« Likewise, we will often write s - v or sv instead of s -y, v.

« Itis also customary to write 0 instead of 0y,.

Lemma 3.9 (Elementary properties of vector spaces) Let V be a K-vector space.
Then we have:

(i) The zero vector is unique, that is, if 0\, is another vector such that 0, + v =
v+0, =vforallv e V,then0}, = Oy.
(i) The additive inverse of every v € V is unique, thatis, if w € V satisfies v+ w =
Oy, thenw = —v.
(i) Forall s € K we have sOy = Oy,.
(iv) Fors € Kandv € V we have sv = Oy ifand only if eithers = 0 or v = 0y,.

Proof (The reader is invited to check which property of Definition 3.1 is used in each of
the equality signs below)

(i) We have OIV = OIV + 0y = 0y.
(ii) Since v + w = 0y, adding —v, we obtain (—v) + v+ w =0y + (—v) = —v = w.
(iii) We compute sOy = s(0y + 0y) = s0y + sOy so that s0y, — s0, = 0y, = sOy.
(iv) < If v =0y, then sv = 0y by (iii). If s = 0, then sv = 0 by (3.5).
= Lets € Kand v € V such that sv = Oy. Itis sufficient to show that if s # 0, then

v = Oy. Since s # 0 we can multiply sv = 0y with 1/s so that

1 1 1
=(sv) = (s> v=v= EOVZOV'

S

3.2 Linear maps

Throughout this section, V, W denote K-vector spaces.

Previously we saw that the mapping fa : K" — K™ associated to a matrix M, ,(K) is
additive and 1-homogeneous. These notions also make sense for mappings between
vector spaces.

Definition 3.10 (Linear map) Amapping f : V — W is called linear if it is additive
and 1-homogeneous, that is, if it satisfies

(3.6) f(s1vi + s2v2) = s1f(v1) + s2f (v2)

forall s, s, € Kandforallvy, v» € V.
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The reader is invited to check that the condition (3.6) is indeed equivalent to f being
additive and 1-homogeneous.

Example 3.11 As we have seen in Remark 2.23, the mapping fa : K" — K™ associ-
ated to a matrix A € My, »,(K) is linear. In Lemma 3.18 below we will see that in fact
any linear map K” — K™ is of this form.

Example 3.12 The derivative £ : P(R) — P(R) is linear, see (3.3).

Example 3.13 The matrix transpose is a map M,, ,(K) — M, ,(K) and this map is
linear. Indeed, foralls, t € Kand A, B € M,, ,(K), we have
(sA+tB)" = (A + tBji)igj<ni<i<m = S(Ai)i<j<ni<i<mt

t(Bji)i<j<nicicm = SAT +tBT.

Example 3.14 If X is set, the mappingldy : X — X which returnsitsinputis called
the identity mapping. Let V be a K-vector space and Idy : V — V the identity
mapping so that Idy(v) = v forall v € V. The identity mappingis linear since for
all sy, 5o € Kand vy, v» € V we have

|d\/(51V1 —+ 52V2) =51V +SHw = 51|d\/(V1) —+ 52|d\/(V2).

A necessary condition for linearity of a mapping is that it maps the zero vector onto the
zero vector:

Lemma3.15 Letf : V — W bealinear map, then f(0y) = Ow.

Proof Sincef : V — W is linear, we have

F(0v) = £(0-0y) = 0- £(0y) = Oy.

Proposition 3.16 Let Vi, V5, V3 be K-vector spacesand f : V; — Voand g : Vo —
V3 be linear maps. Then the composition g o f : Vi — V4 is linear. Furthermore,
if f + Vi — Vs is bijective, then the inverse function f~* : V, — V4 (satisfying
f~lof="fof t=Idy)islinear.

Proof Lets,t € Kandv,w € V;.Then
(gof)(sv+tw)=g(f(sv+tw)) = g(sf(v)+ tF(w))
= sg(f(v)) + tg(f(w)) = s(g o F)(v) + t(g o F)(w),
where we first use the linearity of f and then the linearity of g. It follows that g o £ is

linear.
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Now suppose f : V; — V. is bijective with inverse function f =1 : V, — V4. Lets, t € K
and v, w € V,. Since f is bijective there exist unique vectors v/, w’ € V; with f(v/) = v
and f(w’) = w. Hence we can write

fl(sv 4 tw) = FYH(sF(V) + tF (W) = FE(F(sv/ + tw'))
=(flof)(sv +tw)=s/+tw,
where we use the linearity of f. Since we also have v/ = f~1(v) and w’ = f~}(w), we
obtain
Y (sv 4+ tw) = sf1(v) + tFH(w),
thus showing that f =1 : V5, — V; is linear. O

We also have:

Proposition 3.17 Let A € M, ,(K) and fa : K" — K™ the associated linear map.
Then fa is bijective if and only if there exists a matrixB € M,, ,,(K) satisfyingBA =1,
and AB = 1,,. In this case, the matrix B is unique and will be denoted by A~*. We
refer to A= as the inverse of A and call A invertible.

In order to prove Proposition 3.17 we need the following lemma:

Lemma 3.18 A mapping g : K™ — K" is linear if and only if there exists a matrix
B € M, »(K) so that g = fg.

Proof Let B € M, ,(K), then fg is linear by Remark 2.23. Conversely, let g : K" — K"
be linear. Let {é}, ..., &,} denote the standard basis of K™. Write

Bii
g(é) = for i=1,....,m
B
and consider the matrix
Bu Bim
B=|: . i |&Mn).
Bm -+ Bum
Fori =1, ..., mwe obtain
(3.7) fa(&;) = Bé; = g(é&i).

Any vector vV = (v)1<i<m € K™ can be written as
V=wviée1+ -+ Vpén
for (unique) scalars v;, i = 1, ..., m. Hence using the linearity of g and fg, we compute
g(V) — fa(V) = g(viéi + -+ + Vi) — fa (V& + -+ + Viném)
= vi(g(é) — fa(é)) + - + vim (g(€m) — fa(ém)) = Ok,

where the last equality uses (3.7). Since the vector Vv is arbitrary, it follows that g = fg, as
claimed. O

Proof of Proposition 3.17 First, notice that the mapping f1, : K” — K" associated to
the unit matrix is the identity mapping on K7, that is, for all n € N, we have fi, = ldg-.

Let A € M, ,(K) and suppose that fa : K" — K™ is bijective with inverse function
(fa)~! : K™ — K". By Proposition 3.16, the mapping (fa) ! is linear and hence of
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the form (fa)~! = fg for some matrix B € M, ,(K) by the previous Lemma 3.18. Us-
ing Theorem 2.21, we obtain

(fa) tofa=Idgn = fgofa = fga = f,
hence Proposition 2.20 implies that BA = 1,,. Likewise we have

fao(fa) = Idgm = faofg = fag = f1,,
sothat AB = 1,,.
Conversely, let A € M,, ,(K) and suppose the matrix B € M, ,,(K) satisfies AB = 1,
and BA = 1,,. Then, as before, we have

fap=f, =Ildgm =faofg and fga =f, =Idg» =fgofa
showing that fp : K" — K™ is bijective with inverse function fg : K” — K".
Finally, to verify the uniqueness of B, we assume that there exists B’ € M,, ,,(K) with
AB’' =1,and B’'A =1,. Then
B'=B'1l,=B'AB=(B'A)B=1,B =B,

showing that B’ = B, hence B is unique. O

Exercises

Exercise 3.19 Letf : V — W be alinear map, k > 2 a natural number and
st,...,sk € Kand vy, ..., vk € V.Then f : V — W satisfies

f(51v1 —+ -4 Ska) = Slf(Vl) + -+ skf(vk)

or written with the sum symbol

f <ZS;V[> = ZS;f(V;).

This identity is used frequently in Linear Algebra, so make sure you understand it.

Exercise 3.20 Leta, b, c,d € Kand
a b
A= M, »(K).
(c d) € Ma(K)

Show that A has aninverse A=t ifand onlyif ad — bc # 0. For ad — bc # 0, compute
theinverse A1,
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3.3 Vector subspaces and isomorphisms Ws&r
9
3.3.1 Vector subspaces

Avector subspace of a vector space is a subset that is itself a vector space, more precisely:

Definition 3.21 (Vector subspace) Let V be a K-vector space. Asubset U C V'is
called a vector subspace of V if U is non-empty and if

(3.8) strvvityvsywe U foralls;, s, e Kandall vi, » € U.

Video Subspaces

Remark 3.22

(i) Observe thatsince U is non-empty, it contains an element, say u. Since0-y u =
0y € U it follows that the zero vector Oy lies in U. A vector subspace U is
itself a vector space when we take 0y = 0y and borrow vector addition and
scalar multiplication from V. Indeed, all of the properties in Definition 3.1 of
+v and -y hold for all elements of V' and all scalars, hence also for all elements
of U C V and all scalars. We only need to verify that we cannot fall out of
U by vector addition and scalar multiplication, but this is precisely what the
condition (3.8) states.

(ii) Avector subspace is also called a linear subspace or simply a subspace.

The prototypical example of a vector subspace are lines and planes through the origin in
R3:

Example 3.23 (Lines through the origin) Let w # Ogs, then the line
U= {sw|sec R} CR?
is a vector subspace. Indeed, taking s = 0 it follows that Ogs € U so that U is

non-empty. Let iy, i be vectorsin U so that ij = tyw and i, = t,w for scalars
t1, tr € R. Let 51,5 € R, then

S1th + Sollp = S tW + Strow = (Sltl + 52t2) welU

sothat U C R3is a subspace.

Example 3.24 (Zero vector space) Let V be a K-vector space and U = {0y} the
zero vector space arising from 0y,. Then, by Definition 3.21 and the properties of
Definition 3.1, it follows that U is a vector subspace of V.

Example 3.25 (Periodic functions) Taking / = Rand K = R in Example 3.5, we see
that the functions f : R — R form an R-vector space V = F(R, R). Consider the
subset

U= {f € F(R,R)|f is periodic with period 27}
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3.3 — Vector subspaces and isomorphisms

consisting of 27r-periodic functions, that is, an element f € U satisfies f(x + 27) =
f(x) forall x € R. Notice that U is not empty, as cos : R — Randsin: R — R are
elements of U. Suppose f1, , € U and s1, s, € R. Then, we have forall x € R

(s1fi + 526)(x + 27) = s1f1(x + 27) + s2fo(x + 27) = s1f1(x) + s2f2(x)
= (s1h + 522)(x)

showing that s, f; + sy 1, is periodic with period 27. By Definition 3.21, it follows that
U is a vector subspace of F(R, R).

Recall, if X, W aresets, Y C X, Z C Wsubsetsand f : X — W a mapping, then the
image of ) under f is the set

f(Y) = {w € W |thereexists an element y € Y with f(y) = w}

consisting of all the elements in YW which are hit by an element of ) under the mapping
f. In the special case where ) is all of X, thatis, ) = X, itis also customary to write
Im(f) instead of (') and simply speak of the image of f. Similarly, the preimage of Z
under f is the set

fFHZ2)={xe X|f(x) € Z}
consisting of all the elements in X which are mapped onto elements of Z under 7. Notice
that f is not assumed to be bijective, hence the inverse mapping f~1 : W — X does

not need to exist (and in fact the definition of the preimage does not involve the inverse
mapping). Nonetheless the notation f ~1(Z) is customary.

It is natural to ask how the image and preimage of subspaces look like under a linear
map:

Proposition 3.26 Let V, W be K-vector spaces, U C V and Z C W be vector
subspaces and f . V — W alinear map. Then the image f(U) is a vector subspace
of W and the preimage f~1(Z) is a vector subspace of V.

Proof Since U is a vector subspace, we have 0y, € U. By Lemma 3.15, f(0y) = Ow,
hence O € f(U). Forall wy, wy, € f(U) there exist uy, u, € U with f(u1) = wy and
f(uz) = wy. Hence forall sy, s, € K we obtain

S1Wy 4+ Sown = slf(ul) + Szf(UQ) = f(51u1 + 52U2),

where we use the linearity of f. Since U is a subspace, s;u; + sus is an element of U
as well. It follows that s;w; + s;ws € F(U) and hence applying Definition 3.21 again,
we conclude that f(U) is a subspace of W. The second claim is left to the reader as an
exercise. ]

Vector subspaces are stable under intersection in the following sense:

Proposition 3.27 Let V be a K-vector space, n > 2 a natural number and Uy, ..., U,
vector subspaces of V. Then the intersection

n
U=U={veV|veUforalj=1,..,n}
j=1
is a vector subspace of V as well.
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Proof Since U; is a vector subspace, 0y € U;forallj =1, ..., n. Therefore, 0y, € U/,
hence U’ is not empty. Let u;, u, € U"and sy, s, € K. By assumption, uy, u, € U; for all
Jj=1,...,n. Since U;isavectorsubspaceforallj = 1, ..., nitfollowsthat s;u1 +s,u» € U;
forallj =1,..., nand hence s;u; + s,up € U'. By Definition 3.21, it follows that U’ is a
vector subspace of V. O

Remark 3.28 Notice that the union of subspaces need not be a subspace. Let
V =R?, {é&, &} its standard basis and

Ui ={séi|seR} and U, ={s&|secR}.
Thené’leU1UU2ande‘°2€U1UU2,but€1+§2¢U1UU2.

The kernel of alinear map f : V — W consists of those vectors in V that are mapped
onto the zero vector of W:

Definition 3.29 (Kernel) The kernel of alinearmap f : V — W is the preimage of
{Ow} under f, that s,

Ker(f) = {v € V|f(v) = 0w} = F1({Ow}).

Example 3.30 The kernel of the linear map dd7 : Po(R) — Pp_1(R) consists of the
constant polynomials satisfying f(x) = c for all x € R and where ¢ € R is some
constant.

We can characterise the injectivity of a linearmap f : V. — W in terms of its kernel:

Lemma 3.31 Alinearmap f : V. — W is injective if and only if Ker(f) = {0y }.

Proof Let f : V — W be injective. Suppose f(v) = Ow. Since f(0y) = Ow by
Lemma 3.15, we have f(v) = f(0y), hence v = Oy by the injectivity assumption. It
follows that Ker(f) = {0y }. Conversely, suppose Ker(f) = {0y} and let vy, v» € V be
such that f(v1) = f(v2). Then by the linearity we have f(v1) — f(v2) = Ow = f(v1 — v2).
Hence vi — vy isin the kernel of f sothat vi — vo = 0y or vi = ws. O

An immediate consequence of Proposition 3.26 is:

Corollary 3.32 Letf : V — W be a linear map, then its image Im(f) is a vector
subspace of W and its kernel Ker(f) is a vector subspace of V.

3.3.2 Isomorphisms

Definition 3.33 (Vector space isomorphism) A bijective linearmapf : V — Wis
called a (vector space) isomorphism. If an isomorphism 7 : V — W exists, then the
K-vector spaces V and W are called isomorphic.
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By the definition of surjectivity,amap f : V — W is surjective if and only if Im(f) = W.
Combining this with Lemma 3.31 gives:

Proposition 3.34 Alinearmap f : V. — W isanisomorphism if and only if Ker(f) =
{Ov}andIm(f) = W.

3.4 Generating sets

Definition 3.35 (Linear combination) Let V be a K-vector space, k € N and
{v1, ..., v } a set of vectors from V. A linear combination of the vectors {v1, ..., vk}
is a vector of the form

k
W =5S5V] + -+ SV = E SiVi
i=1

forsomesy, ..., s, € K.

Example 3.36 For n € Nwith n > 2 consider V = P,(R) and the polynomials
p1, P2, p3 € P,(R) defined by the rules p;(x) = 1, pa(x) = x, p3(x) = x2 for all
x € R. Alinear combination of {p1, p2, p3} is a polynomial of the form p(x) =
ax?2 4+ bx + cwhere a, b, c € R.

Definition 3.37 (Subspace generated by a set) Let V bealK-vectorspaceandS C V
be a non-empty subset. The subspace generated by S is the set span(S) whose
elements are linear combinations of finitely many vectors in S. The set span(S) is
called the span of S. Formally, we have

K
span(S) = {VE V‘ v:Zs,-v,-,kGN,sl,...,sk ceK v, .., v ES}.
i=1

Remark 3.38 The notation (S) for the span of Sis also in use.

Proposition 3.39 Let V be a K-vector space and S C V be a non-empty subset.
Then span(S) is a vector subspace of V.

Proof Since S is non-empty it contains some element, say u. Since v itself is a linear
combination of {u}, it follows that span(S) is non-empty. Let k € Nand vy = tyw; +
oo+ tewy for ty, ...t € Kand wy, ..., wix € S be alinear combination of vectorsin S.
Furthermore, letj € Nand v, = 1y + - + §w; for fy, ..., §and W1, ..., W; € S be
another linear combination of vectors in S. By Definition 3.21, it suffices to show that for
all s, s, € Kthe vector s;v; + s, is a linear combination of vectors in S. Since

sivi+ svo = si(tiwy + -+ tewi) + sp(fi + -+ + HWy)

=sitiw + -+ Sitkwk + P+ -+ bW
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is a linear combination of the vectors {ws, ..., wi, W1, ..., W; } in S, the claim follows.

Remark 3.40 ForasubsetS C V,we may alternatively define span(S) to be the
smallest vector subspace of V that contains S. This has the advantage of S being
allowed to be empty, in which case span() = {0y}, that is, the empty set is a
generating set for the zero vector space.

O

Definition 3.41 Let V be a K-vector space. Asubset S C V is called a generating
set if span(S) = V. The vector space V is called finite dimensional if V admits a
generating set with finitely many elements (also called a finite set). A vector space
that is not finite dimensional will be call infinite dimensional.

Example 3.42 Thinkingof afield K as a K-vector space, the set S = {1k } consisting
of the identity element of multiplication is a generating set for V = K. Indeed, for
every x € Kwe have x = x -y 1k.

Example 3.43 The standard basis S = {é}, ..., €,} is a generating set for K", since
forall X = (x;)1<i<n € K", we can write X = x1 €1 + - - - + x,&, so that X is a linear
combination of elements of S.

Example 3.44 LetE,; € M, ,(K)forl < k < mand1 < / < ndenote the m-by-n
matrix satisfying Ex; = (0«idj)1<i<m1<j<n- FOr example, for m = 2and n = 3 we
have

100 010 001
Eyq = Ei»= Eys—
Lt (o 0 0)’ 12 (0 0 0)' L3 (0 0 o)

000 000 000
E2'1<1 0 0>' E2'2<0 1 0)’ E2'3(o 0 1)'

Then S = {Ex,}1<k<mi<i<n IS @ generating set for M, ,(K), since a matrix A €
M. »(K) can be written as

and

A= Z Z AuEx

k=1 I=1
so that Ais a linear combination of the elements of S.

Example 3.45 The vector space P(R) of polynomials is infinite dimensional. In
order to see this, consider a finite set of polynomials {p1, ..., pn}, n € Nand let d;

denote the degree of the polynomial p; fori =1, ..., n. We set D = max{di, ..., d,}.

Since a linear combination of the polynomials {ps, ..., p,} has degree at most D, any

polynomial g whose degree is strictly larger than D will satisfy g ¢ span{py, ..., pn}-

It follows that P(R) cannot be generated by a finite set of polynomials.
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Lemma3.46 Letf : V — W belinearand S C V a generating set. If f is surjective,
then f(S) is a generating set for W. Furthermore, if f is bijective, then V is finite
dimensional if and only if W is finite dimensional.

Proof Let w € W. Since f is surjective there exists v € V such that f(v) = w. Since
span(S) = V, there exists k € N, as well as elements vy, ..., vx € Sandscalars sy, ..., sk
suchthatv = fo:l s;viand hence w = Zf.‘zl sif(v;), where we use the linearity of . We
conclude that w € span(f(S)) and since w is arbitrary, it follows that W = span(f(S)).

For the second claim suppose V is finite dimensional, hence we have a finite set S
with span(S) = V. The set f(S) is finite as well and satisfies span(f(S)) = W by the
previous argument, hence W is finite dimensional as well. Conversely suppose W is
finite dimensional with generating set 7 C W. Since f is bijective there exists an inverse
mapping f~1 : W — V which is surjective, hence V = span(f~*(7)) so that V is finite
dimensional as well. O

3.5 Linear independence and bases

A set of vectors where no vector can be expressed as a linear combination of the other
vectors is called linearly independent. More precisely:

Definition 3.47 (Linear independence) LetS C V be a non-empty finite subset so
that S = {v1, ..., v} for distinct vectors v; € V,i = 1,..., k. We say S is linearly
independent if

S1vi+ -+ seve = Oy <~ s =---=5,=0,

where s1,...,s, € K. If Sis not linearly independent, then S is called linearly
dependent. Furthermore, we call a subset S C V linearly independent if every finite
subset of S is linearly independent. We will call distinct vectors vy, ..., v, linearly
independent/dependent if the set {vi, ..., v } is linearly independent/dependent.

Remark 3.48 Instead of distinct, many authors write pairwise distinct, which means
that all pairs of vectors v;, v; with i # j satisfy v; # v;. Of course, this simply means
that the list vq, ..., v, of vectors is not allowed to contain a vector more than once.

Notice that if the vectors vy, ..., vx € V are linearly dependent, then there exist scalars
s1, ..., Sk, not all zero, so that Zf.;l s;v; = Oy. After possibly changing the numbering of
the vectors and scalars, we can assume that s; # 0. Therefore, we can write

k
Sj
Vi = — E () Vi,
s

i—2 N7l
so that v; is a linear combination of the vectors v», ..., vk.

Also, observe that a subset 7 of a linearly independent set S is itself linearly independent.
(Why?)
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Example 3.49 We consider the polynomials p1, p2, p3 € P(R) defined by the rules
pi1(x) = 1, pa(x) = x, p3(x) = x? forall x € R. Then {py, p», p3} is linearly inde-
pendent. In order to see this, consider the condition
(3.9) s1p1+ S2p2 + $3p3 = Opr) = 0
where o : R — R denotes the zero polynomial. Since (3.9) means that
s1p1(x) + s2pa(x) + s3p3(x) = o(x),
forall x € R, we can evaluate this condition for any choice of real number x. Taking
x = 0 gives
s1p1(0) + s2p2(0) + s3p3(0) = 0(0) = 0 = 1.

Taking x = 1and x = —1 gives

0=sp2(1) + s3p3(1) = 52 + 53,

0= sp2(—1) + s3p3(—1) = =52 + s3,

so that s, = s3 = 0 as well. It follows that {p1, p2, p3} is linearly independent.

Remark 3.50 By convention, the empty set is linearly independent.

Definition 3.51 (Basis) Asubset S C V which is a generating set of V and also
linearly independent is called a basis of V.

Video Basis

Example 3.52 Thinking of a field K as a K-vector space, the set {1k} is linearly
independent, since 1x # Ox. Example 3.42 implies that {1k } is a basis of K.

Example 3.53 Clearly, the standard basis {éj, ..., &,} of K" is linearly independent
since

51 0
518+ -+ 5,8, = =0k = | — s§=---=5,=0.
Sn 0

It follows together with Example 3.43 that the standard basis of K" is indeed a basis
in the sense of Definition 3.51.

Example 3.54 The matrices Ex; € M, ,(K)forl < k < mand1 </ < nare
linearly independent. Suppose we have scalars s € K such that
., S11 -+ Sip 0 --- 0

ZZSkIEk,I =0pn=1: - I |=
=1

m
k=1 I= Sml " Smn 0 --- 0
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sosy =0foralll < k < mandalll </ < n. Itfollows together with Example 3.44
that {Ex/ }1<k<m,1<i<n IS @ basis of My, ,(K). We refer to {Ex j }1<k<m1<i<n as the
standard basis of M, ,(K).

Example 3.55 Combining Remark 3.40 and Remark 3.50 we conclude that the
empty set is a basis for the zero vector space {0}.

Lemma3.56 Letf : V — W be an injective linear map. Suppose S C V is linearly
independent, then f(S) C W is also linearly independent.

Proof Let {wq,...,wx} C f(S) be a finite subset for some k € N some and distinct
vectors w; € W, where 1 < i < k. Then there exist vectors vy, ..., v, with f(v;) = w;
for1 < i < k. Suppose there exist scalars s, ..., s, such that sywy + -+ - + sewy = Opy.
Using the linearity of f, this implies

Ow =siwy + -+ + sgwi = sif(va) + -+ + sef(vie) = F(siva + -+ - + sevk).

Since f isinjective we have Ker(f) = {0y } by Lemma 3.31. Since sy vy +- - -+sk vk € Ker f

itfollowsthats;vy+- - -+sxvx = Oy, hences; = --- = s, = 0 bythelinearindependence
of S. It follows that f(S) is linearly independent as well. O
Exercises

Exercise 3.57 Let U C V be avector subspace and k € N with k > 2. Show that
foruy,...,us € Uand sy, ..., s € K,wehavesju; + -+ sgu, € U.

Exercise 3.58 (Planes through the origin) Let wy, w, # Ogr: and wy # sw for all
s € R. Show that the plane

U= {51M71 +52V|72‘51,52 € R}

is a vector subspace of R3.

Exercise 3.59 (Polynomials) Let n € NU {0} and P,(R) denote the subset of P(R)
consisting of polynomials of degree at most n. Show that P,(R) is a subspace of
P(R) foralln € NU {0}.

Exercise 3.60 Show that the K-vector space K" of column vectors with n entries is
isomorphic to the K-vector space K, of row vectors with n entries.
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Exercise 3.61 Show that the R-vector spaces P,(R) and R™*! are isomorphic for
alln e NU{0}.

Exercise 3.62 Show that for a non-empty subset S of a K-vector space V, the
set span(S) as defined in Definition 3.37 is the same as the set span(S) as defined
in Remark 3.40. In particular, Proposition 3.39 remains true when removing the
assumption that S is non-empty.

Exercise 3.63 Show that a subset {v} consisting of a single vector v € V is linearly
independent if and only if v # Oy.
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3.6 — The dimension

3.6 The dimension 7
Q:‘,s
3.6.1 Defining the dimension

Intuitively, we might define the dimension of a finite dimensional vector space V to be
the number of elements of any basis of V, so that a line is 1-dimensional, a plane is 2-
dimensional and so on. Of course, this definition only makes sense if we know that there
always exists a basis of V' and that the number of elements in the basis is independent of
the chosen basis. Perhaps surprisingly, these facts take quite a bit of work to prove.

Theorem 3.64 Let V be a K-vector space.

(i) AnysubsetS C V generating V' admits a subset T C S that is a basis of V.
(ii) Any subset S C V thatis linearly independent in V is contained in a subset
T C Vthatis abasisof V.
(iii) 1f S1, S» are bases of V, then there exists a bijective map f : S; — So.
(iv) If V is finite dimensional, then any basis of V is a finite set and the number of
elements in the basis is independent of the choice of the basis.

Corollary 3.65 Every K-vector space V admits at least one basis.

Proof Since V is a generating set for V, we can apply (i) from Theorem 3.64to S = V' to
obtain a basis of V. O

Remark 3.66 Let X’ be a set with finitely many elements. We write Card(X) - for
cardinality - for the number of elements of X.

Definition 3.67 The dimension of a finite dimensional K-vector space V/, denoted
by dim(V) or dimgk ( V), is the number of elements of any basis of V.

Example 3.68
(i) The zero vector space {0} has the empty set as a basis and hence is 0-
dimensional.
(i) Afield K -thought of as a K-vector space - has {1x } as a basis and hence is
1-dimensional.
(iii) The vector space K" has {éj, ..., €,} as a basis and hence is n-dimensional.
(iv) The vector space My, »,(K) has Ex;forl < k < mand1 < [ < nasa basis,
hence it is mn-dimensional.

We will only prove Theorem 3.64 for finite dimensional vector spaces. This will be done
with the help of three lemmas.

Lemma 3.69 Let V be a K-vector space, S C V linearly independent and vy € V.
Suppose vy ¢ span(S), then S U {wy} is linearly independent.
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Proof Let 7 be afinite subset of SU {w}. If vo ¢ T, then T islinearly independent, as
Sislinearly independent. So suppose vy € 7. There exist distinct elements vy, ..., v, of
Ssothat 7 = {w, v, ..., Vs }. Suppose spvp + s1vi + - - - + s,v,, = Oy for some scalars
S0, S1, .-+, Sn € K. If 59 # 0, then we can write
n s;
Vo = — Z ;OVI,
i=1
contradicting the assumption that vy ¢ span(S). Hence we must have sy = 0. Since
so = Oitfollows that s;vy + --- + s,v, = Oy sothats; = --- = s, = 0 by the linear
independence of S. We conclude that S U { v} is linearly independent. (|

Lemma3.70 Let V be a K-vectorspaceand S C V agenerating set. If vo € span(S\
{w}), then S\ {w} is a generating set.

Proof Since vy € span(S \ {w}), there exist vectors vy, ..., v, € S with v; # v and
scalars sy, ..., s, sothat vo = syvy + - - - + s,v,,. Suppose v € V. Since S is a generating
set, there exist vectors wy, ..., w, € S and scalars ty, ..., txy sothatv = tywy + --- +
tewk. If {wi, ..., wx} does not contain vy, then v € span(S \ {w}), so assume that
Vo € {w, ..., wg }. After possibly relabelling the elements of {ws, ..., wy } we can assume
that vy = wy. Hence we have

v=1t(sivi+ - FSpvp) + bows + - tewk

with vy # v;for1 <7< nand vy # w; for2 < j < k. It follows that v € span(S \ {w}),
as claimed. O

Lemma 3.71 Let V be a finite dimensional K-vector space and S C V a finite set
with n elements which generates V. If T C V has more than n elements, then T is
linearly dependent.

Proof We show that if 7 has exactly n + 1 elements, then it is linearly dependent. In the
other cases, T contains a subset with exactly n + 1 elements and if this subset is linearly
dependent, then sois 7.

We prove the claim by induction on n > 0. Let .A(n) be the following statement: “For any
K-vector space V, if there exists a generating subset S C V with n elements, then all
subsets of V with n + 1 elements are linearly dependent.”

We first show that .A(0) is true. A subset with zero elements is the empty set (). Hence
V = span(()) = {0y} is the zero vector space. The only subset of { V} with 1 element is
{0y }. Since sOy = 0y foralls € K, the set {0y} is linearly dependent, thus showing
that .A(0) is correct.

Suppose n > 1 and that A(n — 1) is true. We want to argue that A(n) is true as well. Sup-
pose V is generated by the set S = {v1, ..., v, } with nelements. Let T = {wy, ..., Wpi1}
be a subset with n + 1 elements. We need to show that 7 is linearly dependent. Since S
is generating, we have scalars s; € Kwith1 <i<n+1and1l < < nsothat

n

(3.10) W= sy
j=1

forall1 <7 < n+4 1. We now consider two cases:
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Casel. Ifs;3 = -+ =sp111 = 0,then (3.10) givesforall1 < /i< n+1

n
w; = E SijVj.
j=2

Notice that the summation now starts at j = 2. This implies that 7 C W, where
W = span{vs, ..., v, }. We can now apply .A(n — 1) to the vector space W, the generating
set Sy = {va, ..., v, } and the subset with n elements being 7; = {wy, ..., w,}. It follows
that 77 is linearly dependent and hence so is T, as it contains 7;.

Case 2. Suppose there exists / so that s;; # 0. Then, after possibly relabelling the vectors,
we can assume that s;; # 0. For 2 < i < n+ 1 we thus obtain from (3.10)

Si1 Si1 . Si1
Wi — —Wp = W — — E:Sljvj *E:Sij‘/j** E:Sljvj
S11 S11 - - -

n
= E (s Sl o >v
- [/l VI ]
— S11
Jj=1
n
- Si1 Si1
={s1——su|wvu+ E Sij— ——S1; | Y
S11 s1
0

N j=2
n
— S11
j=2
Hence, setting
~ Si1
(3.11) W= w — =wy
S11

for2<i<n+1land§; =s;— ZéllsljforZ <i<n+1land2 < j < n,weobtain the
relations

n

V’l\/,' = §,VJ

=

j=2

forall2 < i < n+ 1. Therefore, the set 7~ = {Ws, ..., Wy11} With n elements is contained
in W which is generated by n — 1 elements. Applying .A(n — 1), we conclude that 7 is
linearly dependent. It follows that we have scalars t,, ..., t, 1 not all zero so that

bW + -+ + thp1Wpt1 = Ov.

Using (3.11), we get

n+1 s ntl s
" 1
E ti (w,-—’wl) - E :ti'* w1+ tows + -+ thpaWair = Oy
s11 i 1

i=2
Since not all scalars ty, ..., t, 1 are zero, it follows that wy, ..., w,, 1 are linearly depend-
entand hencesois 7. O

Proof of Theorem 3.64 We restrict to the case where V is finite dimensional. Hence
there exists an integer n > 0 so that V has a generating set Sp with n elements.

(i) Let S C V beasubset generating V. We consider the set X’ consisting of those integers
d > 0 forwhich there exists a linearly independent subset 7~ C S with d elements. Since
) c S,we have0 € X, so X is non-empty. Furthermore, X is a finite set, as it cannot
contain any integer greater than nby Lemma 3.71. Let m € X be the largest integer and
T C S asetwith melements. We want to argue that 7 is a basis of V. Suppose T is not
a basis of V. Then there exists an element vy € S sothat vy ¢ span(7), sinceif no such
element exists, we have S C span(7) and hence V' = span(S) C span(7T) contradicting
the assumption that 7 is not a basis of V. Applying Lemma 3.69, we conclude that
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T = {w}UT c Sislinearly independent. Since 7 has m + 1 elements, we have
m+ 1 € X, contradicting the fact that mis the largest integer in X. It follows that 7
must be a basis of V.

(i) Let S C V be a subset that is linearly independent in V. Let X denote the set
consisting of those integers d > 0 for which there exists a subset 7 C V with d elements,
which contains § and which is a generating set of V. Notice that S U & is such a set,
hence X is not empty. Let m denote the smallest element of X and 7 be a generating
subset of V containing S and with m elements. We want to argue that 7 is basis for V.
By assumption, 7 generates V, hence we need to check that 7 is linearly independent in
V. Suppose T is linearly dependent and write 7 = {vy, ..., v, } for distinct elements of
V. Suppose S = {wy, ..., vk} forsome k < m. This holds true since S C 7. Since T is
linearly dependent we have scalars sy, ..., sp, so that

Sivi+ -+ SpVm = Oy.

There must exist a scalar s; with i > k such that s; £ 0. Otherwise S would be linearly
dependent. After possibly relabelling the vectors, we can assume that s,+; # 0 so that

1
(3.12) Vk+l = e (s1vi + -+ 4 SkVic + SkoVis2 + - + SmVim) -
+1

Let T = {Va, .o\ Vi, Vk42, -, Vm}. Then S C 7 and (3.12) shows that v, € span('f—).
Lemma 3.70 shows that 7 generates V/, contains S and has m— 1 elements, contradicting
the minimality of m.

(iii) Suppose Sy is a basis of V with n; elements and S, is a basis of V with n, elements.
Since S is linearly independent and S; generates V, Lemma 3.71 implies that ny < n;.
Likewise, we conclude that n, > n;. It follows that n; = n, and hence there exists a
bijective mapping from S5 to S as these are finite sets with the same number of elements.

(iv) is an immediate consequence of (iii). O

3.6.2 Properties of the dimension

Lemma 3.72 /somorphic finite dimensional vector spaces have the same dimension.

Proof Let V/, W be finite dimensional K-vector spacesand f : V — W anisomorphism.
LetS C V beabasisof V,then f(S) C W isa basis of W, by combining Lemma 3.46 and
Lemma 3.56. Since S and f(S) have the same number of elements, we have dim(V) =
dim(W). O

Lemma 3.73 A subspace of a finite dimensional K-vector space is finite dimensional
as well.

Proof Let V be a finite dimensional K-vector space and U C V asubspace. LetS =
{v1,..., vy} be abasis of V. For1 < i < n, we define U; = U N span{vy, ..., v;}. By
construction, each U; isasubspaceand U; C U, C --- C U, = U, since Sis a basis of
V.

We will show inductively that all U; are finite dimensional. Notice that U; is a subspace

of span{v; }. The only subspaces of span{v; } are {0\ } and {tv; | t € R}, both are finite
dimensional, hence U is finite dimensional.
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Assume > 2. Wewill show next thatif U;_1 isfinite dimensional, thensois U;. Let T;_1 be
a basis of U;_1. If U; = U;_1, then U; is finite dimensional as well, so assume there exists
anon-zero vector w € U; \ U;_. Since § is a basis of V and since w € span{vy, ..., v;},
there exist scalars sy, ..., s;sothatw = s;v; +- - - +s;v;. By assumption, w ¢ U;_1, hence
s; # 0. Any vector v € U, can be writtenasv = t;vy + - - - + tjv; forscalars ty, ..., t;. We
now compute

i i i
t ti t
v— —w= tkvk—fl (E skvk> = <tk—l$k) Vi

Si Si Si

k=1 k=1 k=1

i—1

1 tl

= E tk — —Sk Vi
Si
k=1

so that v — (t;/s;)w can be written as a linear combination of the vectors vy, ..., v;_1,
hence is an element of U;_;. Recall that 7;_; is a basis of U;_1, hence v — (t;/s;)w is
a linear combination of elements of 7;_;. It follows that any vector v € U; is a linear
combination of elements of 7;_; U{w}, thatis, 7;_; U{w} generates U;. Since T;_1 U{w}
contains finitely many vectors, it follows that U; is finite dimensional. O

Proposition 3.74 Let V be a finite dimensional K-vector space. Then for any sub-
spaceU C V

0 < dim(U) < dim(V).
Furthermore dim(U) = 0ifand only if U = {0y } and dim(U) = dim(V') ifand only
if V= U.

Proof BylLemma 3.73, Uisfinite dimensional and hence by Corollary 3.65 admits a basis
S. By Theorem 3.64 (ii), there is a basis 7 of V which contains S. Therefore

0 < dim(U) = Card(S) < Card(7T) = dim(V).

Suppose dim( V) = dim(U), then Card(S) = Card(7) and hence § = T since every ele-
ment of S is an element of 7 and S and 7 have the same number of elements. Therefore,
we get U = span(S) = span(7) = V. Sincedim U = 0if and only if the empty set is a
basis for U we have dim U = 0ifand only if U = {0y }. O

Definition 3.75 (Rank of a linear map and matrix) Let V', W be K-vector spaces
with W finite dimensional. The rank of a linear map f : V — W is defined as

rank(f) = dim Im(f).
If A € M, ,(K) is a matrix, then we define
rank(A) = rank(fa).

The nullity of a linear map f : V — W is the dimension of its kernel, nullity(f) =
dim Ker(f). The following important theorem establishes a relation between the nullity
and the rank of a linear map. It states something that is intuitively not surprising, namely
that the dimension of the image of a linear map f : V — W is the dimension of the
vector space V minus the dimension of the subspace of vectors that we “lose”, that is,
those that are mapped onto the zero vector of W. More precisely:
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Theorem 3.76 (Rank-nullity theorem) Let V, W be finite dimensional K-vector
spacesand f : V — W a linear map. Then we have

dim(V) = dim Ker(f) + dim Im(f) = nullity(f) + rank(f).

Proof Let d = dimKer(f) and n = dim V, so that d < nby Proposition 3.74. Let
{1, ..., vq} be abasis of S = Ker(f). By Theorem 3.64 (ii) we can find linearly independ-
entvectors S = {Vg.1,..., vo} sothat T = S U Sis a basis of V. Now U = span(S) isa
subspace of V of dimension n — d. We consider the linear map

g:U—=1Im(f), v f(v).

We want to show that g is an isomorphism, since then dim Im(f) = dim(U) = n— d, so
that
dimIm(f) = n—d = dim(V) — dim Ker(f),

as claimed.

We first show that g is injective. Assume g(v) = Ow. Since v € U, we can write v =
Sd+1Vd+1 + * -+ + spv, for scalars sg1, ..., sp. Since g(v) = Oy we have v € Ker(f),
hence we can also write v = syv; + - - - + sqvy for scalars s, ..., sy, subtracting the two
expressions for v, we get

Ov =s1vi + -+ SqVg — Sg41Vd+1 — =+ — SnVp.

Since {v1, ..., v, } is a basis, it follows that all the coefficients s; vanish, where 1 < i < n.
Therefore we have v = 0y and g is injective.

Second, we show that g is surjective. Suppose w € Im(f) so that w = f(v) for some
vectorv € V. We writev = 27:1 s;v; forscalars sy, ..., s,. Using the linearity of f, we
compute

w:f(v):f(is,-v,-) :f( s,-v,-):f(O)

n
i=d+1
——

<

where € U. We thus have an element ¥ with g(?) = w. Since w was arbitrary, we
conclude that g is surjective. O

Corollary 3.77 Let V, W be finite dimensional K-vector spaces with dim(V) =
dim(W)andf : V — W alinear map. Then the following statements are equivalent:
(i) fisinjective;
(i) f is surjective;
(iii) f is bijective.

Proof (i) = (ii) By Lemma 3.31,the map f isinjectiveifand only if Ker(f) = {0y } so that
dim Ker(f) = 0 by Example 3.68 (i). Theorem 3.76 implies that dim Im(f) = dim(V) =
dim(W) and hence Proposition 3.74 implies that Im(f) = W, that s, f is surjective.

(i) = (iii) Since f is surjective Im(f) = W and hence dim Im(f) = dim(W) = dim(V).
Theorem 3.76 implies that dim Ker(f) = 0 so that Ker(f) = {0y} by Proposition 3.74.

Applying Lemma 3.31 again shows that f is injective and hence bijective.

(iiif) = (i) Since f is bijective, it is also injective. O
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Corollary 3.78 Let V, W be finite dimensional K-vector spacesand f : V. — W a
linear map. Then rank(f) < min{dim(V), dim(W)} and

rank(f) = dim(V) <= fisinjective,

rank(f) = dim(W) <= fissurjective.

Proof For the first claim it is sufficient to show that rank(f) < dim(V) and rank(f) <
dim(W). By definition, rank(f) = dim Im(f) and since Im(f) C W, we have rank(f) =
dim Im(f) < dim(W) with equality if and only if f is surjective, by Proposition 3.74.

Theorem 3.76 implies that rank(f) = dim Im(f) = dim(V) — dim Ker(f) < dim(V) with
equality if and only if dim Ker(f) = 0, that is, when f is injective (as we have just seen in
the proof of the previous corollary). O

Corollary 3.79 Let V, W be finite dimensional K-vector spacesand f : V. — W a
linear map. Then we have
(i) Ifdim(V) < dim(W), then f is not surjective;
(ii) 1fdim(V) > dim(W), then f is not injective. In particular, there exist non-zero
vectors v € V with f(v) = 0.

Proof (i) Suppose dim(V) < dim(W), then by Theorem 3.76
rank(f) = dim(V) — dim Ker(f) < dim(V) < dim(W)
and the claim follows from Corollary 3.78.
(i) Suppose dim(V) > dim(W), then
rank(f) < dim(W) < dim(V)

and the claim follows from Corollary 3.78. O

Proposition 3.80 Let V, W be finite dimensional K-vector spaces. Then there exists
an isomorphism © : V. — W ifand only if dim(V) = dim(W).

Proof = This was already proved in Lemma 3.72.

< Letdim(V) = dim(W) = n € N. Choose abasis T = {ws, ..., w, } of W and consider
the linear map

O:K"—= W, X—xqwi+ -+ X,wp,

where X = (x;)1<i<n Notice that © isinjective. Indeed, if O(X) = xywy +- - -+xpw, = Ow,
thenx; = --- = x, = 0, since {wy, ..., w,, } are linearly independent. We thus conclude
Ker © = {0y} and hence Lemma 3.31 implies that © is injective and therefore bijective
by Corollary 3.77. The map © is linear and bijective, thus an isomorphism. Likewise, for a
choice of basis S = {w, ..., v, } of V, we obtain an isomorphism ¢ : K" — V. Since the
composition of bijective maps is again bijective, themap ©@ o ®~1 : V — W is bijective
and since by Proposition 3.16 the composition of linear maps is again linear, the map
©od~1:V - Wisanisomorphism. O
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Corollary 3.81 Suppose A € M,, ,(K) is invertible with inverse A=t € M, »(K).
Then n = m, hence A is a square matrix.

Proof Consider fp : K" — K™. By Proposition 3.17, fa is bijective and hence an iso-
morphism. Proposition 3.80 implies that n = m. O

Exercises

Exercise 3.82 Show that f : X — ) admits a left inverse if and only if f is injective
andthat f : X — ) admits a right inverse if and only if f is surjective.
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3.7 Matrix representation of linear maps "l'e&r
6

Notice that Proposition 3.80 implies that every finite dimensional K-vector space V is
isomorphic to K", where n = dim(V/). Choosing an isomorphism from V' to K" allows to
uniquely describe each vector of V in terms of n scalars, its coordinates.

Definition 3.83 (Linear coordinate system) Let V be a K-vector space of dimension
n € N. Alinear coordinate system is an injective linear map ¢ : V — K". The entries
of the vector ¢o(v) € K" are called the coordinates of the vector v € V with respect
to the coordinate system ¢.

We only request that ¢ is injective, but the mapping ¢ is automatically bijective by
Corollary 3.77.

Example 3.84 (Standard coordinates) On the vector space K" we have a linear
coordinate system defined by the identity mapping, that is, we define (V) = v for
all v € K". We call this coordinate system the standard coordinate system of K".

Example 3.85 (Non-linear coordinates) In Linear Algebra we only consider linear
coordinate systems, but in other areas of mathematics non-linear coordinate systems
are also used. An example are the so-called polar coordinates

piR2\ {Op} = (0,00) x (—m 7] CR2, X ((;) = < (X;)r;(;)(”)z) ,

where arg(x) = arccos(x1/r) for x > 0 and arg(X) = — arccos(x1/r) for x < 0.
Notice that the polar coordinates are only defined on R? \ {Og:}. For further details
we refer to the Analysis module.

A convenient way to visualise a linear coordinate system ¢ : R? — R? is to consider the
preimage ¢~ 1(C) of the standard coordinate grid

(3.13) C={sé1+ké&|scR kecZ}U{kéi+s&|scR keZ}

under ¢. The first set in the union (3.13) of sets are the horizontal coordinate lines and
the second set the vertical coordinate lines.

Example 3.86 (see Figure 3.1) The vector v = (i) has coordinates (i) with

respect to the standard coordinate system of R2. The same vector has coordinates

p(V) = ( 41> with respect to the coordinate system ¢ <(Zl>) = <Vl 2w )
- 2

—Vvi+ w

While K" is equipped with the standard coordinate system, in an abstract vector space V
there is no preferred linear coordinate system and a choice of linear coordinate system
amounts to choosing a so-called ordered basis of V.
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FIGURE 3.1. The coordinates of a vector with respect to different co-
ordinate systems.

Definition 3.87 (Ordered basis) Let V be a finite dimensional K-vector space. An
(ordered) n-tuple b = (v, ..., v,,) of vectors from V is called an ordered basis of V if
theset{vi, ..., v,} is a basis of V.

That there is a bijective correspondence between ordered bases of V and linear coordin-
ate systems on V is a consequence of the following very important lemma which states
in particular that two linear maps f, g : V — W are the same if and only if they agree on
a basis of V.

Lemma 3.88 Let V, W be finite dimensional K-vector spaces.

(i) Supposef,g:V — W arelinear mapsandb = (vi, ..., v,) is an ordered basis
of V.Thenf = gifandonlyif f(v;) = g(v;) forall1 <i < n.

(i) IfdimV = dimW andb = (wi,...,v,) is an ordered basis of V and ¢ =
(wi, ..., wy) an ordered basis of W, then there exists a unique isomorphism
f:V — Wsuchthatf(v;) = w;foralll <i<n

Proof (i) = If f = gthenf(v;) = g(v;)foralll < i < n. <Letv € V. Sincebis
an ordered basis of V there exist unique scalars sy, ..., s, € Ksuchthatv = "7 | sjv;.
Using the linearity of f and g, we compute

f(V) =f <ZS,‘V,‘> = Zs;f(v,-) = ZS;g(V;) =8 (ZS,‘V,‘) = g(V)

sothatf = g.

(ii) Let v € V. Since {wy, ..., v, } is a basis of V there exist unique scalars s, ..., s, such
thatv = Y7 | sjv;. We define f(v) = Y7, sjw;, so that in particular f(v;) = w; for
1 < i< n.Since{w, ..., w,} arelinearly independent we have f(v) = O if and only if
s; =+ =s,=0,thatis v = 0y. Lemma 3.31 implies that f is injective and hence an
isomorphism by Corollary 3.77. The uniqueness of f follows from (i). O

Remark 3.89 Notice that Lemma 3.88 is wrong for maps that are not linear. Con-
sider

f:R?> 5 R, (Xl) — X1X

X2
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and
g:R* =R (f) = (= 1)(x —1).
2
Then f(&) = g(é1) and f(&) = g(&), but f # g.

Given an ordered basisb = (v1, ..., v,) of V, the previous lemma implies that there is a
unique linear coordinate system 3 : V — K" such that

(3.14) B(vi) = €&

for1 < i < n, where {é, ..., &} denotes the standard basis of K". Conversely, if
B :V — K"is alinear coordinate system, we obtain an ordered basis of V

b=(87(&) ...87'(&))

and these assignments are inverse to each other. Notice that for all v € V we have

B(v)=1: = V==s1vg+ -+ SpVp.

Remark 3.90 (Notation) We will denote an ordered basis by an upright bold Roman
letter, such asb, c, d ore. We will denote the corresponding linear coordinate system
by the corresponding bold Greek letter 3,7, or g, respectively.

Example 3.91 Let V = K3and e = (&, &, &) denote the ordered standard basis.
Then forall X = (x;)1<i<3 € R® we have

e(x) =X
where € denotes the linear coordinate system corresponding to e. Notice that e

is the standard coordinate system on K". Considering instead the ordered basis
b = (v, %, 3) = (&1 + &3, &, & — €1), we obtain

X1 + Xo
B(X)=|x3—x1—x
X2
since

X1 1 0 -1

X=|x|= (Xl + X2) 0 +(X3 — X1 — X2) 0] +x 1

X3 1 ]. 0

=V =V =V3

Fixing linear coordinate systems - or equivalently ordered bases - on finite dimensional
vector spaces V/, W allows to describe each linearmap g : V — W in terms of a matrix:

Definition 3.92 (Matrix representation of a linear map — Video) Let V, W be finite
dimensional K-vector spaces, b an ordered basis of V and c an ordered basis of V.
The matrix representation of a linear map g : V — W with respect to the ordered
bases b and c is the unique matrix M(g, b, ¢) € M, ,(K) such that

fM(g,b,c) =7Yo§go° /8_11
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where 3 and ~ denote the linear coordinate systems corresponding to b and c,
respectively.

The role of the different mappings can be summarised in terms of the following diagram:
v £ w

S

fM ,b,c
K" (g.b.c) Km
In practise, we can compute the matrix representation of a linear map as follows:

Proposition 3.93 Let V, W be finite dimensional K-vector spaces, b = (w1, ..., vp)
an ordered basis of V, ¢ = (wy, ..., wy) an ordered basisof Wand g : V — W a
linear map. Then there exist unique scalars Ajj € K, wherel < i< m,1<j<n
such that

m
(3.15) g(vy) = Ajw, 1<j<n
Furthermore, the matrix A = (Ajj)1<i<m,1<j<n Satisfies

fa=vogoB

and hence is the matrix representation of g with respect to the ordered bases b and c.

Remark 3.94 Notice that we sum over the firstindex of A;; in (3.15).

Proof of Proposition 3.93 Forall1 < j < nthe vector g(v;) is an element of W and
hence a linear combination of the vectors ¢ = (w4, ..., wy,), as cis an ordered basis of W.
We thus have scalars Aj € Kwith1 <7< m,1<j < nsuchthatg(v)) => 1", Ajw;.
IfA; € Kwith1 < i< m,1<j < nalsosatisfy g(v;) = S7", Ajw;, then subtracting
the two equations gives

m

g(v) —g(v) = 0w =Y (A; — Ap)wi

i=1
sothat0 = A; — Aij forl < i< m,1<j< n,sincethevectors (wy, ..., wy,) are linearly
independent. It follows that the scalars Aj; are unique.

We want to show that fa o 3 = v o g. Using Lemma 3.88 it is sufficient to show that
(faoB)(vj)) = (yog)(v)forl < j < n. Let{e, ..., &} denote the standard basis of
K" so that 3(v;) = €& and {di, ..., d} the standard basis of K™ so that v(w;) = d;. We
compute

(fa o B)(v)) = fa(&) = A& = ZA,Jd —ZAU’)/ w;) = <ZAUW,>

=(g(vj)) = (ve g)(Vj)
where we have used the linearity of v and (3.15). O

This all translates to a simple recipe for calculating the matrix representation of a linear
map, which we now illustrate in some examples.
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Example 3.95 Let V = P(R) and W = Py(R) and g = . We consider the
ordered basisb = (v, v2,3) = ((1/2)(3x*> — 1),x,1)of Vand ¢ = (wy, wp) =
(x,1)of W.

(i) Compute the image under g of the elements v; of the ordered basis b.

g (;(3x2 — 1)) = % (;(3)8 — 1)) = 3x

g0) = (=1

g)=S(m=0

(ii) Write the image vectors as linear combinations of the elements of the ordered
basis c.
3x=3-w;+0-w»

0=0-wvy +0-w

(iii) Taking the transpose of the matrix of coefficients appearing in (3.16) gives the
matrix representation

d 300
M(dx'b'c>_<0 1 0>‘

of the linear map g = i with respect to the bases b, c.

Example 3.96 Lete = (é,...,€,)andd = (Jl, o Jm) denote the ordered stand-
ard basis of K" and K™, respectively. Then for A € M, ,(K), we have

A = M(fp, e, d),
that is, the matrix representation of the mapping fa : K" — K™ with respect to the
standard bases is simply the matrix A. Indeed, we have
Aj m
(&) =Ag=| 1 | =) Ayd.
Anmj i=1

Example 3.97 Lete = (&, &) denote the ordered standard basis of R?. Consider

1 5 A '

We want to compute Mat(fa, b, b), where b = (v, %) = (€ + &, & — &) is not
the standard basis of R2. We obtain

- " 5 1) (1 6 - _
fA(Vl)—AV1—<1 5> <1)—<6>—6V1+0V2
5 1 -1 —4 . .

M(fa, b, b) — ((6) 2)

fa(a) = A

S

Therefore, we have

55



CHAPTER 3 — VECTOR SPACES AND LINEAR MAPS

Proposition 3.98 Let V', W be finite dimensional K-vector spaces, b an ordered
basis of V with corresponding linear coordinate system 3, ¢ an ordered basis of W
with corresponding linear coordinate system~ and g : V. — W a linear map. Then
forall v € V we have

~(g(v)) = M(g, b, c)B(v).

Proof By definition we have forall X € K" and A € M, ,(K)
AX = fa(X).
Combining this with Definition 3.92, we obtain forallv € V

M(g. b, ©)B(v) = e, (B(v)) = (v o g 0 B7)(B(v)) = ¥(g(v)).

as claimed.

Remark 3.99 Explicitly, Proposition 3.98 states the following. Let A = M(g, b, c)
and let v € V. Since b is an ordered basis of V, there exist unique scalars s; € K,
1 </ < nsuchthat
V=5V +" -+ SV,
Then we have
g(v)=tiwy + - + tyWp,
where
t 51
=A

tm Sn

Example 3.100 (Example 3.95 continued) With respect to the ordered basisb =
(2(3x* — 1), x, 1), the polynomial ax? + a1 x + ag € V = P»(R) is represented by
the vector

2

392

,6(32X2 + a1 x + ao) = ai
% + do

Indeed

2 1
a4+ aix +ag = 3% (2(3x2 - 1)) +aix + (% + ao) 1.

Computing M(L, b, €)B(ax? + a1x + ap) gives
2
(3 0 o) 3:2 B <2az>
1 o
0 0 %2 + a di

and this vector represents the polynomial 2a; - x + a; - 1 = %(32x2 + a1x + ao)
with respect to the basis ¢ = (x, 1) of P1(R).

As a corollary to Proposition 3.93 we obtain:

Corollary 3.101 Let Vi, V5, Vi be finite dimensional K-vector spaces and b; an
ordered basisof V;fori =1,2,3. Letgy : Vi — Vhoand g, : Vo — V3 be linear maps.
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Then
M(g2 o g1, b1, b3) = M(g2, bz, b3)M(g1, by, by).

Proof Let us write C = M(g» o g1, by, b3) and A; = M(gy, by, by) as well as A, =
M(g, by, bs). Using Proposition 2.20 and Theorem 2.21 it suffices to show that fc
fa,a, = fa, o fa,. Now Proposition 3.93 gives

fa,ofa, =Bs0g08, 0B,0g10B8; =Bs0gogof;! =fe.

Proposition 3.102 Let V, W be finite dimensional K-vector spaces, b an ordered
basis of V and c an ordered basis of W. Alinear map g : V — W is bijective if and
only if M(g, b, c) is invertible. Moreover, in the case where g is bijective we have

M(g~* c,b) = (M(g,b,c)) .

Proof Letn = dim(V)and m = dim(W).

= Let g : V — W be bijective so that g is an isomorphism and hence n = dim(V) =
dim(W) = m by Proposition 3.80. Then Corollary 3.101 gives
M(g~ ! c,b)M(g,b,c) =M(g ' og,b,b)=M(ldy,b,b) =1,
and
M(g, b,c)M(g_l, c,b)=M(g og 1, c,c)=M(ldy,c,c)=1,
so that M(g, b, ¢) is invertible with inverse M(g !, c, b).

< Conversely suppose A = M(g, b, c) is invertible with inverse A1, It follows that n =
mby Corollary 3.81. We consider h = 8 o fp-109: W — Vandsince fa = yogoB~ !
by Proposition 3.93, we have

goh=~"tofaoBof tofproy=7""ofaa10y=Idw.
Likewise, we have
hogzﬁ_lofl_\q o'yo'y*lof/_\oﬁ:,@_lofAfle,B: Idy,

showing that g admits an inverse mapping h : W — V and hence g is bijective. O

Recall that a mapping f : X — ) between sets X', ) is said to admit a left inverse if there
exists amapping g : Y — X' suchthatgof = Idy. Likewise, a right inverse is a mapping
h:Y — X suchthatf o h=Idy.

We now have:

Proposition 3.103 Let n € Nand A € M, ,(K) a square matrix. Then the following
statements are equivalent:

(i) The matrix A admits a left inverse, that is, a matrix B € M, ,(K) such that

BA =1,
(ii) The matrix A admits a right inverse, that is, a matrix B € M, ,(K) such that
AB =1,

(iii) The matrix A is invertible.
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Proof By the definition of the invertability of a matrix, (iii) implies both (i) and (ii).

(i) = (iii) Since BA = 1, we have fg o fa = f;, = ldg» by Theorem 2.21 and hence fg
is a left inverse for fa. Therefore, by the above exercise, fa is injective. Corollary 3.77
implies that fa is also bijective. Denoting the ordered standard basis of K” by e, we have
M(fa, e, e) = A and hence Proposition 3.102 implies that A is invertible.

(ii) = (iii) is completely analogous to (i) = (iii). O
3.7.1 Change of basis

It is natural to ask how the choice of bases affects the matrix representation of a linear
map.

Definition 3.104 (Change of basis matrix) Let V be a finite dimensional K-vector
space and b, b’ be ordered bases of V with corresponding linear coordinate systems
3, B'. The change of basis matrix from b to b’ is the matrix C € M, ,(K) satisfying

fc=pop"

We will write C(b, b") for the change of basis matrix from b to b’.

Remark 3.105 Notice that by definition
C(b,b’) = M(ldy, b, b’).

Since the identity map Idy : V — V is bijective with inverse (Id\)~! = Idy,
Proposition 3.102 implies that the change of basis matrix C(b, b’) is invertible with
inverse

C(b,b")"! = C(b', b).

Example 3.106 Let V = R? and e = (&}, &) be the ordered standard basis and
b = (%, %) = (é + &, & — &) another ordered basis. According to the recipe
mentioned in Example 3.95, if we want to compute C(e, b) we simply need to write
each vector of e as a linear combination of the elements of b. The transpose of the
resulting coefficient matrix is then C(e, b). We obtain

L 1,1,
61251—§V2,
S I
62—21 22,

so that

@)
—
[¢]
(=3
SN—r
Il
7 N\
| o
N
NN =
N———

Reversing the role of e and b gives C(b, e)
v =1é + 1&,
v =—lé + 1&,

so that
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Notice that indeed we have
C(e,b)C(b,e) = (

sothat C(e,b)~! = C(b, e).

N[=

N|=

Theorem 3.107 Let V, W be finite dimensional K-vector spaces and b, b’ ordered
bases of V and ¢, ¢’ ordered bases of W. Let g : V — W be a linear map. Then we
have

M(g,b’,c’) = C(c,c')M(g, b, c)C(b’, b)
In particular, for a linearmap g : V. — V we have
M(g,b’,b’) = CM(g,b,b)C?,
where we write C = C(b, b’).

Proof We write A = M(g,b,c)and B = M(g,b’,c’)and C = C(b,b’)and D =
C(c, ¢’). By Remark 3.105 we have C~! = C(b’, b), hence applying Proposition 2.20 and
Theorem 2.21 and Corollary 2.22, we need to show that

fo =fpofaofe.
By Definition 3.92 we have
fa=~yogoB
fa=~"0go(B)"
and by Definition 3.104 we have
fer =Bo(8)71

fo=7"0oy7"
Hence we obtain
fpofaofca :'y'o'y*lo'yogoﬁ_loﬁo(,@/)*l :'y/ogo(,@/)71 = fg,

as claimed. The second statement follows again by applying Remark 3.105. O

—

Example 3.108 (Example 3.97 and Example 3.106 continued) Lete = (&, &) de-
note the ordered standard basis of RZ and

A= (i ;) = M(fa e e).

Letb = (& + &, & — €). We computed that

M(fs, b, b) = (g 2)

i 1 1 -1
C(e,b) = ( 2 %) and C(b,e) = ( ) :
—2 2 11
According to Theorem 3.107 we must have

M(fa,b,b) = C(e,b)M(fa, e, e)C(b, e)

G- DEIE )

as well as

and indeed
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Finally, we observe that every invertible matrix can be realised as a change of basis
matrix:

Lemma 3.109 Let V be a finite dimensional K-vector space, b = (w1, ..., v,) an
ordered basis of V and C € M, »(K) an invertible n x n-matrix. Define v{ =
S, Civiforl < i < n Thenb' = (v{,...,v}) is an ordered basis of V and

C(b',b) = C.

Proof Itis sufficient to prove that the vectors {v;, ..., v/} are linearly independent. In-
deed, if they are linearly independent, then they span a subspace U of dimension nand
Proposition 3.74 implies that U = V, so that b’ is an ordered basis of V. Suppose we
have scalars sy, ..., s, such that

n n n n n
T SETES 9) SETTE S O B
j=1 j=1 i=1 =1 j=1
Since {vy, ..., v, } is a basis of VV we must have ZJ'.’II Cjjsj = Oforalli =1, ..., n. In matrix
notation this is equivalent to the conditon C5' = Okn», where 5 = (s;)1<i<n. Since Cis
invertible, we can multiply this last equation from the left with C~! to obtain C"1Cs =

C~ 10k~ which is equivalent to 5 = Og». It follows that b’ is an ordered basis of V. By
definition we have C(b’, b) = C. O

Exercises

Exercise 3.110 Letldy : V — V denote the identity mapping of the finite dimen-
sional K-vector space V and letb = (v, ..., v,,) be any ordered basis of V. Show
thatM(ldy, b,b) = 1,.

Exercise 3.111 Showthatf : X — ) admits a left inverse if and only if f is injective
andthat f : X — ) admits a right inverse if and only if f is surjective.

Exercise 3.112 Let V be a finite dimensional K-vector space and b, b’ be ordered
bases of V. Show that for all v € V we have

B'(v) = C(b,b")B(v).
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Applications of Gaussian elimination

4.1 Gaussian elimination ‘ks&r
>

In the Algorithmics module M01 you learned how to use Gaussian elimination to solve a
system of equations of the form

(4.1) AX = b

for some given matrix A € I\/Im,n(K),vectorE € K™and unknown x € K". Many concrete
problems in Linear Algebra lead to systems of the form (4.1). A few sample problems that
can be solved with Gaussian elimination are discussed below.

Solving equation of the type (4.1) hinges on the elementary observation that a vector
% € K" solves AX = bif and only if it solves BAX = Bb, where B € M,, »(K) is any
invertible m-by-m matrix.

In the Gaussian elimination algorithm, the matrix B is chosen among three types of
matrices:

Definition 4.1 (Elementary matrices — Video) Let m € N. The elementary matrices
of size m are the square matrices

L (s) =1, + sEx,
Di(s) =1m+ (s — 1)Exk,
Pvi=1pn—Exk —E i+ Bk +Ej,
wherel < k, I < mwith k # [, Ex; € My m(K) and s € Kwith s # 0.

Example 4.2 For m = 4 we have for instance

100 0 100 0
01 s 0 0100

L _ Dy (s) —
235)=19 0 1 o0 =10 0 1 o0
000 1 000 s

and
100 0
000 1
P:
2~ 1o o010
0100

As an exercise in matrix multiplication, we compute the effect of left multiplication with
elementary matrices.
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For A = (Ajj)ici<mi<j<n € Mmn(K), we obtain
N\ B [ AjtsA; =k
[Lk,I(S)A],'j = ; (0ir + s6i0ir) Ay = Ajj + SO Ajj = { Aj P 4k
where we use that [1,,]; = d; and [E j]ir = di0yr. Therefore, multiplying the matrix A
with L /(s) from the left, adds s times the /-th row of A to the k-th row of A and leaves A
unchanged otherwise.

Likewise, we obtain

. sAj i=k
[Di(s)A]; = ; (dir + (5 = 1)0ikkr) Ayj = { Ay i Ak

Therefore, multiplying the matrix A with D (s) from the left, multiplies the k-th row of A
with s and leaves A unchanged otherwise.

Finally,
[P /A]; = Z(5ir — OikOkr — 0Oty + Ol + itk ) Asj
r=1

= Ajj — dikAwj — 0iAjj + O Ay + 0iAxj

Ajj i=k
:A,‘j+5,'k (A/J'—Akj)+6;/ (Akj—A/j) = Akj =1
Ajj i# ki #|

Therefore, multiplying the matrix A with P ; from the left, swaps the k-th row of A with
the /-th row of A and leaves A unchanged otherwise.

These calculations immediately imply:

Proposition 4.3 The elementary matrices are invertible with

Lk,/(5)71 = ka/(fs) and Dk(5)71 = Dk(l/S) and (Pky/)71 = Pk’/.

The sceptical reader may also verify this fact by direct computation with the help of the
following lemma:

Lemmad4.4 letm e N. For1 < k, I, p, g < m, we have

_ | Bkqg pP=1
Ek,/Ep,q N { Om,m P # /

Proof By definition, we have

m Eig pP=1
Ev/Epq = <Z 6;k6/,6,p6qj> =0p (5ik5qj)1<;,j<m = { 0,, ’ p#
1<i "

r=1 <ij<m

O

For each row in a matrix, if the row does not consist of zeros only, then the leftmost
nonzero entry is called the leading coefficient of that row.

Definition 4.5 (Row echelon form) A matrix A € M, ,(K) is said to be in row
echelon form (REF) if
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- all rows consisting of only zeros are at the bottom;
- the leading coefficient of a nonzero row is always strictly to the right of the leading
coefficient of the row above it.

The matrix A is said to be in reduced row echelon form (rREF) if furthermore

« all of the leading coefficients are equal to 1;
« in every column containing a leading coefficient, all of the other entries in that
column are zero.

Gaussian elimination from the Algorithmics module M01 implies the following statement:

Theorem 4.6 (Gauss-Jordan elimination) Let A € M, ,(K) then there exists
N € N and an N-tuple of elementary matrices (Bq, ..., By) such that the matrix
ByBn_1:--BoBiAisin reduced row echelon form.

Proof Applying Gaussian elimination implies the existence of N € N and elementary
matrices By, ..., Bg sothat ByBy_; - - - B2B1 A is REF. After possibly further multiplying
this matrix from the left with elementary matrices of the type D(s), we can assume that
all leading coefficients are 1. By choosing suitable left multiplications with matrices of
the type L (s), we find a natural number N > N and elementary matrices (By, ..., By)
sothat ByBy_1---B>B;Aisin reduced row echelon form. O

4.2 Applications

4.2.1 Compute the inverse of a matrix

An algorithm using Gaussian elimination for computing the inverse of an invertible matrix
relies on the following fact:

Proposition 4.7 Let A € M, ,(K) be a square matrix. Then the following statements
are equivalent:

(i) Aisinvertible;

(i) the row vectors of A are linearly independent;
(iii) the column vectors of A are linearly independent.

Proof Part of an exercise sheet. O

Suppose the matrix A € M, ,(K) is invertible. Applying Gauss-Jordan elimination to
A, we cannot encounter a zero row, since the occurrence of a zero row corresponds to a
non-trivial linear combination of row vectors which gives the zero vector. This is excluded
by the above proposition. Having no zero row vectors, the Gauss-Jordan elimination
applied to A must give the identity matrix 1,,. Thus we can find a sequence of elementary
matrices By, ..., By, N € N, so that

1, =ByBy_;---ByBjA.

In other words, ByBy_1 - - - BoBj is the inverse of A. This gives the following recipe for
computing the inverse of A:
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We write the matrix A and 1, next to each other, say A on the left and 1, on the right. We
then perform Gauss-Jordan elimination on A. At each step, we also perform the Gauss-
Jordan elimination step to the matrix on the right. Once Gauss-Jordan elimination
terminates, we thus obtain ByBy_1 - - - BoB1A onthe leftand ByBy_1---ByB11,0n

the right. But since ByBy_1---B2B;1, = ByBy_1 - - - BoBj (notice the absence of 1,
after the equality sign), the right hand side is the inverse of A.

Example 4.8 (Inverse of a matrix — Video) We want to compute the inverse of
1 -2
A= :
(5 %)
1 -2 1 0
-3 4 01 )°
Adding 3-times the first row to the second row gives

1 -2 10
0 -2 3 1)

Dividing the second row by —2 gives
( 1 -2 ‘ 1 0 )
3 1 -
0 11 -2 —3
Finally, adding the second row twice to the first row gives

(1 O‘—2 —1>
01| -3 1)

A= <‘

4.2.2 Compute a basis of a subspace

Write

so that

Niw N
[
I
N

Gaussian elimination can also be used to compute a basis for a vector subspace U of
a finite dimensional K-vector space V. We assume that U = span{vy, ..., v} for some
vectorsv; € V,1 <7 < k. We assume thatdim U > 1 so that not all vectors are the zero

vector.

We first consider the special case where V is the space K, of row vectors of length nand
with entries in K. Recall that we denote the row vectors by small Greek letters. We write
K™ for the m-fold Cartesian product (K,)™ of K,. Clearly, we have a bijective mapping

which simply writes the row vectors (71, ..., 7,) into a matrix with the k-th row vector
from the m-tuple of row vectors becoming the k-th row of the matrix.

Example 4.9
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We have
L (s)Qt, ..., Um) = Q(iA, ..., Vk—1, Uk + ST, Dkt oo Um)
Di(s)Qw1, ..., Um) = Q(th, ..., Uk—1, SPk, Uk41, - Um) ,

P QA o, Um) = QA oo, Uk—1, U1 Ukt ooy Vi1, Uk Digty oy Unn) -

Notice that all these operations do not change the span of the vectors /1, ..., 7,,,. More pre-
cisely, if (¢4, ..., Uy) is an n-tuple of row vectors and if Q (&1, ..., &m) = BQ(A, ..., Um)
for some elementary matrix B, then

span{ii, ..., Um} = span{dy, ..., &m}.
Applying Gaussian elimination to the matrix Q(#, ..., V) gives a list of elementary
matrices By, ..., By such that
ByBy_1---BB1Q(i, ..., V) = Qs ..., &, Ok, ..., Ok,)

where 1 < r < mand Ok, denotes the zero vector in K,. By construction, the matrix
A = Q(dy, ..., &, Ok, ..., Ok, ) is REF. Since the leading coefficient of &; is always strictly
to the right of the leading coefficient of &J;_1, it follows that the vectors &y, ..., &, are
linearly independent. Therefore, a basis of span{#, ..., U, } is given by {1, ..., &, }.

The general case can be treated with the help of the following facts:

Proposition 4.10 Let V, W be finite dimensional K-vector spacesand & : V — W
an isomorphism. Then S C V is a basis of V if and only if ®(S) is a basis of W.

Proof = Since S is a basis, the set S is linearly independent and since ® is injective, so
is ®(S) by Lemma 3.56. Since S is a basis, S is a generating set and since ® is surjective,
the subset (S) C W is a generating set for W by Lemma 3.46.

< We apply the above implication to ®~1 : W — V and the basis (S) c W. O

Corollary 4.11 Let V., W be finite dimensional K-vector spaces, © : V — Wan
isomorphism and U C V a vector subspace. Then S C U is a basis of U if and only if
©(S8) is a basis of ©(U).

Proof Apply Proposition 4.10 to the vector space V = U, the vector space W = ©(U)
and the isomorphism® = 9|, : V — W. O

We now describe a recipe to treat the general case of a subset U = span{vi, ..., v} of a
finite dimensional K-vector space V:

(i) Fixanisomorphism® : V — K, and write ; = ®(v;)for1 < i< m.
(ii) Apply Gaussian elimination to the matrix Q(#4, ..., ¥,,) to obtain a set of new vectors
(&1, ..., 3, 0k,, ..., Og,) forsome r € N.
(iii) Apply the inverse isomorphism ®~! to the obtained list of vectors. This gives the
desired basis {®~1(J1), ..., ®1(d,)} of U.

Example 4.12 (Basis of a subspace — Video) Let V = P3(R) so thatdim(V) = 4
and

U:span{x3—|—2x2—x,4x3+8x2—4x—3,x2+3x—|—4,2x3+5x+x+4}.
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We want to compute a basis of U. We choose the isomorphism ® : V — R, defined
by

<1>(a3x3 + apx? + ax + ag) = (33 a» a ao) :
Wethushavesy = (1 2 -1 0),ib=(4 8 -4 -3),i5=(0 1 3 4)
andy=(2 5 1 4).
Applying Gaussian elimination to the matrix

1 2 -1 0
L L 4 8 —4 -3
Q(ih, th, 3, Uy) = 01 3 s
2 5 1 4
yields
1 0 -7 0
01 3 0
0 0 0 1
0 0 0 O

Here we applied Gauss-Jordan elimination, but Gaussian elimination is good
enough. This gives the vectors@; = (1 0 -7 0),& = (0 1 3 0),
@3=(0 0 0 1).
Our basis of U is thus

{071(@1), @1 &), & (@3)} = {x® — Tx,x* +3x,1},
where we use that

ot ((33 a a1 ao)) = a3x> + ax® + a1x + ao.

4.2.3 Compute the image and rank of a linear map

Let V, W be finite dimensional K-vector spaces and f : V — W a linear map. By
computing the image of a linear map f, we mean computing a basis of Im(f).

In order to compute a basis for Im(f) we use the following lemma:

Lemma 4.13 Let V, W be finite dimensional K-vector spacesand f : V — W a
linear map. If {vy, ..., v, } is a basis of V, then

Im(f) = span{f(v1),..., f(vn)}.

Proof Letw € Im(f)sothatw = f(v)forsomev € V.Wehavescalarss;forl <i<n
sothatv = "7, s;v;. We obtain

o= )= (3aw) - st

so that w is a linear combination of the vectors {f(vy), ..., f(v,)}. On the other hand, a
linear combination of the vectors f(v;) € Im(f) lies in the image of f as well, since Im(f)
is a vector subspace. Hence we have Im(f) = span{f(v1), ..., f(va)}, as claimed. O

Knowing that Im(f) = span{f(wv1), ..., f(v,)} we can apply the recipe from Section 4.2.2
to U = span{f(v1), ..., f(v,)}. By definition, the number of basis vectors for Im(f) is the
rank of f.
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Example 4.14 Let
1 -2 0 4
3 1 1 0
-1 -5 -1 8
3 8 2 -12
Compute a basis for the image of fa : R* — R* and the rank of f. By Lemma 4.13
we have

A =

U =Im(fa) = span{Aé}, A&, A&;, Aé,} = span{3d, 3>, 33, as},
where {& }1<;<4 denotes the standard basis of R* and {3; }1<;<4 the column vectors
of A. Comparing with the general setup described above, we are in the case where
V =R*and v; = A& fori = 1,2, 3, 4.

(i) Fortheisomorphism ¢ : V = R* — R, we usually choose the transpose (but
any other isomorphism would work too). We thus have 7/; = (1 3 -1 3),
h=(-2 1 -5 8),i5=(0 1 -1 2)andiz=(4 0 8 -12).

(i) Applying Gaussian elimination to the matrix

1 3 -1 3
-2 1 -5 8
- o 5 oy AT
Q(th, 7,13, 7)) = A" = 0 1 -1 2
4 0 8 -—12
yields
10 2 -3
01 -1 2
00 0 O
00 0 O
Here again, we applied Gauss-Jordan elimination, but Gaussian elimina-
tion is good enough. This gives the vectors@; = (1 0 2 -3),& =
(01 -1 2).
(iii) Our basis of Im(f) is thus
1
1,4 1y 0 1
{07 (@), 7M@)} = : ,
2 -1
-3 2
where we use that the transpose is its own inverse. We also conclude that

rank(fa) = 2.

Remark 4.15 In the special case where we want to compute a basis for the image
of fa for some matrix A, the recipe thus reduces to the following steps. Take the
transpose of A, perform Gauss elimination, take the transpose again, write down
the nonzero column vectors. This gives the desired basis.

4.2.4 Compute the kernel and nullity of a linear map

In order to find a recipe for computing the kernel and nullity of a linear map, we first start
with a related problem. Let A € M,, ,,(K) be an n x m-matrix and

U:{féK,,|§A:OKm},
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where A is defined via matrix multiplication of the row vector £ € K, = My »(K) and
the matrix A € M, (K). Notice that 0x € U andif&;, & € U, then 5161 + 556 € Ufor
all sy, s> € K. By Definition 3.21, it follows that U is a vector subspace of K,,. We want to
compute a basis for U. Applying Gauss elimination to the matrix A, we obtain r € N and
elementary matrices By, ..., By so that

By BiA=Q(&, ..., & 0k ..., 0x)

for some linearly independent row vectors (s, ..., @,) € Kp,. Since the matrix By - - - By
is invertible, we also obtain a basis {3, ..., £, } of K, so that

—

BN"'Bl = Q(f_i, vgn)'

We now claim that S = {E,H, e 5,,} is a basis of U. The set S is linearly independent,
hence we only need to show that span(S) = U. Since we have

—

Q& ... EVA =Q(&y, ..., &y, Ok, ..., Ok ),

m

the definition of matrix multiplication implies thatg_;A =d;forl <i<rand g,-A = Ok,
forr +1 < i < n. Any vector in U can be written as 7 = Y., s;§;. The condition
VA = Ok, thenimpliesthats; = --- = s, = 0, hence S is generating.

We can use this observation to compute the kernel and nullity of a linear map K" — K™
because of the following lemma whose proof is left as an exercise.

Lemma 4.16 Let C € M, ,(K) and fc : K" — K™ be the associated linear map.
Then X € Ker(fc) ifand only if XTCT = O, .

We simply apply the above procedure to the matrix A = C’ and compute the vectors
{&+1, ..., &n}- The basis of Ker(fc) is then given by {E,TH, L ETY

The nullity of fc is given by the number of basis vectors of Ker(fc).

Example 4.17 (Kernel of a linear map — Video) Let

1 0 1 7
C=|-2 -3 1 2
7 9 -2 1

In order to compute Ker(fc) we apply Gaussian elimination to C” whilst keeping
track of the relevant elementary matrices as in the algorithm for computing the
inverse of a matrix. That is, we consider

1 -2 7 1000
0 -3 9 0100
11 -210010
7 2 1 0 0 01
Gauss-Jordan elimination (again, Gaussian elimination is enough) gives

2 1

1 0 1 0 o0 55

01 -3]00 5 3

0 0 O 10 % -z

0 0 O 01 # -3

N

Thevectorsé& = (1 0 2 —%)andéz(o 1 2 —3)thusspan the sub-

space of vectors ¢ satisfying ECT = Ok,. A basis S for the kernel of fc is thus given
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by

= O

S:

N
[t

| vm: o
o

ollw

and fc satisfies nullity(fc) = 2.

Remark 4.18 Section 4.2.3 and Section 4.2.4 can be combined to compute Ker(fa)
and Im(fa) for A € M,, ,(K) by a single application of Gaussian elimination.

Remark 4.19 In order to compute the kernel of a linear map g : V — W between
finite dimensional vector spaces, we can fix an ordered basis b of VV and an ordered
basis c of W, compute C = M(g, b, c), apply the above procedure to the matrix C
in order to obtain a basis S of Ker(fc). The desired basis of Ker(g) is then given by
671(8). While this algorithm can always be carried out, it is computationally quite

involved. In many cases it is therefore advisable to compute Ker(g) by some other
technique.
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CHAPTER 5

The determinant

5.1 Axiomatic characterisation "?Q%
8

Surprisingly, whether or not a square matrix A € M, ,(K) admits an inverse is captured
by a single scalar, called the determinant of A and denoted by det A or det(A). That is,
the matrix A admits an inverse if and only if det A is nonzero. In practice, however, it is
often quicker to use Gauss-Jordan elimination to decide whether the matrix admits an
inverse. The determinant is nevertheless a useful tool in linear algebra.

The determinant is an object of multilinear algebra, which - for ¢ € N - considers map-
pings from the ¢-fold Cartesian product of a K-vector space into another K-vector space.
Such a mapping f is required to be linear in each variable. This simply means that if
we freeze all variables of f, except for the k-th variable, 1 < k < 4, then the resulting
mapping gk of one variable is required to be linear. More precisely:

Definition 5.1 (Multilinear map — Video) Let V, W be K-vector spaces and ¢ € N.
Amapping f : V! — W is called ¢-multilinear (or simply multilinear) if the mapping
gV = W,v e f(vy, ..., Vk_1,V, Vki1, ..., v¢) is linear forall 1 < k < £ and for
all #-tuples (vy, ..., v) € V-

We only need an (¢ — 1)-tuple of vectors to define the map gi, but the above definition is
more convenient to write down.

Two types of multilinear maps are of particular interest:

Definition 5.2 (Symmetric and alternating multilinear maps) Let V, W be K-vector
spacesand f : VY — W an ¢-multilinear map.

« The map f is called symmetric if exchanging two arguments does not change the
value of f. That is, we have

f(vi, oo, ve) = F(Va, oy Viet, V), Vigds ooy Vi1, Vi, Vi, -n, Ve)
forall (vy, ..., v) € V°.
« The map f is called alternating if f(v1, ..., v¢) = Ow whenever at least two argu-
ments agree, that is, there exist i # j with v; = v;. Alternating ¢-multilinear maps
are also called W-valued ¢-forms or simply ¢-forms when W = K.

1-multilinear maps are simply linear maps. 2-multilinear maps are called bilinear and
3-multilinear maps are called trilinear. Most likely, you are already familiar with two
examples of bilinear maps:
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Example 5.3 (Bilinear maps)

(i) Thefirst one isthe scalar product of two vectors in R® (or more generally R").
So V = R3and W = R. Recall that the scalar product is the mapping

VZ=R3x R} =R, (X,¥)—X-y=xy1+ Xy + X3y,

where we write X = (x;)1<i<3 and ¥ = (yi)1<i<3. Notice that forall s, s, € R
andall X, %, ¥ € R3 we have

(s51X1 + $2%0) - ¥ = s1(X1 - ¥) + 2% - ¥),
so that the scalar product is linear in the first variable. Furthermore, the scalar
product is symmetric, X - y = y - X. It follows that the scalar product is also
linear in the second variable, hence it is bilinear or 2-multilinear.

(ii) The second one is the cross product of two vectors in R3. Here V = R3 and
W = IR3. Recall that the cross product is the mapping

X2y3 — X3)2
V2:R3XR3—)R3, ()?,y)H)?X )7: X3y1 — X1Y3
X1Y2 — Xoy1

Notice that for all s;, s, € Rand all X1, %, ¥ € R3 we have
(51X + 2%0) x ¥ = s1(X1 X ¥) + (% x ¥),

so that the cross product is linear in the first variable. Likewise, we can check
that the cross product is also linear in the second variable, hence it is bilinear
or 2-multilinear. Observe that the cross product is alternating.

Example 5.4 (Multilinear map) Let V = Kand consider f : V! = K, (xq, ..., x¢) —
Xx1%3 -+ - xg. Then f is £-multilinear and symmetric.

Example 5.5 Let A € M, ,(R) be a symmetric matrix, AT = A. Notice that we
obtain a symmetric bilinear map

f:R"xR" =R, (x,y)— XAy,

where on the right hand side all products are defined by matrix multiplication.

The Example 5.5 gives us a wealth of symmetric bilinear maps on R”. As we will see
shortly, the situation is quite different if we consider alternating n-multilinear maps on
K, (notice that we have the same number n of arguments as the dimension of K,,).

Let {1, ..., &y} denote the standard basis of K, so that Q(&1, ..., &,) = 1,.

Theorem 5.6 Let n € N. Then there exists a unique alternating n-multilinear map
o (K,)" — Ksatisfying f,(€1, ..., €n) = 1.

Recall that we have bijective mapping Q : (K,)" — M, ,(K) which forms an n x n-matrix
from n row vectors of length n. For the choice V = K, the notion of n-multilinearity
thus also makes sense for a mapping f : M, ,(K) — K which takes an n x n matrix as an
input. Here the multilinearity means the the mapping is linear in each row of the matrix.
Since Q(&1, ..., €,) = 1,, we may phrase the above theorem equivalently as:
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5.1 — Axiomatic characterisation

Theorem 5.7 (Existence and uniqueness of the determinant) Let n € N. Then
there exists a unique alternating n-multilinear map f, : M, ,(K) — K satisfying
fn(1,) = 1.

Definition 5.8 (Determinant — Video) The mapping f, : M, ,(K) — K provided
by Theorem 5.7 is called the determinant and denoted by det. For A € M, ,(K) we
say det(A) is the determinant of the matrix A.

Remark 5.9 (Abuse of notation) It would be more precise to write det, since the
determinant is a family of mappings, one mapping det,, : M, ,(K) — K for each
n € N. Itis however common to simply write det.

Example 5.10 For n = 1 the condition that a 1-multilinear (i.e. linear) map f; :
M, 1(K) — Kis alternating is vacuous. So the Theorem 5.7 states that there is a
unique linear map f; : M; 1(K) — K that satisfies f;((1)) = 1. Of course, this is just
the map defined by the rule f;((a)) = a, where (a) € M; 1(K) is any 1-by-1 matrix.

Example 5.11 For n = 2 and a,b,c,d € K we consider the mapping f,
M, »(K) — K defined by the rule

(5.1) % ((i Z)) — ad — cb.

We claim that £, is bilinear in the rows and alternating. The condition that £, is
alternating simplifies to f(A) = 0 whenever the two rows of A € M, »(K) agree.
Clearly, f; is alternating, since

() w-men

Furthermore, f, needs to be linear in each row. The additivity condition applied to
the first row gives that we must have

a((*em )= (2 9) = ((F %)

forall ay, as, by, by, ¢, d € K. Using the definition (5.1), we obtain

b1 + b
(727 22 o

= a1d — cby + axd — cb»

(2 9)+=((Z 9)

so that f; is indeed additive in the first row. The 1-homogeneity condition applied to
the first row gives that we must have

+((29)-=(C 2)
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foralla, b, c,d € Kand s € K. Indeed, using the definition (5.1), we obtain

fz((S: sdb>>—sad—csb—s(ad—cb)—sffz((i Z))

so that £, is also 1-homogeneous in the first row. We conclude that £, is linear in the
first row. Likewise, the reader is invited to check that % is also linear in the second
row. Furthermore, we can easily compute that f,(1,) = 1. The mapping £, thus
satisfies all the properties of Theorem 5.7, hence by the uniqueness statement we
must have f;, = det and we obtain the formula

(5.2) det ((i Z)) =ad —cb

foralla, b, c,d € K.

5.2 Uniqueness of the determinant

So far we have only shown that the determinant exists for n = 1 and n = 2. However, we
need to show the existence and uniqueness part of Theorem 5.7 in general. We first show
the uniqueness part. We start by deducing some consequences from the alternating
property:

Lemma 5.12 Let V, W be K-vector spaces and ¢ € N. An alternating ¢-multilinear
map f : V' — W satisfies:
(i) interchanging two arguments of f leads to a minus sign. Thatis, for1 < i,j </
and i # j we obtain

f(vi, oo, ve) = —F(Vi, oo Vie1, Vj, Vigd, ooy Vi1, Viy Vi, ., Vi)
forall (v, ..., v) € V4
(ii) if the vectors (v1, ..., v¢) € V¢ are linearly dependent, then (v, ..., v¢) = Ow;
(iii) forall1 < i < ¢, for all (-tuples of vectors (vy, ..., v,) € V*and scalars
s1,..., 50 € K, we have

f(vi, oo s Vi, Vi+ W, Vigr, o, ve) = (v, o, V)

where w = Zf:L i Sjvj- That s, adding a linear combination of vectors to

some argument of f does not change the output, provided the linear combination
consists of the remaining arguments.

Proof (i) Since f is alternating, we have forall (v1, ..., vy) € V*
f(vi, oo, Vi1, Vi 4+ V), Visd, oo, Vim1, Vi 4 V), Viga, e, Vo) = O
Using the linearity in the i-th argument, this gives

Ow = F(V1, oo Vi1, Vi, Vi 1y o Vi1, Vi Vi Vigd, o, Ve)

+ (Ve ooy Vi1, Vi Vigds o, Vie1, Vi Vi Viga, e, Ve).

Using the linearity in the j-th argument, we obtain

OW = f(Vl, e Vien Vi Vigdy o Vi1, Vi Vi, e Vg)
+ (Ve ooy Vi1, Vis Vigds ooy Vim1, Vj, Vigd,s oe s Vi)
+ f(Vl, e, Vi, Vj, Vigly ooy Vj,1, Vi, Vj+1, ey Vg)
F (Ve ooy Vi1, Vi Vidds ooy Vie1, V), Vidds s Ve)-
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5.2 — Uniqueness of the determinant

The first summand has a double occurrence of v; and hence vanishes by the alternating
property. Likewise, the fourth summand hasa double occurrence of v; and hence vanishes
as well. Since the second summand equals (v, ..., v¢), we thus obtain

f(vi, oo, ve) = —F(Vi, oo  Vie1, Vj, Vigd, oo Vi1, Via Vi, ., Vi)

as claimed.

(i) Suppose {v1, ..., v} are linearly dependent so that we have scalars s; € K not all
zero,1 <j < {,sothats;vy +---+ spvp = 0y. Suppose s; # 0forsomeindex1 < i < /.

Then
¢
3
Vi — — 2y
=3 (3
J=Llj#i
and hence by the linearity in the i-th argument, we obtain

4
s
J
flve .. vicl, — § (S_>\/j,vi+1,--.,w

=L N

)
s;
= — Z <SJ_)f(vl,...,v,-_l,vj,v,-+1,...,Vg)—OW,

j=# N

where we use that foreach 1 < j < £ withj # i, the expression

F(Va, oy Vie1, V), Vigt, oo, Vi)

has a double occurrence of v; and thus vanishes by the alternating property.

(iii) Let (v1,...,v) € V¥and (s,...,s/) € K" Then, using the linearity in the i-th
argument, we compute

0
f(va, ..., vic1, vi + Z SjVj, Vig1, ooy Vi)
J=1j#
4
= f(Vl,...,Vz)-f— Z ij(Vl,...,V,',l\/j,V,'+1,...,Vg): f(Vl,...,Vg),
J=1j#i

where the last equality follows exactly as in the proof of (ii). O

The alternating property of an n-multilinear map £, : M, ,(K) — K together with the
condition £,(1,) = 1 uniquely determines the value of £, on the elementary matrices:

Lemma 5.13 Letn € Nand f, : M, ,(K) — K an alternating n-multilinear map
satisfying f,(1,) = 1. Thenforall1 < k, | < nwith k # land all s € K, we have

(5.3) fn(Dk(S)) =S, fn(Lk'/(S)) = 1, fn(Pk'/) = 1.
Moreover, for A € M, ,(K) and an elementary matrix B of size n, we have

Proof Recall that D4(s) applied to a square matrix A multiplies the k-th row of A with
s and leaves A unchanged otherwise. We write A € M, ,(K) as A = Q(&y, ..., ap) for
a; € K,,1 < i < n. Hence we obtain

Dk(S)A = Q(O_Zl, . O_Zkfl, so_Zk, O_ZkJrl, ,O_Zn).
The linearity of f in the k-th row thus gives f,(D(s)A) = sf,(A). |
A =1, together with £,(1,) = 1 implies that f,(D«(s)) = (D

n particular, the choice
k(s)1,) = sfp(1,) = s.
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Therefore, we have
fo(Dk(s)A) = fn(Dk(s))fn(A).
Likewise we obtain
Lk'/(S)A = Q(éfl, e, Ok_1, 0k + say, 52k+1, e 52,,)

and we can apply property (iii) of Lemma 5.12 for the choice w = sa to conclude that
fo(Lk.(s)A) = f,(A). In particular, the choice A = 1,, together with £,(1,) = 1 implies
fn(Lk'/(S)) = fn(Lk'/(S)ln) = fn(ln) =1.

Therefore, we have
fa(Li,1(s)A) = fo(Li.(5))fa(A).
Finally, we have
Pi A =Q(d1, ..., 0k—1, 8, Qkgr, -, 1, Gk, Aiga, ..., Gn)
so that property (ii) of Lemma 5.12 immediately gives that
fa(PiiA) = —1fo(A).

In particular, the choice A = 1, together with £,(1,) = Limplies ,(Px ;) = f(Px/1,) =
—f(1,) = —1.

Therefore, we have £,(Py /A) = f,(Py,)f.(A), as claimed. O

We now obtain the uniqueness part of Theorem 5.7.

Proposition 5.14 Letn € Nandf,, f, : M, »(K) — K be alternating n-multilinear
maps satisfying f,(1,) = f,(1,) = 1. Then f, = f,.

Proof We need to show that for all A € M, ,(K), we have f,(A) = £,(A). Suppose
first that A is not invertible. Then, by Proposition 4.7, the row vectors of A are linearly
dependent and hence property (ii) of Lemma 5.12 implies that f,(A) = f,,(A) =0.

Now suppose that A is invertible. Using Gauss-Jordan elimination, we obtain N € N and
a sequence of elementary matrices By, ..., By sothat By - - - B; = A. We obtain

fo(A) = (B ---B1) = f,(By)fu(By_1---B1) = fo(By)fu(By_1- - B1),

where the second equality uses (5.4) and the third equality uses that (5.3) implies that
#2(B) = f,(B) for all elementary matrices B. Proceeding in this fashion we get

fo(A) = Fo(By)Fo(By_1) - - Fo(B1) = Fuo(Bn)F(Bry_1) - - Fo(B2B1) = - --
= Fn(BNBNq --By) = 72\;1(A)

5.3 Existence of the determinant

It turns out that we can define the determinant recursively in terms of the determinants
of certain submatrices. Determinants of submatrices are called minors. To this end we
first define:
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5.3 — Existence of the determinant

Definition 5.15 Let n € N. For a square matrix A € M, ,(K)and1 < k,/ < nwe
denote by A(k) the (n — 1) x (n — 1) submatrix obtained by removing the k-th row
and /-th column from A.

Example 5.16

10 4
A= . ABI =13 1 0
32

3 8 2 —-12 —12

We use induction to prove the existence of the determinant:

Lemma 5.17 Letn € Nwithn > 2and f,_1 : M,_1 ,-1(K) — K an alternating
(n — 1)-multilinear mapping satisfying f,_1(1,—1) = 1. Then, for any fixed integer |
with 1 < | < n, the mapping

fo: Man(K) = K, A= > (=1) K [Alyf, (A(k,/)>
k=1

is alternating, n-multilinear and satisfies f,(1,) = 1.

Proof of Theorem 5.6 For n = 1 we have seenthat i : M;1(K) — K, (a) — ais
1-multilinear, alternating and satisfies f;(1;) = 1. Hence Lemma 5.17 implies that for
all n € N there exists an n-multilinear and alternating map f,, : M, ,(K) — K satisfying
f,(1,) = 1. By Proposition 5.14 there is only one such mapping for each n € N. O

Proof of Lemma 5.17 We take some arbitrary, but then fixed integer /with1 < / < n.

Step 1. We first show that 7,(1,) = 1. Since [1,]x = dx/, we obtain

n

(1) = D (=1 FLaluafo1 (190) = (-1 o1 (100) = s (1) = 1,

k=1
where we use that 1" = 1,_; and fac1(lpm1) = 1.

Step 2. We show that £, is multilinear. Let A € M, ,(K) and write A = (Axj)1<k,j<n- We
first show that 7, is 1-homogeneous in each row. Say we multiply the i-th row of A with s
so that we obtain a new matrix A = (A;)1<j<n With

Ao A ki
& sAy, k=1

We need to show that £,(A) = sf,(A). We compute

fo(A) = (—1)T*Ayf, 1 (AKD)
k=1

= (1) sAif, 1 (AUD) £ Y (—1) TR AL, (AN,
k=1 k#i
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Now notice that A() = A since A and A only differ in the i-th row, but this is
the row that is removed. Since f,_; is 1-homogeneous in each row, we obtain that
fo_1(ADY = sf, 1 (AKD) whenever k # i. Thus we have

fo(A) = s(=1) Ay 1 (AUD) 45 Y~ (—1) KA1 (AKD)
k=1,k#i

- Si(—l)H—kAklfnil (A(k,l)) — S (A).
k=1

We now show that £, is additive in each row. Say the matrix B = (Bj)1<«,j<n is identical
to the matrix A, except for the i-th row, so that

Ay k#i
By=4 9
o {Bj k=i

for some scalars B; with 1 < j < n. We need to show that £,(C) = f,(A) + f,(B), where

C= (ij)lgk,jgn with
ij _ { Akj k 75 i

Aj+B k=i
We compute

n

fa(C) = (1) (A + B)fooa (COD) + D (—1)FAyfy s (CHD).
k=1, ki

As before, since A, B, C only differ in the i-th row, we have A(") = B("/) = C(i), Using
that f,_1 is linear in each row, we thus obtain

n

f(C) = (—1)"Bfp_1(BY)) + Z (—1)* Ao (BN
k=1 ki

n

+ (=) A (A + YT (1) R A1 (AKD) = £ (A) + £,(B).
k=1 k#i

Step 3. We show that f,, is alternating. Suppose we have 1 < /,j < nwithj > iandso
that the i-th and j-th row of the matrix A = (A;;)1</ j<n are the same. Therefore, unless
k = ior k = j, the submatrix A(*) also contains two identical rows and since f,_; is
alternating, all summands vanish except the one for k = i and k = j, this gives

fo(A) = (=1) Ayfy 2 (A0D) + (~1) Ay (AU
= Ai(-1) ((—1)"fn71(A"'")) + (—1)ffn,1(A<j,/>))

where the second equality sign follows because we have A; = Aj foralll < / < n(the
i-th and j-th row agree). The mapping f,_; is alternating, hence by the first property of
the Lemma 5.12, swapping rows in the matrix AU+ leads to a minus signin f,_1(AU)).
Moving the i-th row of AU/} down by j — i — 1 rows (which corresponds to swapping
j — i — 1times), we obtain A("/) hence

fo-1(AUD) = (=1 (ACD),
This gives

fo(A) = An(=1)' ((=1)fy-1(AD) + (~1)2 2, 1 (ACD)) <o,
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5.3 — Existence of the determinant

Remark 5.18 (Laplace expansion — Video) As a by-product of the proof of
Lemma 5.17 we obtain the formula

(5.5) det(A) = > (~1)"* Al det (A("")) ,

k=1
known as the Laplace expansion of the determinant. The uniqueness state-
ment of Theorem 5.7 thus guarantees that for every n x n matrix A, the scalar
Sor_1(=1)*k[A] s det (AkD) is independent of the choice of / € N, 1 < / < n.In
practice, when computing the determinant, it is thus advisable to choose / such that
the corresponding column contains the maximal amount of zeros.

Example 5.19 For n = 2 and choosing / = 1, we obtain

det ((i Z)) = adet (A(l'l)) — cdet (A(2'1)> = ad — cb,

in agreement with (5.1). For A = (Aj)1<ij<3 € Ms3(K) and choosing | = 3 we
obtain

Au A A

det A21 A22 A23 = A13 det ( (221 222>>
As1 Az Ass no

Au A12>) ((All A12>>
— Az det + Aszz det
2 <<A31 Az 3 Axi A

so that
det A = A13(A21As2 — A31A2) — Axz(An1As2 — As1Arn)
+ As3(A11A2 — A2 A)
= An1A»Aszz — A11A23As3 — ApAziAsz
+ A12A23A31 + A13A21 Asz — A13AxnAsr.
Exercises

Exercise 5.20 (Trilinear map) Let V = R3 and W = R. Show that the map
FV3iasWw, Xy29)e-(Xxy) 2

is alternating and trilinear.
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5.4 Properties of the determinant %z'lr
9

Proposition 5.21 (Product rule) For matrices A, B € M, ,(K) we have
det(AB) = det(A) det(B).

Proof We first consider the case where A is not invertible, then det(A) = 0 (see the
proof of Proposition 5.14). If A is not invertible, then neither is AB. Indeed, if AB were
invertible, then there exists a matrix Csuch that (AB)C = 1,,. Butsince, by Corollary 2.22,
the matrix product is associative, this also gives A(BC) = 1,, so that BC is the inverse
of A, a contradiction. Hence if A is not invertible, we must also have det(AB) = 0, which
verifies that det(AB) = 0 = det(A) det(B) for A not invertible.

If Ais invertible, we can write it as a product of elementary matrices and applying the
second part of Lemma 5.13, we conclude that det(AB) = det(A) det(B). O

Corollary 5.22 Amatrix A € M, ,(K)isinvertibleifand only ifdet(A) # 0. Moreover,
in the case where A is invertible, we have

1

det (A1)

~ detA’

Proof We have already seen thatif Ais notinvertible, thendet(A) = 0. Thisis equivalent
to saying that if det(A) # 0, then A is invertible. It thus remains to show that if A is
invertible, then det(A) # 0. Suppose A is invertible, then applying Proposition 5.21
gives

det(1,) = det (AA™") = det(A)det (A71) =1

sothatdet(A) # 0and det (A~!) = 1/ det(A). O

Remark 5.23 (Product symbol) Recall that for scalars xi, ..., x, € K, we write

n
HX,' = X1X2 "+ Xp.
i=1

Proposition5.24 Letn € Nand A = (Ajj)i<ij<n € M n(K) be anupper triangular
matrix so that A;; = 0 fori > j. Then

(5.6) det(A) = HAii = Au1Ax - Ann.

i=1

Proof We use induction. For n = 1 the condition A; = 0for/ > jisvacuous and (5.6) is
trivially satisfied, thus the statement is anchored.

Inductive step: Assume n € Nand n > 2. We want to show that if (5.6) holds for upper
triangular (n — 1) x (n — 1)-matrices, then also for upper triangular n x n-matrices. Let
A = (Aj)i<ij<n € Mn n(K) be an upper triangular matrix. Choosing / = 1in the formula
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for det(A), we obtain

n

det(A) = > (~1)FH1 Ay det (A("'l)) = Ay det (A(I'I)) + A det (A(k'l))
k=1 i
— Ay det (ACD)
where the last equality uses that Ay; = 0for k > 1. We have A(MY) = (A;)o¢; i<, and

since A is an upper triangular matrix, it follows that A} isan (n — 1) x (n — 1) upper
triangular matrix as well. Hence by the induction hypothesis, we obtain

det(ACV) = T Ai.
i=2
We conclude that det(A) = [, Ay, as claimed. O
5.5 Permutations

Arearrangement of the natural numbers from 1 up to nis called a permutation:

Definition 5.25 (Permutation — Video) Letn € Nand X, = {1,2,3,...,n}. A
permutation is a bijective mapping o : X, — X,. The set of all permutations of X,
is denoted by S,,.

Remark5.26 If 7,0 : X, — X, are permutations, it is customary towrite ro orr- o
instead of 7 o . Furthermore, the identity mapping Id v, is often simply denoted by
1. A convenient way to describe a permutation o € S, is in terms of a2 x n matrix

]
(ot0).....
which we denote by o. For instance, for n = 4, the matrix
o — <1 2 3 4)
2 31 4
corresponds to the permutation o satisfying o(1) = 2,0(2) = 3,0(3) = 1,0(4) =

4.

Permutations which only swap two natural numbers and leave all remaining numbers
unchanged are known as transpositions:

Definition 5.27 (Transposition) Let n € Nand 1 < k,/ < nwith k # /. The
transposition T | € S, is the permutation satisfying

(k) =1, m()=k (i) =iifi¢ {kI}.

Every permutation o € S, defines a linear map g : K" — K" satisfying g(&) = &y,
where {é}, ..., €,} denotes the standard basis of K". Since g is linear, there exists a unique
matrix P, € M, ,(K) so that g = fp_. Observe that the column vectors of the matrix P,
are given by é'g(l), 50(2), vy go(n).
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Definition 5.28 (Permutation matrix) We call P, € M, ,(K) the permutation matrix
associatedtoo € S,,.

Example 5.29 Let n = 4. Forinstance, we have

0 010
U:(l 2 3 4) P _ 1 0 0O
2 3 1 4 7 01 00
0 0 0 1
and
1 0 00
7_24<1 2 3 4) P _ 0 0 01
1 4 3 2 T2a 0 010
01 00
Remark 5.30 Notice that P,,, = Py, where P, belongs to the elementary

matrices of size n, c.f. Definition 4.1.

Assigning to a permutation its permutation matrix turns composition of permutations
into matrix multiplication:

Proposition 5.31 Letn € N. ThenP; = 1, andforall o, ™ € S,, we have
P.,,=P.P,.

In particular, for all o € S, the permutation matrix P, is invertible with (P,)~! =
P,

Example 5.32 Considering n = 3. For

S (23 (123
31 2 1 32

we have 170-—123
\2 1 3)°

as well as
010 100 010
P,=10 0 1}, Pﬂ:(O 1 and P,,=1|1 0 0
1 00 0 1 0 01
Thus we obtain
010 10 0 10
P..=|1 0 0 z(o 1|0 0 1|=pP,.P,,
0 01 0 1 100

as claimed by Proposition 5.31.

Proof of Proposition 5.31 The matrix P; has column vectors given by €, ..., €,, hence

P.=1,.
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Using Proposition 2.20 and Theorem 2.21 it is sufficient to show that forall 7, 0 € S, we
havefp_ = fp_ofp_ .Foralll < i< n,weobtain

fo. (o, (&) = fo. (€:(1)) = Ex(o(i)) = En-o)(i) = TPr.0 (&)

The two maps thus agree on the ordered basise = (&}, ..., €,) of K", so that the second
claim follows by applying Lemma 3.88.

We have
P,,-1=P1=1,=P,P_

showing that P, is invertible with inverse (P,)~1 = P, .. O

Definition 5.33 (Signature of a permutation) Foro € S, we call sgn(c) = det(P,)
its signature.

Remark 5.34
« Combining Proposition 5.21 and Proposition 5.31, we conclude that

sgn(m - o) = sgn(7) sgn(o)

forallm, o € S,.
 Since P, = Py, ;and det Py, = —1 by Lemma 5.13, we conclude that

Tk,I
sgn(Tk,/) =-1

for all transpositions 74 ; € S,,.

Similarly to elementary matrices being the building blocks of invertible matrices, trans-
positions are the building blocks of permutations:

Proposition 5.35 Let n € Nand o € S,. Then there exists m > 0 and m transposi-
tions Ty, 1y, - Tk iy € SpSuchthato =7y, . - - - 74,1, Where we use the convention
that 0 transpositions corresponds to the identity permutation.

Example 5.36 Let n = 6 and o the permutation defined by the matrix
o 1 2 3 45 6
~\352 46 1)
To express it as a product of transposition, we write

35 2 4 6 1

72,3
71,6
75,6

3
1
1
1 73,5

N NN DN
w 1 o1 o1
>~ bbb
[S2BNCV N BN e))
DO W

sothato = 73575,671,672,3-

Proof of Proposition 5.35 We use induction. For n = 1 we have X, = {1} and the only
permutation is the identity permutation 1, so the statement is trivially true and hence
anchored.
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Inductive step: Assume n € N and n > 2. We want to show that if the claim holds for
Sn—1,thenalsofor S,. Let o € S, and define k = o(n). Then the permutation oy = 7, ko
satisfies o1(n) = 7, k0(n) = 7, k(k) = nand hence does not permute n. Restricting oy
to the first n — 1 elements, we obtain a permutation of {1, ..., n — 1}. By the induction
hypothesis, we thus have m € Nand 7y, 4, ... T, 71, € S, such that

01 = Tki s """ Thki,h — Tn,kO -

Since 7-3',( = 1, multiplying from the left with 7, x gives o = 7, kT« 1. - - * Thy 1 the claim
follows with m = m + 1. O

Combining Definition 5.33, Remark 5.34 and Proposition 5.35, we conclude:

Proposition 5.37 Letn € Nand o € S,. Thensgn(c) = +1. If o is a product of m
transpositions, then sgn(c) = (—1)™.

Remark 5.38 Permutations with sgn(o) = 1 are called even and permutations with
sgn(o) = —1 are called odd, since they arise from the composition of an even or
odd number of transpositions, respectively.

5.6 The Leibniz formula

Besides the Laplace expansion, there is also a formula for the determinant which relies
on permutations. As a warm-up, we first consider the case n = 2. Using the linearity of
the determinant in the first row, we obtain

a b a 0 0 b
det(c d)det<c d)+det(c d>'

where a, b, ¢, d € K. Using the linearity of the determinant in the second row, we can
further decompose the two above summands

a b a 0 a 0 0 b 0 b
det (c d> = det (c 0> + det (0 d) + det (c O> + det <O d)
a o0 0 b
=det =det
(c d) (c d)

The first and fourth summand are always zero due to the occurrence of a zero column.
The second and third summand are possibly nonzero (it might still happen that they are
zero in the case where some of a, b, ¢, d are zero). In any case, we get

a b a o0 0 b
det(c d)-det<0 d>+det(c 0).
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We can proceed analogously in general. Let A = (Ajj)i<ij<n € My n(K). We denote the
rows of A by {dy, ..., @, }. Using the linearity of det in the first row, we can write

Ai 0 0 --- 0 0 A, 0 --- 0
O_22 (522
det A = det . + det ] 4.
ap ap
00 0 - A
Qi
-+ 4 det .
ap

We can now use the linearity in the second row and proceed in the same fashion with
each of the above summands. We continue this procedure until the n-th row. As a result,
we can write

n

(5.7) detA = " det M,

k=1
where each of the matrices M, has exactly one possibly nonzero entry in each row.
As above, some of the matrices M, will have a zero column so that their determinant
vanishes. The matrices M, without a zero column must have exactly one possibly nonzero
entry in each row and each column. We can thus write the matrices M, with possibly

nonzero determinant as
n
M, = Z Aa(i)iEa(l) i
i=1

for some permutation o € S,,. Every permutation of {1, ..., n} occurs precisely once in
the expansion (5.7), hence we can write

detA = Zdet (ZA"()’ (i) ,),

o€ES,
where the notation ) | s meansthatwe sumoverall possible permutationsof {1, ..., n}.
We will next write the matrix 7, As(i)iEo(i),i differently. To this end notice that for all
o € S,, the permutation matrix P, can be written as P, = 27:1 E, (- Furthermore,
the diagonal matrix
As(1)1
Ao’ 2)2
D, — (2
Aa(n)n

can bewrittenas D, = > 7 | A(;,E; ;. Therefore, using Lemma 4.4, we obtain

ZEU() ZAoo JJ—ZZAU(, Y ”—ZA

i=1 j=1
We thus have the formula
detA = Z det (P,D,) Z sgn(o) det(D,),
€S, oc€ES,

where we use the product rule Proposition 5.21 and the definition of the signature of a
permutation. By Proposition 5.24, the determinant of a diagonal matrix is the product of
its diagonal entries, hence we obtain

detA =) sgn(o HA

c€ES,
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Finally, writing m = 01, we have
n

n
1T A0 = [T A=)
=1

Jj=1

We have thus shown:

Proposition 5.39 (Leibniz formula for the determinant) Let n € Nand A =
(Aij)1.<ij<n € My o(K). Then we have

(5.8) det(A) = Z sgn(o) HAU(;),' = Z sgn(m) HAjfr(j)-
i=1 Jj=1

o€S, TES,

Example 5.40 For n = 3 we have six permutations
o — 1 2 3 o — 1 2 3 o 1
eo23) P o3 2) P2
on — 1 2 3 o — 1 2 3 o — 1
23 1) P31 2) T3

For A = (Ajj)i<ij<s € M3 3(K), the Leibniz formula gives

NN =N
= W
N—

det(A) = sgn(o1)A11A2A33 + sgn(o2)A11A23Asz + sgn(o3)A12A21 Asz
+ 5gn(04)A12A23A31 + 5gn(05)A13A21 Az + sgn(o6)A13AnAsg,

so that in agreement with Example 5.19, we obtain

det A = A1 AxnAss — A11Ax3 Az — ApArAsz
+ A12A23A31 + A13A21 Aza — A13Ax0Asg.

Remark 5.41 Exercise 5.49 has two important consequences. Since the transpose
turns the rows of a matrix into columns and vice versa, we conclude:

« the determinant is also multilinear and alternating, when thought of as a map
(KM" — K, that is, when taking n columns vectors as an input. In particular, the
determinant is also linear in each column;

- the Laplace expansion is also valid if we expand with respect to a row, that is, for
AecM,,(K)and1 < /< n,we have

det(A) = > (~1)**'[A] det (A(”k)) .

k=1

Example 5.42 (O - not examinable) For n € Nand avector X = (x;)1<i<n € K" we
can form a matrix Vg = (Vjj)1<ij<n € Mp n(K) with Vj; = x{_l, that is,

1 x1 (X1)2 s (Xl)"_1
1 x (X2)2 cee (XQ)"_1
Vo= |1 x () - (x)"!
Lo (ol e ()

86



5.7 — Cramer’s rule

Such matrices are known as Vandermonde matrices and the determinant of a Van-
dermonde matrix is known as a Vandermonde determinant, they satisfy

det(Ve) = [ (—x)

1<i<j<n

Sketch of a proof We can define a function f : K" — K, X — det(Vyx). By the Leibniz
formula, the function f is a polynomial in the variables x; with integer coefficients. If we
freeze all variables of f except the ¢-th variable, then we obtain a function g, : K — K
of one variable x;. For 1 < i < nwith i # ¢ we have g¢(x;) = 0, since we compute the
determinant of a matrix with two identical rows, the ¢-th row and the i-th row. Factoring
the zeros, we can thus write g¢(x¢) = ge(x¢) ng;gn,i#(xé — x;) for some polynomial g.
We can repeat this argument for all £ and hence can write det(V) = q(X) [ [1<;;<n(X —
x;) for some polynomial g(x). The Leibniz formula implies that the sum of the exponents
of all the factors x; in det(Vz) must be Zn(n — 1). The same holds true for [licici<n
It follows that g must be a constant. Using the Leibniz formula again, we see that the
summand of det(Vy) corresponding to the identity permutation is the product of the
diagonal entries of Vg, that is, x2(x3)? - - - (x,)" 1. Taking the first term in all factors of
[Ticicjcn(3) — xi), we also obtain x(x3)? - - - (x,)"~ ', hence det(Vy) = [Ty« jc (35 —
X;), as claimed.

5.7 Cramer’srule

The determinant can be used to give a formula for the solution of a linear system of
equations of the form AX = b for an invertible matrix A M, »(K), b € K" and
unknowns X € K". This formula is often referred to as Cramer’s rule. In order to derive it
we start with definitions:

Definition 5.43 (Adjugate matrix — Video) Letn € Nand A € M, ,(K) be a square
matrix. The adjugate matrix of A is the n x n-matrix Adj(A) whose entries are given
by (notice the reverse order of / and j on the right hand side)

[Adj(A)]j = (—1)"" det (A(Jv"))v I<ij<n

Example 5.44
11 2 4 2 _3
Adj((a s>)_<_d _b>, Adi{lo 2 1]]=]1 o -1
¢ c 2 10 2 2 1 2

The determinant and the adjugate matrix provide a formula for the inverse of a matrix:

Theorem 5.45 Letn € Nand A € M, ,(K). Then we have
Adj(A)A = A Adj(A) = det(A)1,,.
In particular, if A is invertible then
1
-1

— —_ Adj(A).
det A NI(A)
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Proof Let A = (Aj)i<ij<n- Forl < i< nwe obtain for the i-th diagonal entry

[Adj(A)A]; = D (~1)"* det (ALD) A = det(A),
k=1
where we use the Laplace expansion (5.5) of the determinant. The diagonal entries of
Adj(A)A arethusall equaltodet A. For1 < /,j < nwith j # j we have
n
[Adi(A)Al; = >~ (~1)* (det A% Ay
k=1

We would like to interpret this last expression as a Laplace expansion. We consider a
new matrix A = (AA,'J')lg,"jgn which is identical to A, except that the i-th column of A is
replaced with the j-th column of A, that is, for 1 < k < n, we have

A Ay, =i
5.9 A = g0 )
(5.9) ki {Akh £
Then, forall 1 < k < nwe have A(k) = Ak} since the only column in which A and A
are different is removed in A(<1). Using (5.9), the Laplace expansion of A with respect to
the i-th column gives
n n
detA = 3" (~1)0T9 Ay, det (A(kﬂ) =3 (1)t (det AW)) Aig
k=1 k=1
= [Adi(A)A];

The matrix A has a double occurrence of the i-th column, hence its column vectors are
linearly dependent. Therefore A is not invertible by Proposition 4.7 and so detA =
[Adj(A)A]; = 0 by Corollary 5.22. The off-diagonal entries of Adj(A)A are thus all zero
and we conclude Adj(A)A = det(A)1,,. Using the row version of the Laplace expansion
we can conclude analogously that A Adj(A) = det(A)1,,.

Finally, if Aisinvertible, then det A # 0 by Corollary 5.22,sothat A=! = Adj(A)/ det(A),
as claimed. O

As a corollary we obtain:

Corollary 5.46 Letn € Nand A € M, ,(K) be an invertible upper triangular matrix.
Then A~1 is also an upper triangular matrix.

Remark 5.47 Taking the transpose also implies: Let A € M, ,(K) be an invertible
lower triangular matrix. Then A~ is also a lower triangular matrix.

Proof of Corollary 5.46 Write A = (A;j)1<ij<n- Using Theorem 5.45 it suffices to show
that Adj(A) is an upper triangular matrix. If A is an upper triangular matrix, then A;; = 0
forall i > j. By definition we have

[Adj(A)]j = (—1)"" det (A(Jri))v 1<ij<n

Notice that for i > j every element below the diagonal of AU-/) is also below the diagonal
of A and hence must be zero. It follows that AU7) is an upper triangular matrix as well.
Proposition 5.24 implies that the determinant of AU+") is the product of its diagonal
entries. Since AU arises from the upper triangular matrix A by removing a row and a
column, at least one of the diagonal entries of AU-) must be zero and thus det AU) = 0
fori > j. We conclude that A~1 is an upper triangular matrix as well. O

88



5.7 — Cramer’s rule

We now use Theorem 5.45 to obtain a formula for the solution of the linear system Ax = b
for an invertible matrix A. Multiplying from the left with A~1, we get

- 1 .

¥=A"'b=——Adj(A)b.

x det A i(A)

Writing X = (x;)1<i<n, multiplication with det A givesfor1 </ < n

n n
xidetA = S [Adj(A)]ubk = 3 (~1)"* det (AW)) by
k=1 k=1
We can again interpret the right hand side as a Laplace expansion of the matrix A, ob-
tained by replacing the i-th column of A with b and leaving A unchanged otherwise.
Hence,we haveforalll <i<n
- det A,’

M detA”
This formula is known as Cramer’s rule. While this is a neat formula, it is rarely used in
computing solutions to linear systems of equations due to the complexity of computing
determinants.

Example 5.48 (Cramer’s rule) We consider the system Ax = b for

2 1 1 -2
A=[1 2 1 and b=| 2
11 2 4
Here we obtain
-2 1 1 2 -2 1 2 1 -2
Al=[2 2 1|, Ahb=|1 2 1|, A;=[1 2 2
4 1 2 1 4 2 11 4

We compute det A = 4,det A; = —12,det A, = 4and det A; = 12 so that Cramer’s
rule gives indeed the correct solution

o 722 713
X = — =
4 12

Exercises
Exercise 5.49 Use the Leibniz formula to show that

det(A) = det(AT)
forall A € M, ,(K).

89






CHAPTER 6

Endomorphisms

6.1 Sums, direct sums and complements "?Q%
20

In this chapter we study linear mappings from a vector space to itself.

Definition 6.1 (Endomorphism — Video) Alinearmap g : V — V from a K-vector
space V to itself is called an endomorphism. An endomorphism that is also an
isomorphism is called an automorphism.

Before we develop the theory of endomorphisms, we introduce some notions for sub-
spaces.

Definition 6.2 (Sum of subspaces — Video) Let V be a K-vector space, n € Nand
Ui, ..., U, be vector subspaces of V. The set

ZU,-: U+ U+ + Uy ={veVlv=u+u+- -+ u,foru € U}
i=1
is called the sum of the subspaces U;.

Recall that by Proposition 3.27, the intersection of two subspaces is again a subspace,
whereas the union of two subspaces fails to be a subspace in general. However, subspaces
do behave nicely with regards to sums:

Proposition 6.3 The sum of the subspaces U; C V,i = 1..., nis again a vector
subspace.

Proof The sum Zle U; is non-empty, since it contains the zero vector Oy. Let v and
v/ e Y1, Uisothat

V=vi+Wwm+-+v, and V/:V{+V2/_|_..._|_V,{'

forvectors v;, v/ € U;,i =1, ..., n. Each U; is a vector subspace of V. Therefore, for all
scalars s, t € K, the vector sv; + tv/ isan elementof U;,i =1, ..., n. Thus

sv+tv =svy 4 tv] + -+ sv, + tV,

isan element of U; + - - - + U,,. By Definition 3.21, it follows that U; + - - - + U,, is a vector
subspace of V. O

Remark 6.4 Noticethat U;+- - -+ U, isthe smallest vector subspace of V containing
all vector subspaces U;,i =1, ..., n.
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If each vector in the sumisin a unique way the sum of vectors from the subspaces we say
the subspaces are in direct sum:

Definition 6.5 (Direct sum of subspaces) Let V be a K-vector space, n € N and
Ui, ..., U, bevector subspaces of V. The subspaces Uy, ..., U, are said to be in direct
sumifeachvectorw €¢ W = U; + --- + U, isin a unique way the sum of vectors
vi € Uforl < i< n Thatis,ifw=w+w+-4+v,=v+vi+--+ V] for
vectors v, v/ € Uj, thenv; = v/ forall 1 < i < n. We write

Du
i=1

in case the subspaces Uy, ..., U, are in direct sum.

Example 6.6 Letn € Nand V = K" aswell as U; = span{é&;}, where {é1, ..., €,}
denotes the standard basis of K”. Then K" = @', U,.

Remark 6.7

« Two subspaces Uy, U, of V areindirect sumifand only if Uy N U, = {0y }. Indeed,
suppose U; N U, = {0y} and consider w = vy + vo = v{ + v withv;, v/ € U;
fori =1,2. Wethenhave vy — v{ = v} — v» € Ua, since U, is a subspace. Since
U, is a subspace as well, we also have v; — v; € U;. Since v; — vj lies both in Uy
and U, we must have v; — v{ = 0y = vj — v». Conversely, suppose U, U; arein
direct sum and let w € (U; N Us). We can write w = w 4+ 0y = 0y + w, since
w € Uy and w € U,. Since Uy, U are in direct sum, we must have w = 0y, hence
UinU; = {0\/}

 Observethatifthe subspaces Uy, ..., U, areindirectsumand v; € U; withv; # Oy
for 1 < i < n,thenthevectors {vq, ..., v,} are linearly independent. Indeed, if
s1, ..., S, are scalars such that

sivi+ Sva+ -+ 55V, =0y =0y + 0y + -+ - + Oy,

then s;v; = 0y forall 1 </ < n. By assumption v; # 0y and hence s; = 0 for all
1<i<n

Proposition 6.8 Let n € N, V be a finite dimensional K-vector space and Uy, ..., U,
be subspaces of V. Let b; be an ordered basis of U; for 1 < i < n. Then we have:
(i) The tuple of vectors obtained by listing all the vectors of the bases b; is a basis of
Vifandonlyif V = @;_, Ui
(ii) dim(Uy + - -+ U,) < dim(U1) + - - - + dim(U,) with equality if and only if the
subspaces Uy, ..., U, are in direct sum.

Proof Part of an exercise. U

Definition 6.9 (Complement to a subspace) Let V be a K-vector spaceand U C V
a subspace. A subspace U’ of V such that V = U & U’ is called a complement to U.
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Example 6.10 Notice that a complement need not be unique. Consider V = R?
and U = span{é;}. Let v € V. Then the subspace U’ = span{v} is a complement
to U, provided &}, vV are linearly independent.

Corollary 6.11 (Existence of a complement) Let U be a subspace of a finite dimen-
sional K-vector space V. Then there exists a subspace U’ sothat V = U & U'.

Proof Suppose (vi, ..., Vi) is an ordered basis of U. By Theorem 3.64, there exists a
basis {vi, ..., Vi, Vm+1, .., Vo } Of V. Defining U’ = span{vi,+1, ..., Vo }, Proposition 6.8
implies the claim. U

The dimension of a sum of two subspaces equals the sum of the dimensions of the
subspaces minus the dimension of the intersection:

Proposition 6.12 Let V be a finite dimensional K-vector space and Uy, U, subspaces
of V. Then we have

Proof Letr = dim(U; N Uy) and let {uy, ..., u, } be a basis of U; N U,. These vectors
are linearly independent and elements of U, hence by Theorem 3.64, there exist vectors
Vi, oo, Vm—r SO that Sy = {u1, ..., Uy, v1, ..., Vm—, } is a basis of U;. Likewise there exist
vectors wy, ..., w,_, such that S, = {uy, ..., uy, wy, ..., w,_, } is a basis of U,. Here m =
dim U; and n = dim Us.

Now consider theset S = {u1, ..., Uy, V1, ..., Vm—r, Wi, ..., Wy—, } CONsisting of r + m —
r+n—r = n+ m— rvectors. If this set is a basis of U; + U, then the claim follows,
sincethendim(U; 4+ Ux) = n+ m — r =dim(U;) + dim(U,) — dim(U; N Uy).

We first show that S generates U; + U,. Lety € U; + U, sothat y = x; + x, for vectors
x1 € Uy and xo € Us. Since Sy is a basis of Uy, we can write x; as a linear combination of
elements of S;. Likewise we can write x, as a linear combination of elements of S,. It
follows that S generates U; + Us.

We need to show that S is linearly independent. So suppose we have scalars sy, ..., s,
t1, ..., tm—r,and r, ..., ro—,, sothat

sinn+--Fsu v+ o+t Vm—r tWL o W = 0V-

=u afy =w
Equivalently, w = —u — v sothat w € U;. Since w is a linear combination of elements of
S, we also have w € U,. Therefore, w € U; N U, and there exist scalars 31, ..., 5, such
that
w=3§u +---+Su

=0

Thisis equivalent to w — i = 0y, or written out
nwy+ - e Wp—y — S1U1 — -+ -+ S,u, = Oy

Since the vectors {uy, ..., uy, wa, ..., w,_,} are linearly independent, we conclude that

n=-+--=tr_,=58=---=5 =0. Itfollows that w = 0y and hence v + v = 0y.
Again, since {u1, ..., Uy, v1, ..., vo—,} are linearly independent, we conclude that s; =
cvo=§ =1t =---=ty_, = 0and we are done. [l
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6.2 Invariants of endomorphisms

Let V be afinite dimensional vector space equipped with an ordered basisband g : V —
V an endomorphism. Recall from Theorem 3.107 that if we consider another ordered
basis b’ of V, then

M(g,b’,b’) = CM(g,b,b)C ™,
where we write C = C(b, b’) for the change of basis matrix. This motivates the following
definition:

Definition 6.13 (Similar / conjugate matrices) Letn € Nand A, A’ € M, ,(K). The
matrices A and A’ are called similar or conjugate over K if there exists an invertible
matrix C € M, ,(K) such that

A’ =CAC!.

Similarity of matrices over K is an equivalence relation:

Proposition 6.14 Let n € Nand A, B, X € M, ,(K). Then we have
(i) Aissimilar to itself;
(ii) A is similar to B then B is similar to A;
(iii) If A'is similar to B and B is similar to X, then A is also similar to X.

Proof (i) WetakeC =1,.

(i) Suppose A is similar to B so that B = CAC ™! for some invertible matrix C € M, ,(K).
Multiplying with C~! from the left and C from the right, we get

c!'BC=cC!cACiCc=A,

so that the similarity follows for the choice € = C~1.

(iii) We have B = CAC~! and X = DBD ! for invertible matrices C, D. Then we get
X =DCAC D!,

so that the similarity follows for the choice € = DC. O

Remark 6.15

« Because of (ii) in particular, one can say that two matrices A and B are similar
without ambiguity.

« Theorem 3.107 shows that A and B are similar if and only if there exists an endo-
morphism g of K” such that A and B represent g with respect to two ordered
bases of K.

One might wonder whether there exist functions f : M,, ,(K) — Kwhich areinvariant un-
der conjugation, that is, f satisfies f(CAC~!) = f(A) forall A € M, ,(K) and all invert-
ible matrices C € M, ,(K). We have already seen an example of such a function, namely
the determinant. Indeed using the product rule Proposition 5.21 and Corollary 5.22, we
compute

det (CAC™!) = det(CA) det (C™') = det(C) det(A) det (C™ 1)

6 = det(A).
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Because of this fact, the following definition makes sense:

Definition 6.16 (Determinant of an endomorphism) Let V be a finite dimensional
K-vector spaceand g : V — V an endomorphism. We define

det(g) = det (M(g, b, b))

where b is any ordered basis of V. By Theorem 3.107 and (6.1), the scalar det(g) is
independent of the chosen ordered basis.

Another example of a scalar that we can associate to an endomorphism is the so-called
trace. Like for the determinant, we first define the trace for matrices. Luckily, the trace is
a lot simpler to define:

Definition 6.17 (Trace of a matrix) Letn € Nand A € M, ,(K). Thesum }_7_, [A];
of its diagonal entries is called the trace of A and denoted by Tr(A) or Tr A.

wehave Tr(A) =2+2+4+3=7.

The trace of a product of square matrices is independent of the order of multiplication:

Proposition 6.19 Let n € Nand A, B € M, ,(K). Then we have
Tr(AB) = Tr(BA).

Proof Let A = (A,:,')lg,"jg,-, and B = (Bij)lgi,jgn- Then

[AB]U = ZAikBkj and [BA]kJ = Z Bk,'A,'j,
k=1 i=1

so that

Tr(AB) = Zn: zn: A,'kBk,' = zn: zn: Bk;A;k = TI’(BA)

i=1 k=1 k=1 i=1

Using the previous proposition, we obtain
(6.2) Tr(CAC™') =Tr (ACT'C) = Tr(A).

As for the determinant, the following definition thus makes sense:

Definition 6.20 (Trace of an endomorphism) Let V be a finite dimensional K-vector
spaceand g : V — V an endomorphism. We define

Tr(g) = Tr(M(g, b, b))
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where b is any ordered basis of V. By Theorem 3.107 and (6.2), the scalar Tr(g) is
independent of the chosen ordered basis.

The trace and determinant of endomorphisms behave nicely with respect to composition
of maps:

Proposition 6.21 Let V be a finite dimensional K-vector space. Then, for all endo-
morphisms f, g : V — V we have

(i) Tr(fog)=Tr(gof);

(ii) det(f o g) = det(f) det(g).

Proof (i) Fix an ordered basis b of V. Then, using Corollary 3.101 and Proposition 6.19,
we obtain
Tr(f o g) = Tr(M(f o g, b, b)) = Tr (M(f, b, b)M(g, b, b))

=Tr(M(g,b,b)M(f,b,b)) =Tr(M(gof,b,b)) =Tr(gof).

The proof of (ii) is analogous, but we use Proposition 5.21 instead of Proposition 6.19. [

We also have:

Proposition 6.22 Let V be a finite dimensional K-vector spaceand g : V. — V an
endomorphism. Then the following statements are equivalent:
(i) g isinjective;
(i) g is surjective;
(iii) g is bijective;
(iv) det(g) # 0.

Proof The equivalence of the first three statements follows from Corollary 3.77. We fix
an ordered basis b of V. Suppose g is bijective with inverse g=! : V — V. Then we have

det(g o g™ ') = det(g) det (g~ ') = det (Idv) = det (M(Idy, b, b)) = det (14imv) = 1.
It follows that det(g) # 0 and moreover that

1
det (g71) = .
€ (g ) detg
Conversely, suppose that detg # 0. Then det M(g, b, b) # 0 so that M(g, b, b) is
invertible by Corollary 5.22 and Proposition 3.102 implies that g is bijective. O

Remark 6.23 Notice that Proposition 6.22 is wrong for infinite dimensional vector
spaces. Consider V = K=, the K-vector space of sequences from Example 3.6. The
endomorphism g : V — V defined by (x1, x2, x3, ...) = (0, x1, X2, X3, ...) is injective
but not surjective.
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6.3 — Eigenvectors and eigenvalues

6.3 Eigenvectors and eigenvalues %Z“/r
244

Mappings g that have the same domain and codomain allow for the notion of a fixed
point. Recall that an element x of a set X is called a fixed point of a mappingg : X — X
if g(x) = x, that is, x agrees with its image under g. In Linear Algebra, a generalisation of
the notion of a fixed point is that of an eigenvector. Avector v € V is called an eigenvector
of the linearmap g : V — Vif v is merely scaled when applying g to v, that is, there
exists a scalar A € K - called eigenvalue - such that g(v) = Av. Clearly, the zero vector
0y will satisfy this condition for every choice of scalar \. For this reason, eigenvectors
are usually required to be different from the zero vector. In this terminology, fixed points
v of g are simply eigenvectors with eigenvalue 1, since they satisfy g(v) = v = 1v.

Itis natural to ask whether a linear map g : V' — V always admits an eigenvector. In the
remaining part of this chapter we will answer this question and further develop our theory
of linear maps, specifically endomorphisms. We start with some precise definitions.

Definition 6.24 (Eigenvector, eigenspace, eigenvalue — Video) Letg : V — V be
an endomorphism of a K-vector space V.

+ An eigenvector with eigenvalue A € K is a non-zero vector v € V such that
g(v) = Av.

« If A € Kis an eigenvalue of g, the A\-eigenspace Eig, () is the subspace of vectors
v € V satisfying g(v) = Av.

+ The dimension of Eig,(\) is called the geometric multiplicity of the eigenvalue .

+ The set of all eigenvalues of g is called the spectrum of g.

« For A € M, ,(K) we speak of eigenvalues, eigenvectors, eigenspaces and spec-
trum to mean those of the endomorphism 7 : K" — K",

Remark 6.25 By definition, the zero vector 0y is not an eigenvector, it is however
an element of the eigenspace Eigg(A) for every eigenvalue .

Example 6.26

(i) The scalar 0is an eigenvalue of an endomorphism g : V — V if and only if
the kernel of g is different from {0\ }. In the case where the kernel of f does
not only consist of the zero vector, we have Ker g = Eig,(0) and the geometric
multiplicity of 0 is the nullity of g.

(i) The endomorphism fp : K" — K" associated to a diagonal matrix with distinct
diagonal entries

A1
A2
D=
An
has spectrum {\;,...,A,} and corresponding eigenspaces Eig. ()\;) =
span{é&;}.
(ili) Consider the R-vector space P(R) of polynomials and f = & : P(R) —

P(R) the derivative by the variable x. The kernel of f consists of the constant
polynomials and hence 0 is an eigenvalue for f. For any non-zero scalar A we
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cannot have polynomials p satisfying ip = Ap, as the left hand of this last
expression has a smaller degree than the right hand side.

Previously we defined the trace and determinant for an endomorphismg : V — V
by observing that the trace and determinant of the matrix representation of g are in-
dependent of the chosen basis of V. Similarly, we can consider eigenvalues of g and
eigenvalues of the matrix representation of g with respect to some ordered basis of V.
Perhaps unsurprisingly, the eigenvalues are the same:

Proposition 6.27 Letg : V — V be an endomorphism of a finite dimensional K-
vector space V. Let b be an ordered basis of V with corresponding linear coordinate
system (3. Then v € V is an eigenvector of g with eigenvalue A € K if and only if
B(v) € K" is an eigenvector with eigenvalue A of M(g, b, b). In particular, conjugate
matrices have the same eigenvalues.

Proof Write A = M(g, b, b). Recall that by an eigenvector of A € M, ,(K), we mean an
eigenvector of fp : K" — K". By Definition 3.92, we have fp = Bogo B, Suppose
A € Kis an eigenvalue of g so that g(v) = Av for some non-zero vector v € V. Consider
the vector X = B(v) € K" whichis non-zero, since 3 : V — K" is anisomorphism. Then

fa(x) = B(g(B71())) = Blg(v)) = B(\W) = AB(v) = AX,
so that X' is an eigenvector of fa with eigenvalue \.

Conversely, if A is an eigenvalue of fa with non-zero eigenvector x, then it follows as
above that v = B7(X) € V is an eigenvector of g with eigenvalue \.

By Remark 6.15, if the matrices A, B are similar, then they represent the same endo-
morphism g : K” — K" and hence have the same eigenvalues. O

The “nicest” endomorphisms are those for which there exists an ordered basis consisting
of eigenvectors:

Definition 6.28 (Diagonalisable endomorphism)

« Anendomorphism g : V — V is called diagonalisable if there exists an ordered
basis b of V such that each element of b is an eigenvector of g.

« Forn € N, amatrix A € M, ,(K) is called diagonalisable over K if the endo-
morphism fa : K" — K" is diagonalisable.

Example 6.29
(i) We consider V = P(R) and the endomorphism g : V — V which replaces the
variable x with 2x. For instance, we have
g(x* —2x+3) = (2x)> = 2(2x) + 3 = 4x® — 4x + 3.

Then g is diagonalisable. The vector space P(R) has an ordered basisb =
(1,x,x2,x3,...). Clearly, for all k € NU {0} we have g(x¥) = 2kxk, so that x*
is an eigenvector of g with eigenvalue 2.
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(ii) Fora € (0, ) consider
R, — <c?sa —sin a> .
Sin & COos «x
Recall that the endomorphism fr. : R? — R2 rotates vectors counter-

clockwise around the origin Og2 by the angle a.. Since o € (0, 7), the endo-
morphism fg,, has no eigenvectors and hence is not diagonalisable.

Remark 6.30 Applying Proposition 6.27, we conclude that in the case of a finite
dimensional K-vector space V, an endomorphism g : V — V is diagonalisable if
and only if there exists an ordered basis b of V such that M(g, b, b) is a diagonal
matrix. Moreover, A € M, ,(K) is diagonalisable if and only if A is similar over K to
a diagonal matrix.

Recall, if X', YV aresets, f : X — Y amappingand Z C X asubset of X', we can consider
the restriction of f to Z, usually denoted by f| =z, which is the mapping

flz: Z2—=Y, ze f(2).

So we simply take the same mapping f, but apply it to the elements of the subset only.

Closely related to the notion of an eigenvector is that of a stable subspace. Let v € V be
an eigenvector with eigenvalue X of the endomorphism g : V — V. The 1-dimensional
subspace U = span{v} is stable under g, that is, g(U) C U. Indeed, since g(v) = Av
and since every vector u € U can be written as u = tv for some scalar t € K, we have
g(u) = g(tv) = tg(v) = tAv € U. This motivates the following definition:

Definition 6.31 (Stable subspace) Asubspace U C V is called stable or invariant
under the endomorphism g : V — V'if g(U) C U, thatis g(u) € U for all vectors
u € U. In this case, the restriction g|y of g to U is an endomorphism of U.

Remark 6.32 Notice that a finite dimensional subspace U C V is stable under g if
andonlyif g(v;) € Ufor1l < i< m,where{vy, ..., vy} is a basis of U.

Example 6.33
(i) Every eigenspace of an endomorphism g : V — V is a stable subspace. By
definition g|Eigg(,\) : Bigg(A\) — Eigg(A) is multiplication by the scalar A € K.
(ii) We consider V = R3 and

cosae —sina 0
R, = |sinaa cosa 0
0 0 1

fora € (0, 7). The endomorphism g : R® — R3 is the rotation by the angle
a € Raround the axis spanned by &. Then the plane U = {X¥ = (x;)1<i<3 €
R3|x3 = 0} is stable under f = fg_. Here f|n : 1 — M is the rotation in the
plane U around the origin with angle c.
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Moreover, the vector €3 is an eigenvector with eigenvalue 1 so that

Eige(1) = span{&}.

(iii) We consider again the R-vector space P(R) of polynomials and f = % :
P(R) — P(R) the derivative by the variable x. For n € N let U, denote the
subspace of polynomials of degree at most n. Since U,,_1 C U,, the subspace

U, is stable under f.

Stable subspaces correspond to zero blocks in the matrix representation of linear maps.
More precisely:

Proposition 6.34 Let V be a K-vector space of dimensionn € Nand g : V — V an
endomorphism. Furthermore, let U C V be a subspace of dimension1 < m < nand
b an ordered basis of U and ¢ = (b, b’) an ordered basis of V. Then U is stable under
g ifand only if the matrix A = M(g, c, ) has the form

N

A *
A= <0nm,m *)

for some matrix A € M m(K). In the case where U is stable under g, we have
A= M(g|u, b, b) S Mm,m(K)'

Proof Writeb = (v, ..., v;,) forvectors v; € Uandb’ = (wy, ..., w,_,) for vectors
w; € V.

= Since U is stable under g, we have g(u) € U forall vectors u € U. Since b is a basis of
U, there exist scalars A;; € Kwith 1 </, j < msuch that

g(v) => Ay
i=1

forall 1 < j < m. By Proposition 3.93, the matrix representation of g with respect to the
ordered basis ¢ = (b, b’) of V thus takes the form

A«
A= <0n—m,m *)

where we write A = (AA,'J')lg,'ng = M(g|U, b, b)

< Suppose

~

A= (o A i) — M(g.c,c)

n—m,m

is the matrix representation of g with respect to the ordered basis c of V. Write A =
(A\,'j)lg,'ngm Then, by Proposition 3.93, g(v;) = >, A,-jv,- € Uforalll <j < m, hence
U is stable under g, by Remark 6.32. O

From Proposition 6.34 we can conclude:

Remark 6.35 Suppose V is the direct sum of subspaces Uy, Us, ..., Upn, all of which
are stable under the endomorphism g : V — V. If b; is an ordered basis of U; for
i =1, ..., m. Then the matrix representation of g with respect to the ordered basis
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c = (by, ..., by,) takes the block form

A,
A,

where A; = M(g

Ui b,‘, b,) fori = 1, o, m.

6.4 The characteristic polynomial

The eigenvalues of an endomorphism are the solutions of a polynomial equation:

Lemma 6.36 Let V be a finite dimensional K-vector spaceand g : V — V an
endomorphism. Then A € K is an eigenvalue of g if and only if

det (Aldy — g) = 0.
Moreover if \ is an eigenvalue of g, then Eig,(\) = Ker(Aldy — g).

Proof Letv € V. We may write v = Idy(v). Hence
gv)=XAv << Oy=(dy—g)(v) <= veKer(Ady —g)

It follows that Eig,(\) = Ker(Aldy — g). Moreover A € Kiis an eigenvalue of g if
and only if the kernel of Aldy — g is different from {0/} or if and only if Aldy — g is
not injective. Proposition 6.22 implies that A € K is an eigenvalue of g if and only if
det (Aldy — g) = 0. O

Definition 6.37 (Characteristic polynomial — Video) Letg : V — V be an endo-
morphism of a finite dimensional K-vector space V. The function

charg : K = K, x— det(xldy — g)

is called the characteristic polynomial of the endomorphism g.

In practice, in order to compute the characteristic polynomial of an endomorphism
g : V. — V,we choose an ordered basis b of VV and compute the matrix representation
A = M(g, b, b) of g with respect to b. We then have

charg(x) = det (x1, — A).

By the characteristic polynomial of a matrix A € M, ,(K), we mean the characteristic
polynomial of the endomorphism fa : K" — K", that is, the function x — det (x1, — A).

A zero of a polynomial f : K — Kisascalar A € K such that f(\) = 0. The multiplicity
of a zero A is the largest integer n > 1 such that there exists a polynomial f:K—Kso
that f(x) = (x — \)"#(x) for all x € K. Zeros are also known as roots.

Example 6.38 The polynomial f(x) = x> — x? — 8x + 12 can be factorised as
f(x) = (x — 2)?(x + 3) and hence has zero 2 with multiplicity 2 and —3 with
multiplicity 1.
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Definition 6.39 (Algebraic multiplicity) Let A bean eigenvalue of the endomorphism
g : V — V.The multiplicity of the zero A of char, is called the algebraic multiplicity
of \.

Example 6.40
(i) We consider

A= (s 1)

Then
x—1 =5
chara(x) = charg, (x) = det (x1 — A) = det
-5 x-1
= (x—1)2 — 25 = x? — 2x — 24 = (x + 4)(x — 6).
Hence we have eigenvalues \; = 6 and X\, = —4, both with algebraic multipli-

city 1. By definition we have

Eiga(6) = Eigy, (6) = {vV € K*|AV = 6V}

and we compute that
Eiga(6) = span { G) }

Since dim Eiga (6) = 1, the eigenvalue 6 has geometric multiplicity 1. Likewise

we compute
Eiga(—4) = span { (_11) }

so that the eigenvalue —4 has geometric multiplicity 1 as well. Notice that we
have an ordered basis of eigenvectors of A and hence A is diagonalisable.

(ii) We consider
2 1
2~ (s 2)

Then chara(x) = (x — 2)? so that we have a single eigenvalue 2 with algebraic
multiplicity 2. We compute

Eiga(2) = span { (é) }

so that the eigenvalue 2 has geometric multiplicity 1. Notice that we cannot
find an ordered basis consisting of eigenvectors, hence A is not diagonalisable.

The determinant and trace of an endomorphism do appear as coefficients in its charac-
teristic polynomial:

Lemma6.41 Letg : V — V be an endomorphism of a K-vector space V of dimen-
sion n. Then char, is a polynomial of degree n and

charg(x) = x" — Tr(g)x" ! + - + (—1)"det(g).

Proof We fix an ordered basis b of V. Writing M(g, b, b) = A = (Ajj)1<i j<n and using
the Leibniz formula (5.8), we have

n
charg(x) = Z sgn(J)H Bis(iy,
i=1

€S,
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where
x—=Ai, =},
Bj = o
/ { —Aj,  T#].
Therefore, char, is a finite sum of products containing x at most n times, hence chary is
a polynomial in x of degree at most n. The identity permutation contributes the term
[, Bii in the Leibniz formula, hence we obtain
charg(x) = H(X —Ai)+ Z sgn(o) H Bis(i)
i=1 0€S,0#1 i=1

We now use induction to show that
n

H(X —Ai)=x"=Tr(A)x" P+ Cpox" 2+ +ax+a

i=1
for scalars C,_», ..., co € K. For n = 1 we obtain x — A;1, so that the statement is
anchored.

Inductive step: Suppose

n—1

n—1
[T —Ai)=x"" - <Z A,-,-) X"2 4 Cpox" 2+ 4 ax + o,
i=1

i=1
for coefficients C,_», ..., cg, then

n

n—1
[IGx=Ai) = (x=A) [an - (Z Aii) X" Cpoax" P4t ax+q
i=1

i=1
n
=x" — (Z A,-,-) x"~1 + lower order terms in x,
i=1
so the induction is complete.

Wenextarguethaty ¢ ;sgn(o) [17_1 Bio(i) has at most degree n — 2. Notice that
each factor Bi, ;) of 11, Bis(iy for which i # o (i) does not contain x. So suppose that
> oes, 021 58N(0) [Ti2; Bio(i) has degree bigger or equal than n — 1. Then we have n — 1
integers i with 1 < 7 < nsuchthati = o(/). Letj denote the remaining integer. Since o is
injective, it follows that for any i/ # j we must have i = (i) # o(j). Therefore, o(j) = j
and hence o = 1, a contradiction.

In summary, we have shown that

charg(x) = x" — Tr(g)x" ' + Cpox" 1+ -+ + cix + o

for coefficients C,_», ..., ¢ € K. It remains to show that g = (—1)" det(g). We have
¢o = charg(0) = det(—g) = det(—A). Since the determinant is linear in each row of A,
this gives det(—A) = (—1)" det(A), as claimed. O

Remark 6.42 In particular, for n = 2 we have char,(x) = x? — Tr(g)x + det(g).
Compare with Example 6.40.
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6.5 Properties of eigenvalues ‘%&r
2

We will argue next that an endomorphism g : V — V of a finite dimensional K-vector
space V has at most dim( V) eigenvalues. We first need:

Theorem 6.43 (Little Bézout’s theorem) For a polynomial f € P(K) of degree n > 1
and xy € K, there exists a polynomial g € P(K) of degree n — 1 such that for all
x € Kwe have f(x) = f(xo) + g(x)(x — xo).

Proof We will give an explicit expression for the polynomial g. If one is not interested in
such an expression, a proof using induction can also be given. Write f(x) = > _; axx*
for coefficients (ao, ..., a,) € K™ For0 < j < n — 1 consider

n—j—1

(6.3) b= > a1
k=0
and the polynomial
n—1
= Z bjxj
j=0

of degree n — 1. We have

n—1n—j—1 n—1n—j—1

g(x)(x — xo) = Z (3k+1+1XoXJ Z Z 3k+1+1Xo XJ)
j=0 k=0 j=0 k=0
n n—j n—1n j

I

o
L
&

&

><

o
x

iy

&
><\

j=1 k:O j=0 k:l
n—1
= a,x +ZaJxJ —i—ao—ao—Zakxo = f(x) — f(x0)
j=1 k=1

From this we conclude:

Proposition 6.44 Let f € P(K) be a polynomial of degree n. Then f has at most n
(distinct) zeros or f is the zero polynomial.

Proof We use induction. The case n = 0 is clear, hence the statement is anchored.

Inductive step: Suppose f € P(K) is a polynomial of degree n with n + 1 distinct zeros
AL, ooy Ang1. Since f(Apy1) = 0, Theorem 6.43 implies that

F(x) = (x = Ant1)g(x)

for some polynomial g of degree n — 1. For 1 < i < n, we thus have
0= f(A7) = (A — Ant1)g(Ni)-

Since \; # A\p41 it follows that g()\;) = 0. Therefore, g has n distinct zeros and must be
the zero polynomial by the induction hypothesis. It follows that f is the zero polynomial
as well. O

This gives:
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Corollary6.45 Letg : V — V beanendomorphism of a K-vector space of dimension
n € N. Then g has at most n (distinct) eigenvalues.

Proof By Lemma 6.36 and Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial. The characteristic polynomial of g has degree n. The claim follows
by applying Proposition 6.44. O

Proposition 6.46 (Linear independence of eigenvectors) Let V be a finite dimen-
sional K-vector space and g : V — V an endomorphism. Then the eigenspaces
Eig,(\) of g are in direct sum. In particular, if vy, ..., v, are eigenvectors correspond-
ing to distinct eigenvalues of g, then {v1, ..., vi, } are linearly independent.

Proof We use induction on the number m of distinct eigenvalues of g. Let { A1, ..., A}
be distinct eigenvalues of g. For m = 1 the statement is trivially true, so the statement is
anchored.

Inductive step: Assume m — 1 eigenspaces are in direct sum. We want to show that then
m eigenspaces are also in direct sum. Let v;, v; € Eig,(\;) be eigenvectors such that
(6.4) Vitvatt V=V Vst A+ Vs
Applying g to this last equation gives
(6.5) AMvi+Xva o ApVm = A1v] + Vs + - 4 AV
Subtracting \,, times (6.4) from (6.5) gives

A= Amvi+ -+ At = A1 = M1 = Ay + -+ A1 — AV 1.

Since m — 1 eigenspaces are in direct sum, this implies that (A\; — Ap)v; = (A — Ap)V/
forl < i < m — 1. Since the eigenvalues are distinct, we have \; — \,, # 0 for all
1<i<m-—1landhencevy; =v/foralll < i< m— 1. Now (6.5)implies that v, = v
as well and the inductive step is complete.

Since the eigenspaces are in direct sum, the linear independence of eigenvectors with
respect to distinct eigenvalues follows from Remark 6.7. d

In the case where all the eigenvalues are distinct, we conclude that g is diagonalisable.

Proposition 6.47 Letg : V — V be an endomorphism of a finite dimensional K-
vector space V. Suppose the characteristic polynomial of g has dim( V') distinct zeros
(that is, the algebraic multiplicity of each eigenvalue is 1), then g is diagonalisable.

Proof Let n = dim(V). Let Ay, ..., A, denote the distinct eigenvalues of g. Let 0y #
v; € Eigg(A;) fori = 1,..., n. Then, by Proposition 6.46, the eigenvectors are linearly
independent, it follows that (vy, ..., v,) isan ordered basis of V consisting of eigenvectors,
hence g is diagonalisable. O

Remark 6.48 Proposition 6.47 gives a sufficient condition for an endomorphism
g : V — V to be diagonalisable, it is however not necessary. The identity endo-
morphism is diagonalisable, but its spectrum consists of the single eigenvalue 1
with algebraic multiplicity dim(V).
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Every polynomialin P(C) of degree at least 1 has at least one zero. This fact is known as
the fundamental theorem of algebra. The name is well-established, but quite misleading,
as there is no purely algebraic proof. You will encounter a proof of this statement in the
module MO7. As a consequence we obtain the following important existence theorem:

Theorem 6.49 (Existence of eigenvalues) Letg : V — V be an endomorphism of a
complex vector space V of dimension n > 1. Then g admits at least one eigenvalue.
Moreover, the sum of the algebraic multiplicities of the eigenvalues of g is equal to n.
In particular, if A € M, ,(C) is a matrix, then there is at least one eigenvalue of A.

Proof By Lemma 6.36 and Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial and this is an element of P(C). The first statement thus follows by
applying the fundamental theorem of algebra to the characteristic polynomial of g.

Applying Theorem 6.43 and the fundamental theorem of algebra repeatedly, we find
k € N and multiplicities my, ..., mx € N such that

charg(x) = (x = A1) ™(x — A2)™ - (x — )™

where Ay, ..., Ak are zeros of char,. Since char, has degree n, it follows that Zf;l m; =
n. g

Example 6.50

« Recall that the discriminant of a quadratic polynomial x +— ax?+ bx+c € P(K)is
b? — 4ac, provided a # 0. If K = C and b? — 4ac is non-zero, then the polynomial
ax? + bx + c has two distinct zeros. The characteristic polynomial of a 2-by-2
matrix A satisfies chara(x) = x> — Tr(A)x + det(A). Therefore, if A has complex
entries and satisfies (Tr A)? — 4det A # 0, then it is diagonalisable. If A has real
entries and satisfies (Tr A)? — 4det A > 0, then it has a least one eigenvalue. If
(TrA)? — 4det A > Othenitis diagonalisable.

+ Recall that, by Proposition 5.24, an upper triangular matrix A = (Aj)i<ij<n
satisfies det A = []/_, Aj. It follows that

n
charA(x) = H(X — A,‘,’) = (X — All)(X — A22) s (X — A,m).
i=1

Consequently, an upper triangular matrix has spectrum { A1, Az, ..., Ann} and is
diagonalisable if all its diagonal entries are distinct. Notice that by Example 6.40
(ii) not every upper triangular matrix is diagonalisable.

Example 6.51 (Fibonacci sequences) We revisit the Fibonacci sequences, now
equipped with the theory of endomorphisms. A Fibonacci sequence is a sequence
¢ : NU {0} — K satisfying the recursive relation £, 2 = &, + £,+1. Consider the

matrix
(% &
A_<€1 @)_

Then, using induction, we can show that

n En—l gn
A" =
( §n fn-&-l)

forall n € N. We would like to compute A" for the initial conditions £, = 0 and
& = 1. Suppose we can find an invertible matrix C so that A = CDC~! for some
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diagonal matrix D. Then
A"=cDc'cbC!...cDC!'=cD"C™!
and we can easily compute A", as the n-th power of a diagonal matrix D is the

diagonal matrix whose diagonal entries are given by the n-th powers of diagonal
entries of D. We thus want to diagonalise the matrix

0 1
A= .
()
We obtain chara(x) = x2 — x — 1 and hence eigenvalues \; = (1 + 1/5)/2 and
A2 = (1 — /5)/2. From this we compute

Eiga(\1) = span { (/\11> } and Eiga(A2) = span { (/\12> }

Lete = (&, &) denote the standard basis of R? and consider the ordered basis

=(()-(2)

of eigenvectors of fa. We have

wa@m:(y i):o

and the change of base matrix is

c=qu@=<i L)

and

_ 1 A -1
C'=C(eb) = .
(e.b) = . </\1 1)

Therefore A = CDC~! and hence A" = CD"C~! so that

an_ L (1 1>(>\f 0><A2 —1>:<5n1 £n>_
)\2 — )\1 /\1 /\2 0 /\'21 —/\1 1 §n gn—}—l
This yields the formula

ERYERY:
DV

&n

Proposition 6.52 Let g : V — V be an endomorphism of a finite dimensional
K-vector space V of dimension n > 1.
(i) Let \ be an eigenvalue of g. Then its algebraic multiplicity is at least as big as its
geometric multiplicity.
(i) If K = C, then g is diagonalisable if and only if for all eigenvalues of g, the
algebraic and geometric multiplicity are the same.

Proof (i) Let dim Eig,(\) = m and b be an ordered basis of Eig, (). Furthermore, let
b’ be an ordered tuple of vectors such that ¢ = (b, b’) is an ordered basis of V. The
eigenspace Eig, (1) is stable under g and

M(glEig, (1), b. b) = ALp,.

By Proposition 6.34, the matrix representation of g with respect to the basis c takes the

form
weeo- ()
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for some matrix B € M,,_, n—m(K). We thus obtain

B (x— M1, *
charg(x) = det ( Op v x1, m—B

Applying the Laplace expansion (5.5) with respect to the first column, we have

(x —AN)1,1 * )
charg(x) = (x — A) det
g( ) ( ) ( m—n,m—1 xl,_m—B
Applying the Laplace expansion again with respect to the first column, m-times in total,
we get
charg(x) = (x — X)"det(x1,_m — B) = (x — X)" charg(x).

The algebraic multiplicity of A is thus at least m.

(i) Suppose K = C and that g : V — V is diagonalisable. Hence we have an ordered
basis (v1, ..., v4) of V consisting of eigenvectors of g. Therefore,
charg(x) = H(x —\i)
i=1

where ); is the eigenvalue of the eigenvector v;, 1 < 7 < n. For any eigenvalue )}, its
algebraic multiplicity is the number of indices i with \; = ;. For each such index i, the
eigenvector v; satisfies g(v;) = A\jvi = Ajv; and hence is an element of the eigenspace
Eig, (). The geometric multiplicity of each eigenvalue is thus at least as big as the
algebraic multiplicity, but by the previous statement, the latter cannot be bigger than
the former, hence they are equal.

Conversely, suppose that for all eigenvalues of g, the algebraic and geometric multi-
plicity are the same. Since K = C, by Theorem 6.49, the sum of the algebraic multipli-
cities is n. The sum of the geometric multiplicities is by assumption also n. Since, by
Proposition 6.46, the eigenspaces with respect to different eigenvalues are in direct sum,
we obtain a basis of V consisting of eigenvectors of g. d

6.6 Special endomorphisms

6.6.1 Involutions

Amapping: : X — X from a set X into itself is called an involution, if L ot = Id . In the
case where X is a vector space and ¢ is linear, then ¢ is called a linear involution.

Example 6.53 (Involutions)

(i) Let V be a K-vector space. Then the identity mappingIdy : V — Visalinear
involution.

(ii) Foralln € N, the transpose M, ,(K) — M, ,(K) is a linear involution.

(iii) For n € N, let X denote the set of invertible n x n matrices. Then the matrix
inverse ~! : X — X isaninvolution. Notice that X' is not a vector space.

(iv) For any K-vector space V, the mapping: : V — V,v — —visa linear
involution. Considering F(/, K), the K-vector space of functions on the interval
| C R, we obtain a linear involution of F(V, K) by sending a function f to f o ¢.

(v) If A € M, ,(K) satisfies A2 = 1, then f : K" — K" is a linear involution.

The spectrum of an involution is a subset of {—1, 1}.
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Proposition 6.54 Let V be a K-vector space and v : V — V a linear involution.
Then the spectrum of v is contained in {—1, 1}. Moreover V = Eig,(1) & Eig,(—1)
and ¢ is diagonalisable.

Proof Suppose A € Kis an eigenvalue of ¢ so that «(v) = Av for some non-zero vector
v € V.Then(¢(v)) = v = A(v) = A?v. Hence (1 — A\?)v = 0y and since v is non-zero,
we conclude that A = +1. By Proposition 6.46, the eigenspaces Eig,(1) and Eig,(—1)
arein direct sum.

Forv € V we write
1 1
v =S+ )+ 5 (v = (V)

EEig, (1) EEig, (—1)
hence V' = Eig,(1) @ Eig,(—1). Take an ordered basis b, of Eig,(1) and an ordered basis
b_ of Eig,(1). Then (b, b_)is an ordered basis of V' consisting of eigenvectors of t. [

6.6.2 Projections
Alinear mapping I : V — V satisfying [1 o 1 = Iis called a projection.

Example 6.55 Consider VV = R3 and
1 00
A=1|0 1 0
0 0 O

Clearly, A2 = A and fa : R® — R3 projects a vector X = (x;)1<i<3 onto the plane
(X € R¥|x3 = 0).

In a sense there is only one type of projection. Recall from the exercises that for a projec-
tionl: V — V,wehave V = Ker [1& Im 1. Given two subspaces Uy, U, of V such that
V = U; @ U, , thereis a projectionI1: V — V whose kernelis U; and whose image is
U,. Indeed, every vector v € V can be written as v = u; + up for unique vectors u; € U;
for i = 1, 2. Hence we obtain a projection by defining M(v) = u, forallv € V.

Denote by X the set of projections from V to V and by ) the set of pairs (U, U,) of
subspaces of V that are in direct sum and satisfy V = U; @ U,. Then we obtain a
mapping A : X — Y defined by f — (Ker f, Im f).

Similar to Proposition 6.54, we obtain:

Proposition 6.56 Let V/ be a K-vector space and I : V — V a projection. Then
the spectrum of N is contained in {0,1}. Moreover V = Eign(0) & Eign(1), Mis
diagonalisable and Im I = Eigp(1).

Proof Let v € V be an eigenvector of the projection I with eigenvalue A. Hence we
obtain M(M(v)) = Av = M(v) = v, equivalently, A\(A — 1)v = Oy. Since v is non
zero, it follows that A = 0 or A = 1. Since I is a projection, we have V = Ker 1 & ImI1.
Since Ker N = Eigp(0), we thus only need to show that Im M = Eigp(1). Let v € Im M so
that v = IN(¥) for some vector # € V. Hence (v) = M(M(?)) =MN(?) = vand visan
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eigenvector with eigenvalue 1. Conversely, suppose v € V is an eigenvector of [1 with
eigenvalue 1. Then M(v) = v = M(MN(v)) and hence v € Im 1. We thus conclude that
Im M = Eigp(1). Choosing an ordered basis of Ker I and an ordered basis of Im I gives
a basis of V consisting of eigenvectors, hence I s diagonalisable. O

Exercises

Exercise 6.57 Derive the formula (6.3) for the coefficients b;.

Exercise 6.58 Show that A is a bijection.

Exercise 6.59 Show thatifl1: V — Visaprojectionthenldy, —:V — Visa
projection with kernel equal to the image of 1 and image equal to the kernel of I'.
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CHAPTER 7

Quotient vector spaces

7.1 Affine mappings and affine spaces "?Q%
24

Previously we saw that we can take the sum of subspaces of a vector space. In this final
chapter of the Linear Algebra | module we introduce the concept of a quotient of a vector
space by a subspace.

Translations are among the simplest non-linear mappings.

Definition 7.1 (Translation) Let V be a K-vector space and vy € V. The mapping
T,: V=V, Vi v+ vy

is called the translation by the vector v.

Remark 7.2 Notice that for vy # 0y, a translation is not linear, since T,,(0y) =
Ov + vo = v # 0y.

Takings; = lands, = —1in (3.6), we see that a linear map f : V — W between
K-vector spaces V, W satisfies f(vy — vo) = f(v1) — f(v2) forall v, vo € V. In particular,
linear maps are affine maps in the following sense:

Definition 7.3 (Affine mapping) A mapping f : V — W is called affine if there
existsalinearmap g : V — Wsothat f(vi) — f(v2) = g(v1 — vo) forall vy, vo € V.
We call g the linear map associated to f.

Affine mappings are compositions of linear mappings and translations:

Proposition 7.4 Amapping f : V — W is affine if and only if there exists a linear
map g : V — W and a translation T,,, : W — W sothatf = T,, o g.

Proof < letg : V — W belinearand T, : W — W be a translation for some
vector wp € W sothat T,,(w) = w+ wy forallw € W. Letf = T,, o g sothat
f(v) =g(v) + wpforallv € V.Then

f(v1) — f(v2) = g(v1) + wo — g(v2) — wo = g(v1) — g(v2) = g(v1 — v),
hence f is affine.
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= Lletf: V — W beaffineand g : V — W its associated linear map. Since f is affine
we have forallv € V

f(v) = f(Ov) = g(v —0v) = g(v) — g(0v) = g(v)
where we use the linearity of g and Lemma 3.15. Writing wy = f(0y) we thus have
f(v) = &(v) +wo

so that f is the composition of the linear map g and the translation T, : W — W,
W= w4 w. O

Example 7.5 Let A € M,, ,(K), b € K™ and
fag K" = K", X AZ+b.

Then f, zisan affine map whose associated linear map is fa. Conversely, combining
Lemma 3.18 and Proposition 7.4, we see that every affine map K" — K™ is of the

form f, ; for some matrix A € My, »(K) and vector beKm.

An affine subspace of a K-vector space V is a translation of a subspace by some fixed
vector vp.

Definition 7.6 (Affine subspace) Let V be a K-vector space. An affine subspace of
V is a subset of the form

U+ v ={u+ wlue U},

where U C Visasubspace and vy € V. We call U the associated vector space to
the affine subspace U + vy and we say that U + vy is parallel to U.

Example 7.7 Let V = R? and U = span{é; + &} = {s(é + &)|s € R} where
here, as usual, {&, &} denotes the standard basis of R?. So U is the line through
the origin Og. defined by the equation y = x. By definition, for all v € R? we have

U+vV={V+sw|seR},

where we write w = &) + &. So for each v € R?, the affine subspace U + Vis a line
in R?, the translation by the vector v of the line defined by y = x.

7.2 Quotient vector spaces

Let U be a subspace of a K-vector space V. We want to make sense of the notion of
dividing V by U. It turns out that there is a natural way to do this and moreover, the
quotient V' /U again carries the structure of a K-vector space. The idea is to define V /U
to be the set of all translations of the subspace U, that is, we consider the set of subsets

V/U={U+vlveV}

We have to define what it means to add affine subspaces U + v; and U + v, and what it
means to scale U + v by a scalar s € K. Formally, itis tempting to define 0,/,y = U+ 0y
and

(71) (U+V1) +V/U (U—|— V2): U+(V1—|—V2)
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forall vi, v» € V aswell as
(7.2) 5'V/U (U+V): U+(SV)

forall v € V and s € K. However, we have to make sure that these operations are well
defined. We do this with the help of the following lemma.

Lemma 7.8 Let U C V be asubspace. Then any vector v € V belongs to a unique
affine subspace parallel to U, namely U+ v. In particular, two affine subspaces U + v,
and U + v; are either equal or have empty intersection.

Proof Since0y € U,wehavev € (U+v), henceweonly needtoshowthatifv € (U+7)
for some vector ¥, then U+ v = U+ ¥. Assume v € (U + V) sothat v = u + ¥ for some
vector u € U. Suppose w € (U + 7). We need to show that then also w € (U + v). Since
w € (U+ ?)wehave w = 0 + ¥ for some vector i € U. Using that ¥ = v — u, we obtain

w=0+v—u=0—u+v
Since U is a subspace we have i — u € Uand hencew € (U + v).

Conversely, suppose w € (U + v), it follows exactly as before that then w € (U + 7) as
well. O

We are now going to show that (7.1) and (7.2) are well defined. We start with (7.1). Let
vi, o € Vand wq, wp € V such that

U+rvi=U+wm and U+ v =U-+ w.

We need to show that U + (v; + v2) = U + (w1 + w»). By Lemma 7.8 it suffices to show
that wi + ws is an element of U + (v; + v2). Since U + wy = U + v it follows that
wy € (U + vy)sothat wy = vy + v; for some element u; € U. Likewise it follows that
Wwo = up + v, for some element u, € U. Hence

Wi+ Wo = Uy + Us + Vi + vo.

Since U is a subspace, we have u; + up € U and thus it follows that wy + ws is an element
of U+ (V1 + Vz).

For (7.2) we need to show thatif v € Vand w € V aresuchthat U + v = U + w, then
U+ (sv) = U+ (sw)foralls € K. Again, applying Lemma 7.8 we only need to show that
sw € U+ (sv).Since U+ v = U + wit follows that there exists u € U withw = u + v.
Hence sw = su+sv and U beinga subspace, we have su € U and thus sw liesin U+ (sv),
as claimed.

Having equipped V' /U with addition +,,, defined by (7.1) and scalar multiplication -y
defined by (7.2), we need to show that V /U with zero vector U + 0y is indeed a K-vector
space. All the properties of Definition 3.1 for VV /U are however simply a consequence of
the corresponding property for V. For instance commutativity of vector addition in V' /U
follows from the commutativity of vector in addition in V, that is, forall vy, vo» € V we
have

(U-l- V1) +V/U (U+ V2) =U+ (V1 + Vz) = U+(V2 + V1) = (U+ V2) +V/U (U-l- V1).

The remaining properties follow similarly.

Notice that we have a surjective mapping

p:V—=>V/U v U+v.
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which satisfies
p(vi+v2)=U+(vi+w)=(U+wv)+vu(U+w)=pvi)+vwp(va)
forall vy, v» € V and
p(sv) = U+ (sv) =s-v,u (U+Vv)=s-vup(v).
forall v € V and s € K. Therefore, the mapping p s linear.

Definition 7.9 (Quotient vector space) The vector space V /U is called the quotient
(vector) space of V by U. The linear map p : V — V/U is called the canonical
surjection from V to V// U.

The mapping p: V — V/U satisfies
p(v)=0yyw=U+0y <= veU
and hence Ker(p) = U. This gives:

Proposition 7.10 Suppose the K-vector space V is finite dimensional. Then V' /U is
finite dimensional as well and

dim(V/U) = dim(V) — dim(U).

Proof Since pis surjective it follows that V/ /U is finite dimensional as well. Hence we
can apply Theorem 3.76 and obtain

dim V = dim Ker(p) 4+ dimIm(p) = dim U + dim(V//U),
where we use that Im(p) = V /U and Ker(p) = U. O

Example 7.11 (Special cases)

(i) Inthe case where U = V weobtain V/U = {0y ,y}.
(i) Inthe case where U = {0y } we obtain that VV/U is isomorphic to V.

Exercises

Exercise 7.12 Show that the image of an affine subspace under an affine map is
again an affine subspace and that the preimage of an affine subspace under an affine
map is again an affine subspace or empty (cf. Proposition 3.26).
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CHAPTER 8

Symmetry and groups

8.1 Symmetry %27"1

The notion of a group arose by trying to formalise the concept of symmetry. Roughly
speaking, given a non-empty set X’ with some extra structure, a symmetry or symmetry
transformation of X is a bijective transformation o : X — X that respects the extra
structure. For simplicity, we ignore any extra structure, so for us a symmetry of a set X' is
simply a bijective mapping from X’ to itself.

Example 8.1

(i) Letn € N. Apermutation isasymmetry of theset X = {1,2, ..., n}.
(ii) Let V beaK-vectorspaceandvy € V.Thetranslation T, : V — V,v — v+
by the vector vy is a symmetry of V.
(iii) Let X be any non-empty set. The identity transformationldy : X — X defined
by ldx(x) = x forall x € X is a symmetry of X

Often the set X is a subset of some larger set Z and the symmetries of X arise as bijective
mappingso : £ — Z thatleave X invariant, thatis, oc(x) € X forallx € X. Weillustrate
this with two examples:

Example 8.2

(i) Consider Z = R? and X’ to be the circle of radius r > 0 centred at the origin
Op2, thatis, X = {)?: (X,')lg,'gz S RZ‘(Xl)z + (X2)2 = r2}. Letf € Rand

R, — cosf) —sind

7 \sind  cost
so that fr, : R?2 — R? s the counter-clockwise rotation around the origin
Ogr> with angle 6. A rotation does not change the length of a vector and hence
fr, (X) € X for each element X € X. The restriction o = fg,|x : X — X of the

rotation fg, to the circle X' is thus a symmetry of the circle. Notice that not all
symmetries of the circle are restrictions of rotations. The linear mapping

f:R? - R?, (X1> — <X1)
X2 —X2

is the reflection along the x;-axis and hence restricts to be a bijective mapping
from the circle X’ onto itself. It is thus also a symmetry of the circle.

(i) Let n € Nwith n > 3. We consider a regular polygon X" with n sides centred
at the originin Z = R? an so that (1,0) € X. Clearly, not every rotation of R?
restricts to be a symmetry of X, but only rotations with angle 27k /n where
k €{0,1,2,...,n — 1}. We thus have n rotation symmetries arising from the
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matrices
cos 2Tk _gip 27k
n n .
sin 22k cog 27k
n n

In addition, the reflection along the x;-axis is a symmetry of X.

Remark 8.3 The composition of two symmetries of a set X' is again a symmetry of
X and composing symmetries satisfies the following fundamental properties:

o Ifo,m,7: X — X are symmetries, then
(com)or=0co(moT)

« The identity transformation Id y is a symmetry of X’ and for all symmetries o :
X — X, we have
cgoldy =c=Ildyoo
- Foreach symmetry o : X — X there exists an inverse symmetryo=1: X — X
so that

cooc t=Ildy =0 too.

8.2 Groups

We have defined the permutations S, to be the bijective mappings of the set X, =
{1,2, ..., n}, hence by definition, they are symmetries of X,,. Recall that in addition,
every permutation o € S, also gives rise to a bijective (linear) mapping from K" — K"
defined by & — &,;), where {é}, ..., &,} denotes the standard basis of K". Hence, every
permutation also gives a symmetry of K”. The permutations thus make an appearance as
symmetries of two different sets, X, and K". This suggests that a more detailed picture of
a symmetry is needed. It turns out that a symmetry is the interplay of two mathematical
notions, the notion of a group and the action of a group on a set X. We start with the
definition of a group, c.f. Remark 8.3:

Definition 8.4 (Group) Agroup isa pair (G, x¢) consisting of a set G together with
a binary operation x¢ : G x G — G, called group operation, so that the following
properties hold:

(i) The group operation x¢ is associative, that is,
(a*g b)*xgc=axg (bxgc) foralla b,ceG.
(ii) There exists an element e € G such that
ec*¥gca=a=axgec forallac G.

The element e is unique (see below) and is called the identity element of G.
(iii) Foreach a € G there exists an element b € G such that

axg b=ec=bxga.

The element bis unique (see below) and called the inverse of aand is commonly
denoted by a~!.
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Example 8.5 (Examples of groups)

(i) The symmetries of a set X form a group G, often denoted by Sym(X'), where
xg = o is the composition of mappings. The identity element is the identity
mapping ec = Idx and the inverse of each symmetry o is the mapping inverse
oL In particular, for n € N, the permutations of X, = {1,2, ..., n} form a
group G = S, with xg = oand eg = 1, the identity permutation.

(i) Afield K gives rise to two groups. The additive group of the field where G = K
and xc = +x and the multiplicative group of the field where G = K* and
*x¢ = -k. For the additive group we have e = Ok and the inverse of x € Kiis
—x. For the multiplicative group we have e = 1k and the inverse of x € K* is
1

(iii) ;]K-vector space V gives rise to a group where G = V and % = +y. Here the
identity element is the zero vector e¢ = 0y and the inverse of v € Vis —v.

(iv) Let n € N. The invertible n x n matrices with entries in K form a group G
commonly denoted by GL,(K) or GL(n, K). Here ¢ is matrix multiplication,
ec = 1,, the identity matrix of size n and the inverse of a group element is the
matrix inverse. GL is an abbreviation of general linear.

Remark 8.6

« A group with finitely many elements is called finite. The group of permutations S,
is an example of a finite group. A finite field gives rise to two finite groups.
Notice that we do not require the group operation xg : G x G — G to be
commutative, soin general axg b # bx¢ a. As an example consider G = GL(n, K)
where x¢ is matrix multiplication. If the group operation ¢ is commutative, then
the group is called Abelian or commutative. The examples (ii) and (iii) above
are examples of Abelian groups. The permutation group S, is Abelian only for
n=1,2.

« Often we write +¢ instead of ¢ and O¢ instead of e when the group is Abelian.
« Some authors write 1 instead of eg and/or - instead of *.

As always, the subscript G is often omitted so that we write * instead of x; and e
or 1 instead of eg. Like for fields, * or x¢ is often omitted entirely so that we write
ab instead of a ¢ b.

Similar to fields, the definition of a group implies some basic properties:

Proposition 8.7 Let (G, x¢) be a group. Then
(i) the identity element e is unique;
(ii) forall a € G, the inverse a— is unique.

Proof

(i) Suppose eg and & are identity elements for G. Then
G = €G *G éG = ég.
(i) Suppose a € G and both b and c are inverse elements for a. Then

b=bxgec=bxg(axgc)=(bxga)*cc=es*cCc=c.
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Similar to vector spaces and fields, groups allow for the notion of a subgroup.

Definition 8.8 (Subgroup) A non-empty subset H of a group G is called a subgroup
ifforalla, b € H,wehaveax¢ b € Handforalla € H,wehavea™! € H.

Notice thatif H C G is a subgroup, the non-emptiness condition implies that there exists
a € H.Therefore,a~! € Hand hence axg a~! = eg € H. We can thus equip H with the
structure of a group as well by defining ey = eg and axy b = ax¢ bforalla, b € H.

Example 8.9 The set of integers Z is a subgroup of the Abelian group (Q, +), where
+ denotes usual addition of rational numbers. Indeed 0 € Z and the sum of two
integers is again an integer. Recall that for m € Z, the notation m~! refers to the
inverse element of mwith respect to the group operation. So here m—! is the additive
inverse of m € Z, thatis —m. Since —m € Z for all m € Z, we conclude that Z is an
(Abelian) subgroup of (Q, +).

Example 8.10 Asubspace U C V ofaK-vectorspace V is asubgroup of the Abelian
group (V, +v).

Example 8.11 Let SL(n, K) denote the subset of GL(n, K) consisting of matrices of
determinant 1. The set SL(n, K) is non-empty since it contains 1,. Furthermore, the
product rule for the determinant Proposition 5.21 implies that if A, B € SL(n, K),
then so is the matrix product AB. Corollary 5.22 furthermore implies that if A €
SL(n,K), then so is A~L. It follows that SL(n, K) - commonly also denoted by
SL,(K) - is a subgroup of GL(n, K) called the special linear group.

Example 8.12 The trigonometricidentities for sin and cos imply that RyRy = Ry,
where 0,9 € RSince Ry = 1, € SL(2, R) anddet Ry = 1 forall§ € R, we conclude
that the rotations {Ry|6 € R} around the origin Og2 form a subgroup of SL(2, R).
The group of rotations in R? is denoted by SO(2). Later on we will encounter the
orthogonal group O(n) and the special orthogonal group SO(n), the latter of which
generalises SO(2) to higher dimensions.

8.3 Group actions

In order to tie the notion of a group more closely to the notion of a symmetry, we need the
concept of a group G acting on a set X. This section - which we include for the interested
reader - goes beyond the usual material in a Linear Algebra course and is not examinable.

Definition 8.13 (Group action) Let G be a group and X’ a non-empty set. A (left)
group action of G on X' isa mapping ¢ : G x X — X such thatforallx € X

o(eg, x) = x
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and
p(ax*c b, x) = ¢(a ¢(b, x))
foralla,b€ Gandx € X.

Remark 8.14

« The first condition simply requests that the identity element e of G acts trivially,
that is, nothing happens to the elements of X when acting with eg.

+ The second condition requests that acting with a % b corresponds to first acting
with b and then acting with a.

+ Notice that for each fixed a € G we obtain a mapping ¢, : X — X defined
by ¢a(x) = ¢(a, x). The above properties imply that for all a € G we have
¢a 0 pym1 = ¢P,—1 0 ¢, = ldy, hence ¢, : X — X is bijective and hence a
symmetry of X.

Example 8.15
(i) Every group G acts on itself. We take X = G and define

6:GxG—G, (ab)— d(ab)=axcbh.

Then forall a € G we have ¢(e;,a) = e *¢c a = a. Furthermore, for all
a, b, c € Gwehave

¢(axg b,c) = (axg b)*xc c=axg (bxgc)=axc (b c)=¢(a ¢(b, c))

so that ¢ does indeed define an action of G on itself.
(ii) Consider ¥ = R? and G = SO(2). We define an action

qf)ZGXX—)X, (RQ,Y)H¢(R9,;):R9)?'

which rotates a vector X € R? counter-clockwise around the origin O by the
angle . Here x¢ is just matrix multiplication, so we have for all X € R? and
Ry, Ry € SO(2)

#(RoRy, X) = RgRyX = Ryo(Ry, X) = #(Rg, $(Ry, X)).
Furthermore, since eso(2) = Ro = 12, we have forall X € R?
P(eso(2), X) = 1oX = X.
It follows that ¢ does indeed define an action of SO(2) on R2.

(iii) Letn € Nand X = M, ,(K). The general linear group GL(n, K) acts on X by
conjugation. We define

¢ : GL(n, K) x M, ,(K) = M, ,(K), (C,A)+— ¢(C,A)=CAC™™.
Thenforall A € M, ,(K) we have
dec,A) = #(1,,A) =1,A(1,) ' =A

where we use that eg (,x) = 1,. Moreover, for C,C" € GL(n,K)and A ¢
M, »(K), we have

4(CC', A) = CC'A(CC') ! = CC'A(C))'C !
= C¢(C',A)C ! = ¢(C, ¢(C', A)),

where we use that for all C, C’ € GL(n, K), we have (CC")~! = (C’)~1C~ L. It
follows that ¢ does indeed define an action of GL(n, K) on M,, ,(K).
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(iv) Let V beaK-vectorspaceand U C V asubspace. Taking G = Uwithxg = +¢
and X = V, the group G acts by translation. We define

o UxV =V, (uv)—o(uv)=u+tyv.
Since eg = 0y = Oy, we haveforallv € V
o(eg,v) =0y +yv=v.
Moreover, forall uy, u, € Uand v € V we have
O +u o, v) = (n +y ) +vv=u +v o, v) = ¢(ur, d(u2, v)),

where we usethat +y : U x U — Uistherestrictionof+, : V x V — V to
U x U C V x V.Weconclude that ¢ defines an action of the subspace U on
V.

(v) Letn € N.Apermutationo € S,actson X, = {1,2, ..., n} by

¢: S, x Xy = Xy (0,m)— ¢(o, m) =c(m).

We leave it to the reader to check that this is indeed an action. In addition, a
permutation o € S, does also act on K" by the rule

¢(o,X) = PX,

where X € K" and P, is the permutation matrix associated to 0 € K",
c.f. Definition 5.28.

A particularly important class of group actions arises when (G, *¢) is the Abelian group
(R, +) orits subgroup (Z, +). This case arise for instance when the set X' is a phase space
(roughly speaking, the set of different physical states) of a physical system and the action
describes the evolution of the system under the progression of time.

Definition 8.16 (Dynamical system) Let X be a non-empty set. A time-discrete
dynamical system is an action of (Z, +) on X. A time-continuous dynamical system
is an action of (R, +) on X.

Often the term dynamical system is also used when the action is only defined for all
non-negative times Ry = {t € R|t > 0} orNy = {t € Z|t > 0}.

Example 8.17

(i) Let X C R3 denote the set of all points in our solar system. An asteroid initially
at rest at the position xo € X will move under the influence of gravity. Let x;
denote the position of the asteroid after time t € R has passed. The mapping

PRy x X = X, (t,x0) — ot x0) = x

describing the movement of the asteroid is then a time-continuous dynamical
system.

(i) Let X = {0, 1}V denote the carrier status of a contagious disease of each
individual of a population of size N € N. So x € Xisalistof length N containing
0s and 1s, where the k-th entry reflects the carrier status of the k-th member
of the population, 0 for non-carriers and 1 for carriers. Let xo € X denote the
carrier status at some initial time t = 0 and for m € Ny let x,,, denote the carrier
status after m days have passed. The mapping

¢ Nogx X =X, (m,x)+— ¢(m, x0) = Xm
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describing the progression of the disease in the population is then a time-
discrete dynamical system.

Given a group action on some set X’ and some point x € X, we consider the subset of
elements of X that can be reached by acting with all the groups elements of G. This
subset is known as the orbit of x. More precisely:

Definition 8.18 (Orbit) Let X’ be a non-empty set, ¢ : G x X — X an action of the
group (G, xg)on X and x € X. The orbit of x € X under G (or sometimes G-orbit
of x) is the subset

Gxgx={¢(a,x) e Xaec G}.
The set of all G-orbits in X is denoted by X'/ G.

In the time-continuous dynamical system above, the orbit of xg € X consists of the
points x; where t € R} and x, is the time t position of the asteroid with initial position
Xp. The orbit is thus the trajectory of the asteroid as time progresses. Therefore, the
mathematical concept of orbit is a generalisation of the standard use of the term orbit.

Example 8.19

(i) Consider the action of SO(2) on R? from above. The orbit of X # Og> consists
of all points in R? obtained by rotating X counter-clockwise around the origin.
Since the rotation angle can be chosen arbitrarily, the orbit of X'is the circle of
all points of R? that have the same length as X. On the other hand, the orbit of
Or2 only consists of Op2, that is, we have

50(2) *50(2) ORZ = {ORZ}.

In this particular case we have a complete picture of all possible orbits, an orbit
is either the zero vector or else a circle centred at the origin, hence

X /G =R?/SO(2) = {02} U {circle of radius r centred at Oga|r > 0}.

(i) Consider the action of GL(n,K) on M, ,(K) from above. Let D =
diag(A1, ..., An) be adiagonal matrix with entries Ay, ..., A, € K. The GL(n, K)-
orbit of D then consists of all n x n-matrices with entries in K that are diagon-
alisable with eigenvalues A1, ..., A,. Acomplete description of the set of orbits
M, »(K)/GL(n,K) is out of reach for us at this point, we will however have
more to say about this in the Linear Algebra Il module.

(iii) We consider the action of S, on R? as defined above. The orbit of a vector

V= (;) € R2 with x # y is the subset

sex7={()- ()

On the other hand, the orbit of a vector v = (X> € R?is just {V}. For a vector
X
of the first type, either x > y or x < y. The orbit of each such vector can thus
be represented uniquely by a vector v = <X> with y > x. The vectors of the
y

second type lie on the axis defined by the equation y = x. We thus have a
bijective mapping from R2/S, to the half plane H = {(x, y) € R?|y > x}.
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Remark 8.20 (Quotient vector space) Given a subspace U C V, we have seen that
the Abelian group (G, *x¢) = (U, +v) actson X = V by translation. In this sense
U + v is simply the orbit of v under this action and V /U is the set of orbits X'/ G.
Furthermore, Lemma 7.8 is a special case of a more general statement about orbits:
If a group (G, *¢) acts on a non-empty set X', then every element x € X belongs to
aunique G-orbit, namely G ¢ x. In particular two orbits G x¢ x; and G *¢ x, are
either equal or have empty intersection.

Exercises

Exercise 8.21 Show that mapping S, x K" — K" givenin Example 8.15does indeed
define an action.

Exercise 8.22 Prove the statement about orbits from Remark 8.20.
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CHAPTER 9

Bilinear forms

9.1 Definitions and basic properties We&r
2

So farin Linear Algebra we have dealt with vector spaces without thinking much about
geometric aspects. For example, for an abstract vector space we cannot say what the
angle between two vectorsis. Likewise, we are not able to talk about the distance between
elements of a vector space. To make sense of these notions, the vector space needs further
structure given by an inner product.

Aninner product is a special case of a bilinear form. The prototypical example of a bilinear
form is the standard scalar product on R" that you might already know. Recall that for
X = (xi)1ci<nand ¥ = (yi)i<i<n € R", we define

n
(91) )?)7: ZXIYIZX1Y1+"~+Xnyn.
i=1

It is also common to write (X, y) instead of X - y. As we have already seen in Example 5.3,
the standard scalar product is an example of a 2-multilinear map.

Definition 9.1 (Bilinear form) Let V be a K-vector space. A bilinear formon V is a
2-multilinear map with values in K

() VxV =K, (vi, v2) = (v, ).
Thatis, forall s;, s, € Kand all v, v», v3 € V we have
(s1v1 + s2v2, v3) = s1(v1, v3) + 52(V2, v3)

as well as

(v3, s51v1 + s2v2) = s1(v3, v1i) + 52(v3, va).
We say that (-,-) is symmetric if (vi, vo) = (vo, v1) forall vi, vo € V and alternating if
(v,v) =0forallv e V.

Example 9.2 (Bilinear forms)
(i) The standard scalar product defined by the rule (9.1) is a bilinear form on R".
(i) Letn € Nand A € M, ,(K) be a matrix. Using matrix multiplication, we define
a mapping
(92) <~,~>A K" x K" — K, ()?1,)?2) — <;11;2>A = )?17—A)_<’2
Notice that A%, € M,,1(K) and %] € My ,(K) so that T As, € My 1(K) = K.
The properties of the transpose and matrix multiplication imply that (-,-)a is
indeed a bilinear form on K”. Also, observe that the standard scalar product
on R” arises by taking A to be the identity matrix 1, € M, ,(R). That s, for all
X,y € R",wehavex -y = (X, y)1,.
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(iii) Using the determinant of a 2 x 2-matrix, we obtain a map

() Ktk (66 66— (§).
2
The properties of the determinant then imply that (-,-) is an alternating bilinear
form on the K-vector space K.
(iv) For n € N we consider V = M, ,(K), the K-vector space of n x n-matrices
with entries in K. We define (-,-) : M, ,(K) x M, ,(K) — K by the rule

(9.3) (A,B) — (A,B) = Tr(AB).
Definition 6.17 implies that
TI’(SlAl + 52A2) =5 Tr(Al) + S Tr(A2)
forallsy, s, € Kandall Ay, Ay, € M, ,(K), thatis, the trace is a linear map from
M, »(K) into K. Hence we obtain forall s;, s, € Kand all Ay, Ay, B € M, ,(K)
<51A1 + s5A,, B> = Tr((51A1 —+ 52A2)B) =5 Tr(AlB) + S TI’(AQB)
= 51<A1, B> —+ 52<A2, B>

showing that (-,-) is linear in the first argument. Proposition 6.19 implies that
(A,B) = (B, A)forall A,B € M, ,(K), hence (-,-) is symmetric and therefore
also linear in the second variable. We conclude that (9.3) defines a symmetric
bilinear form on the vector space M, ,(K).

(v) We consider V = P(K), the K-vector space of polynomials. For some fixed
scalar xp € Kwe may define

() 1 P(K) x P(K) = K, (p,q) = (p. q) = p(x0)q(x0)-
Then we have for all s1, s, € Kand polynomials p1, p2, g € P(K)
(s1p(K) P1 +P(K) 2 'P(K) P2, 9) = (51 P(x) P1 +P(K) %2 P(K) P2) (X0)q(x0)
= (s1p1(x0) + 52p2(x0))q(x0)
= s1p1(x0)q(x0) + 52p2(x0)q(x0)
= s1(p1,q) + 52(p2, q)-
Hence (-,-) is linear in the first variable. Clearly (:,-) is also symmetric and
therefore defines a symmetric bilinear form on V = P(K).
(vi) We consider V = C([—1, 1], R), the R-vector space of continuous real-valued
functions defined on the interval [—1, 1]. Recall from M03 Analysis | that con-

tinuous functions are integrable, hence we can define
1

() VxV =R, (f,g)— (f.g)= [1 f(x)g(x)dx.

The properties of integration imply that this defines a symmetric bilinear form
on C([-1,1],R).

Recall that the choice of an ordered basis of a finite dimensional K-vector space V allowed
to associate a matrix to every endomorphism f : V — V. Similarly, an ordered basis
also allows to associate a matrix to a bilinear form (-,-) on V.

Definition 9.3 (Matrix representation of a bilinear form) Let V be a finite dimen-
sional K-vector space,b = (vi, ..., v,) an ordered basis of V and (-,-) a bilinear form
on V. The matrix representation of (-,-) with respect to b is the matrix M((-,-), b)
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satisfying
M((:,), b) = ((vi vi))i<ijsn

Remark 9.4 (U - not examinable) Let Bil(V) denote the set of bilinear forms on
some K-vector space V. By definition, Bil(V) is a subset of the vector space of
functions from V x V into K. By Definition 3.21, it follows that Bil(V) is itself a
K-vector space. Moreover, if dimV = n € Nand V is equipped with an ordered
basis b, the mapping from Bil(V') into M,, ,(K) which sends a bilinear form to its
matrix representation with respectto b

() = M({), b)

is an isomorphism. In particular, dim Bil(V') = n?. The proof is left to the interested
reader.

Example 9.5
(i) Let (-,-) denote the standard scalar product on R” and e = (€, ..., &,) the
standard basis of K". Then, one easily computes that
(€ &) =& &g =0
and hence M((-,-),e) = (0j)1<ij<n = 1n.
(ii) Likewise, if A € M, ,(K), then M({:,-)a,e) = A. Indeed, writing A =
(Aij)lgi,jgm we have

n
Ag =) Ayéi
k=1
and thus
n n n
(@.&)a=eAG =& > Agéi=) Agé & =) Agdi=A;.
k=1 k=1 k=1
(i) Let (-,-) denote the alternating bilinear form on K, from Example 9.2 above

and
b=((1 0),00 1)).
The alternating property of (-,-) implies that the diagonal entries of M({(-,-), b)
vanish. Hence we obtain
10

M((-,-),b) = 0 det(O 1) :(0 1)-

o 0 1 -1 0
det(1 0) 0

Proposition 9.6 Let V be a finite dimensional K-vector space, b = (vy, ..., v,) an
ordered basis of V with associated linear coordinate system 3 : V — K" and (-,-) a
bilinear form on V. Then

(i) forall wy, wo, € V we have

(w1, wa) = (B(w1)) "M((:,), b)B(w2).
(ii) {-,-) is symmetric if and only if M({-,-), b) is symmetric;
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(iii) ifb’ is another ordered basis of V, then
M((--),b") = C"M((-,-), b)C,

where C = C(b’, b) denotes the change of basis matrix, see Definition 3.104.

Proof (i) Since b is a basis of V, it follows that for all wy, w, € V there exist unique
scalars sy, ..., s,and ty, ..., t, so that

n

n
wp = E SiV; and Wo = E tiv;.
i=1

i=1

Recall that this means that
,8(W1) = and ,8(W2) =

Using the bilinearity of (-,-), this gives

(wy, wa) <Zs,v,,2tvj>— S;th<v,',\/j>
=1 j=1
- Zs,Z[M b)ljt; = (B(w1)) TM({-,-), b)B(wz).
=1 j=1
(ii) Suppose (-,-) is symmetric. Then forall 1 < 7, j < n, we have

[M((-.), B)]j = (Vi vj) = {vj, vi) = [M((--), )i

so that M((-,-}, b) is symmetric. Conversely, suppose M({(-,-), b) is symmetric. Using
notation asin (i), we obtain for all wy, w, € V

(w1, wo) ZZ&[M ,“fZZt[M b)ljisi

i=1 j=1 j=1 i=1
= (w2, w1)

so that (-,-) is symmetric as well.

(iii) Let b’ = (v1, ..., v},) be another ordered basis of V. Since b is a basis of V' there exist
unique scalars Cjj, 1 < i, j < nsuch that

n
/ } :
VJ == C,-jv,-
i=1

and, by Definition 3.104, we have C(b’, b) = (Cjj)1<i j<n. Writing C = (Cjj)1<ij<n and
using the bilinearity of (-,-), we calculate

M((-), b)) = (v, v)) = <z”: Ckin.zn: CIjVI> = z":z": Cui Cjj (i, vi)
=1 1=1

= Z Cyi Z Vi, vi)Cjj = Z Cki[M((-,), b)Cly
=1

= Z[CT]M[M(M% b)Clij = [CTM((-.-), b)C];
k=1

as claimed. O
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Example 9.7 We consider the symmetric bilinear form (-,-) o on R? arising from the

matrix
5 1
A_(l 5).

via the rule (9.2). Lete = (&}, &) denote the ordered standard basis of R? and
b = (é + &, & — é). In Example 9.5 we have seen that M(({-,-)a,e) = A. In
Example 3.106 we computed that

C(be) = G ‘11) |

By definition, we have

so that

Indeed, writing C = C(b, e), we have

cmianec= (" 1) (5 2) (1 1) = (5 ) —MEaan)

in agreement with Proposition 9.6.

Remark 9.8 You may remember from school that two non-zero vectors x;, x> € R”
are perpendicular if and only if x; - X, = 0. In particular, no non-zero vector in R”
is perpendicular to all vectors, or phrased differently, if X - X, = 0 for all vectors X,
then X = Ogn.

This condition also makes sense for a bilinear form:

Definition 9.9 (Non-degenerate bilinear form) Let (-,-) be a bilinear form on a finite
dimensional K-vector space V. Then (-,-) is called non-degenerate, if whenever a
vector vy € V satisfies (v, vo) = 0forall vectors v € V/, then we must have vy = Oy.

Non-degeneracy of a bilinear form (-,-) can be characterized in terms of its matrix repres-
entation, more precisely:

Proposition 9.10 Let (-,-) be a bilinear form on a finite dimensional K-vector
space V and b an ordered basis of V. Then (-,-) is non-degenerate if and only if
det M((-,-), b) # 0.

—

Proof Let n = dim V. First observe that a vector y € K" satisfies X7 y = O forall X € K"
if and only if y = Okn.
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The statement of the proposition is equivalent to the statement that det M((-,-},b) =0
if and only there exists a non-zero vector vy € V so that (v,v) = Oforallv € V.
We write A = M({(-,-), b). By Proposition 6.22, det A = 0 is equivalent to the mapping
fa : K" — K" not being injective and hence by Lemma 3.31 equivalent to the existence
of a non-zero vector x; € K" with Axg = Ok». Let vy € V be the non-zero vector whose
coordinate representation is X, that is, 3(vp) = X, where 8 : V — K" denotes the
linear coordinate system associated to b. By Proposition 9.6 we have forall v € V

(9.4) (v.vo) = (B(v))TM((-,-), b)B(wo) = (B(v)) T A%.

Writing y = AXp, the observation at the beginning of the proof shows that (9.4) is 0 for
allv € Vifandonly if Axy = Oxkn. O
Exercises

Exercise 9.11 We consider V = M, »(R) and define

():VxV SR (AB)— (A B) =~ (det(A + B) — det(A — B)).

1
4
Show that (-,-) defines a symmetric bilinear form on V. = M, »(R).
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9.2 Symmetric bilinear forms "I'Q?r
3

We now restrict to the case K = R. Perpendicular vectors are orthogonal in the following
sense:

Definition 9.12 (Orthogonal vectors) Let V be an R-vector space equipped with a
symmetric bilinear form (-,-). Two vectors vy, v» € V are called orthogonal with re-
spectto (-,) if (v, o) = 0. We write vy L v, ifthevectors vy, vo € V are orthogonal.
Asubset S C Vis called orthogonal with respect to (-,-) if all pairs of distinct vectors
of S are orthogonal with respect to (-,-). A basis of V which is also an orthogonal
subset is called an orthogonal basis.

Example 9.13

(i) Perpendicular vectorsin R" are orthogonal with respect to the standard scalar
product defined by the rule (9.1).

(ii) Example 9.7 continued: As we computed above, the vectors v; = é] + & and
» = & — & satisfy (v, ib)a = 0 and hence are orthogonal with respect to
(-)a.

(iii) Example 9.2 (vi) continued: Let f; € V be the function x — xand 3 € V be
the function x — 2(5x® — 3x). Then

1
1 1
<f1, f};> = /_1X§(5X3 — 3X)dX = 5 (x5 —x3) B =0,

so that 1 and f3 are orthogonal with respect to (-,-).

Definition 9.14 (Orthonormal vectors) Let V be an R-vector space equipped with
a symmetric bilinear form (-,-). Asubset S C V is called orthonormal with respect
to (-,-) if S is orthogonal with respect to (-,-) and if for all vectors v € S we have
(v, v) = 1. Abasis of V which is also a orthonormal subset is called an orthonormal
basis.

Remark 9.15

« Often when (,-) is clear from the context we will simply speak of orthogonal or
orthonormal vectors without explicitly mentioning (-,-).

+ Notice that an ordered basis b of V is orthonormal with respect to (-,-) if and only
if

where n = dim V.

Example 9.16
(i) The standard basis {éj, ..., €,} of R" satisfies

—

e;-ej:5,-j

and hence is a orthonormal basis with respect to the standard scalar product
onR".
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(i) Example 9.2 (vi) continued: Let S = {f, f», 3} C C([—1, 1], R) be the subset
defined by the functions

3 1 /5 1 /7
fi :x»—>\/;x, f2:x»—>2\/g(3x2—1), &:tz\/;(5x3—3x).

Then S is orthonormal with respect to (-,-) as can be verified by direct compu-
tation.

Given a subspace U C V,its orthogonal subspace consists of all vectors in V that are
orthogonal to all vectors of U.

Definition 9.17 (Orthogonal subspace) Let V be an R-vector space equipped with
a symmetric bilinear form (-,-) and U C V a subspace. The set

Ut ={veV|{v,u)=0 Yue U}

is called the orthogonal subspace to U.

Remark 9.18

« Itis common to write (v, U) = Oinstead of (v, u) =0 Vu € U.

+ Notice that the orthogonal subspace is indeed a subspace. The bilinearity of (-,-)
implies that (Oy, u) = Oforall u € U, hence 0y € Ut and U~ is non-empty.
Moreover, if vi, v € UL, then we haveforallu € Uandalls;, s, € R

<51V1 + Sy, U> = 51<V1, U> + 52<V2, U> =0

where we use the bilinearity of (-,-) and that v;, v € U*. By Definition 3.21 it
follows that U is indeed a subspace.

« Notice also that a symmetric bilinear form (-,-) on V' is non-degenerate if and only
if V= {0y}

Example 9.19

(i) LetR3 be equipped with the standard scalar product. If U is a line through the
originin R3, then U~ consists of the plane through the origin that is perpendic-
ularto U, see Figure 9.1.

(ii) Example 9.2 (iv) continued. Let U = {s1,|s € R} then

Ut ={A € M, ,(R)| Tr(Asl,) =0 Vs € R}.

Since Tr(Asl,) = sTr(Al,) = sTr(A), we conclude that the orthogonal
subspace to U consists of the matrices whose trace is zero

Ut ={A € M, ,(R)| Tr(A) = 0}.

Previously in Corollary 3.65 we saw that every finite dimensional vector space V admits
a basis. We can now upgrade this fact in the case where V is equipped with a symmetric
bilinear form:
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FIGURE 9.1. The orthogonal complement of a line through the origin.

Theorem 9.20 (Existence of an orthogonal basis) Let V be a finite dimensional
R-vector space equipped with a symmetric bilinear form (-,-). Then V admits an
orthogonal basis with respect to (-,-).

For the proof of Theorem 9.20 we need two lemmas.

Lemma9.21 Let V be an R-vector space and {-,-) a symmetric bilinear formon V.
Suppose there exist vectors vy, vo € V such that (v1, v») # 0. Then there exists a
vector v € V with (v, v) # 0.

Proof If (vi,v1) # 0or (v, v») # 0 we are done, hence assume (vq, vi) = (va, v») = 0.
Let v = v; + v, then we obtain

(v,v) = {(vi + vo, s + vo) = (vg,v1) + 2(v1, o) + (w2, va) = 2(v1, v2).

By assumption we have (vq, v») # 0 and hence also (v, v) # 0. O

Lemma9.22 Let V be afinite dimensional R-vector space equipped with a symmetric
bilinear form (-,-). Suppose v € V satisfies (v,v) # 0, then V = U & U+ where
U= {sv|s e R}.

Proof Applying Remark 6.7, we need to show that UnU+ = {0y }andthat U+ U+ = V.

We first show that U N U+ = {0y }. Suppose u € U and u € U~. Since u € U we have
u = sv for some scalar s. Since u € Ut we must also have 0 = (u, v) = s(v, v). Since
(v, v) # 0, thisimplies s = 0 and hence u = Oy.

We next show that U + U+ = V. Let w € V. We want to write w = sv + ¢ for some ¢
satisfying (¥, v) = 0. Since ¥ = w — sv, this condition becomes
0= (v,w—sv)=(v,w)—s{v,v)

(v,w

and since (v, v) # 0, this gives s = (v,v)> . Taking

thus gives w = sv + 7. O

Proof of Theorem 9.20 Letn = dim V. Suppose (-,-) is degenerate and consider V. By
Corollary 6.11 there exists a subspace V' C V suchthat V = V- @& V. By construction,
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the restriction of (-,-) onto V' is non-degenerate. If vy, ..., v, is an orthogonal basis of
V'and vy 1, ..., vy a basisof V- then {vi, ..., v, } is an orthogonal basis of V, since the
vectors vp,.1, ..., v, are orthogonal to all vectors of V.

It is thus sufficient to prove the existence of an orthogonal basis for the case when (-,-) is
non-degenerate.

Let us therefore assume that (-,-) is non-degenerate on V. We are going to prove the
statement by using induction on the dimension of the vector space. If dim V = 0 there is
nothing to show, hence the statement is anchored. We will argue next that if every (n—1)-
dimensional R-vector space equipped with a non-degenerate symmetric bilinear form
admits an orthogonal basis, then so does every n-dimensional R-vector space equipped
with a non-degenerate symmetric bilinear form.

Let v; € V be any non-zero vector. Since (-,-) is non-degenerate v; cannot be orthogonal
to all vectors of V and hence there exists a vector v, € V suchthat (vq, v») # 0. Therefore,
by Lemma 9.21 there exists a non-zero vector v € V with (v,v) # 0. Writing U =
{sv|s € R}, we have that V = U @ U+ by Lemma 9.22. Since dim U = 1, we must have
dim U+ = n — 1 by Proposition 6.12. The restriction of (-,-) onto U~ is non-degenerate.
Indeed, if there were a vector in U+ which is orthogonal to all vectors in U, then - since
it liesin U+ - itis also orthogonal to all vectors of U and hence to all vectors of V. This
contradicts the assumption that (-,-) is non-degenerate on V. Since the restriction of (-,-)
on Ut is non-degenerate and dim U+ = n — 1, the induction hypothesis implies that
there exists a basis {ws, ..., w,, } of U+ which is orthogonal with respect to (-,-). Setting
w; = v gives an orthogonal basis {wy, ws, ..., w,} of V. d

We also have:

Lemma9.23 Let V be afinite dimensional R-vector space equipped with a symmetric
bilinear form (). Furthermore, let U C V be a subspace and {u, ..., ux} be a basis
of U. Then the following two statements are equivalent

(i) avectorv € Visan elementof U*;

(i) for1 < i < kwehave (v, u;) =0.

Proof Exercise. O

As a corollary to Theorem 9.20 we obtain a generalisation of Lemma 9.22.

Corollary 9.24 Let V be a finite dimensional R-vector space and (-,-) a symmetric
bilinear form on V. Suppose U C V is a subspace such that the restriction of {-,-) to
U is non-degenerate. Then U and U™ are in direct sum and we have

V=UsU".

Proof The proof s similar to Lemma 9.22. We first show that U N U+ = {0y }. Suppose
up € UnN UL, Recall that

Ut ={ve V|{v,u)=0vuc U}
Since uy € UL wethus haveforallu € U

(up, u) = 0.
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Since the restriction of (-,-) to U is non-degenerate, this implies that uy = 0y, hence
Unu+=1{0yv}.

We next show that U + U+ = V. By Theorem 9.20, the subspace U admits an ordered
basisb = (v, ..., vi) that is orthogonal with respect to (-,-), that is, (v;, v;) = 0 for
i # j. In particular, the matrix representation of (-,-) with respect to b is diagonal and
the diagonal entries are given by (v;, v;) for 1 < i < k. By Proposition 5.24 we have

k

det M((-,)[y,b) = [ J(vi, v

i=1

where (-,-)|y denotes the restriction of (-,-) onto U x U. Since (-,-}|y is non-degenerate,
we have det M((,-)|uy, b) # 0 by Proposition 9.10, hence (v;, v;) # 0for1 < i < k.

Finally, we argue that any vector w € V can be writtenasw = ¥ + Zf;l s;jv; for a
suitable vector ¥ € U+ and scalars s;. As in the proof of Lemma 9.22, we define

(vi, w)

s =
" (viv)

andV = w — fozl sivi. Thenw = \7+fo:1 s;v; and moreover (7, v;) = 0forl </ < k,
since (v;, vj) = 0fori # j. Since bis a basis of U Lemma 9.22 implies that ¥ is an element
of UL, O

Remark 9.25 In the case where the restriction of a symmetric bilinear form to a
subspace U is non-degenerate, we have seen that U~ is a complement to U. The
subspace U+ is called the orthogonal complement of U.

The process of scaling a vector v so that (v, v) equals some specific value - typically 1 -
is known as normalising the vector.

Remark 9.26 (Normalisation) By definition, the matrix representation of a symmet-
ric bilinear form (-,-) with respect to an ordered orthogonal basisb = (v, ..., v,,) of
V is diagonal. Notice that if we define

, Vi, <V,', V,'> =0
vV, = Hv, >|’ <Viv V,'> 75 0

forl1 < i < n,thenb’ = (v{,...,v}) is also an ordered basis of V and either
(v{, vy =0o0r

(Vi vy = < i Y > _ Vi)
TNV Vvl (i)l

Therefore, the matrix representation of (-,-) with respect to b’ is diagonal as well
and the diagonal entries are elements of the set {—1, 0, 1}.

= +1.

This observation allows to reformulate Theorem 9.20:

Theorem 9.27 (Matrix version of Theorem 9.20) Letn € Nand A € M, ,(R) be a
symmetric n x n-matrix. Then there exists an invertible n x n-matrix C € GL(n, R)
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and integers p, q, s such that
1,
(9.5) C'AC = -1,
0

Proof Let A € M, ,(R) be a symmetric n x n-matrix and let (-,-) denote the symmet-
ric bilinear form on R” defined by the rule (x, %) = X/ A% forall ¥, % € R". By
Example 9.5 (ii), we have that M((:,-), e) = A, where e denotes the standard ordered
basis of R". Theorem 9.20 implies that R” admits an orthogonal basis with respect to (,-).
After carrying out the normalisation procedure described in Remark 9.26 and possibly
renumbering the basis vectors, we thus obtain an ordered basis b of R” such that

]‘P
M((:,-). b) = -1
0
Defining C = C(b, e), Proposition 9.6 thus implies that CT AC = M({(-,-), b) as claimed.
Finally, the matrix C is invertible by Remark 3.105. O

Remark 9.28 (Sylvester’s law of inertia)

« Sylvester’s law of inertia states that the numbers p and g in (9.5) (and hence also
s) are uniquely determined by the bilinear form (-,-). That is, they do not depend
on the choice of matrix C € GL(n, R) such that C" AC is diagonal with diagonal
entries from the set {—1, 0, 1}. We will not prove this fact, but a proof can be
found in most textbooks about Linear Algebra.

The pair (p, g) is known as the signature of the bilinear form (-,-).
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Euclidean spaces

10.1 Inner products ‘ks&r
2

A symmetric bilinear form (-,-) on an R-vector space V allows to talk about vectors being
orthogonal, but so far we have not defined the length of a vector or the distance between
two vectors. In R” equipped with the standard scalar product (-,-), the length of a vector
X = (xi)1<i<n € R"isdenoted by ||x|| and defined as

Over the real numbers we can only take square roots of non-negative numbers. Hence
if we want to analogously define the length of vectors in an abstract vectors space V
that is equipped with a bilinear form (-,-), then we need that (v, v) > 0 for all vectors
v € V. Thisis known as positivity. Clearly, having a positive symmetric bilinear form on
an R-vector space, we can define the length of vectors as in the case of R” equipped with
the standard scalar product. It might however still happen that there are vectors v € V
different from the zero vector Oy that satisfy (v, v) = 0. Naturally, one might ask that the
zero vector is the only vector with length zero. This leads to the notion of definiteness.

Definition 10.1 (Properties of bilinear forms) A bilinear form (-,-) on an R-vector
space V is called

- positive if (v, v) > 0forall vectors v € V;

- definite if (v, v) = 0ifand only if v = Oy.

Combining positivity, definiteness and symmetry, we arrive at the notion of an inner
product:

Definition 10.2 (Inner product) Let V be an R-vector space. A bilinear form (-,-) on
V that is positive definite and symmetric is called an inner product.

Remark 10.3 Notice that an inner product (-,-) on an R-vector space V is always a
non-degenerate bilinear form. Indeed, if vy € V satisfies (v, vo) = 0 for all vectors
v € V, then we also have (v, vp) = 0 and hence vy = Oy, since (-,-) is positive
definite.

Example 10.4 (Inner products)
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(i) The standard scalar product on R"” defined by the rule (9.1) is indeed an inner
product. Clearly, (-,-) is symmetric and from the Analysis | module we know
that y2 > 0 for all real numbers y and that y?> = 0 if and only if y = 0. Since

(%, %)= (),
i=1
we concludethat (-,-) is positive definite and hence an inner product. The vector
space R" equipped with the standard scalar product is sometimes denoted by
E" (the letter E is to remind of the Greek Geometer Euclid).
(ii) We consider V = M5 3(R) and let U C V be the subspace consisting of anti-
symmetric matrices. On U we define a symmetric bilinear form (notice the

minus sign)
(n):UxU—=R, (A B)— (A B)=—Tr(AB).

An element A of U satisfies AT = —A and hence can be written as

0 X y

A=-x 0 =z

-y —z 0

for real numbers x, y, z. We obtain
—x2—y? —yz Xz
(A,A) = —Tr —yz —x% - 22 —xy =2x? +2y? + 222
Xz —Xy —y? — 72

We conclude that (A, A) > 0and (A, A) = 0if and only if A = 03. Therefore,
(-,-) isaninner product on U.

(iii) Leta < bbereal numbersand consider V = C([a, b], R), the R-vector space
of continuous real-valued functions on the interval [a, b]. Asin Example 9.2, (vi)
we obtain a symmetric bilinear form on V via the definition

b
() VxV =R, (f,.g)—(f.g)= / f(x)g(x)dx.

The properties of integration from the Analysis module imply that (-,-) is also
positive definite and hence an inner product.

Remark 10.5 (Naming convention) As we have seen, the standard scalar product
on R" is an example of an inner product. It is common to refer to inner products
as scalar products as well. In these notes we will reserve the term scalar product
for the standard scalar product on R” and use inner product for a general positive
definite symmetric bilinear form.

Notice that a symmetric bilinear form can be positive, but not positive definite:

Example 10.6 Forany xp € R, the symmetric bilinear form on V = P(R) defined
by

() VX V=R, (pg) = p(xo)a(x)
satisfies (p, p) = p(x0)?> = 0 and hence is positive. It is however not an inner
product. The polynomial f defined by the rule x — f(x) = (x — xo) forallx € Riis
different from the zero polynomial o : x — 0 Vx € R, but also satisfies (f, f) = 0.

138



10.1 — Inner products

FIGURE 10.1. Angle between two vectors

Aninner product (-,-) on an abstract R-vector space V/ allows to define geometric notions
like length and distance on V.

Definition 10.7 (Euclidean space)

(i) Apair(V,{(-,-)) consisting of an R-vector space V' and an inner product (,-) on
V is called a Euclidean space.
(ii) The mapping]|| - || : V — R defined by the rule

v vl = Vv, v)

forall v € Vis called the norm induced by (-,-). Moreover, for any vector v € V,
the real number || v|| is called the length of the vector v.
(iii) The mappingd : V x V — R defined by the rule

(vi,v2) = d(v1, v2) = |lvi — 2

forall vi, vo» € Vis called the metric induced by (,-) (or also metric induced
by the norm || - ||). Furthermore, for any vectors vq, v» € V, the real number
d(v1, v») is called the distance from the vector v; to the vector v,.

Recall that the angle between two non-zero vectors v, v» € E? is defined as follows.
The half lines spanned by 4 and v, will each intersect the circle of radius 1 centred at
the origin in exactly one point. Consequently, the circle of radius 1 is divided into two
segments, depicted in red and blue in Figure 10.1. The minimum of the lengths of the two
circle segments is the angle 6 between v and 5. Itis tempting to use (10.3) as a definition
of the angle between two vectors v4, v, in an abstract Euclidean space (V, (-,-}). That
is, for any non-zero vectors vq, v» € V define the angle between vy, v, to be the unique
real-number 6 € [0, 7] such that

cosf = v ) .
[Ivallllva

Since the cosine is a bijective mapping from [0, 7] into [—1, 1], this definition only makes
sense if the quotient (vi, va) /(||v1]|||v2]|) lies in the interval [-1, 1] for all pairs vi, vo € V
of non-zero vectors. That this is indeed the case follows from one of the most important
inequalities in mathematics (recall that for x € R we write |x| for the absolute value of
X):

Proposition 10.8 (Cauchy-Schwarz inequality) Let (V, {-,-)) be a Euclidean space.
Then, for any two vectors vy, vo» € V, we have

(10.1) [{v1, v2)| < [[wallffvell-

Furthermore, |(v1, va)| = ||v1|||v2|| if and only if {w1, v»} are linearly dependent.
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By the Cauchy-Schwarz inequality we thus have for all non-zero vectors vq, vo € V

0< |<V1’V2>| < 1
~X ~X 1
[Ivallllvall

so that (vi, vo) /(||va ]| v2||) € [-1, 1]. This allows to define:

Definition 10.9 (Angle between two vectors) Let (V, (-,-)) be a Euclidean space
and vi, v» € V two non-zero vectors. The angle between the vectors v, and v, is the
unique real number ¢ € [0, 7] such that

(v, v2)

cosf) = ———,
[vallfl vl

Remark 10.10 Notice that two non-zero vectors v1, v, in E2 are orthogonal in the
sensethat (v4, v») = Oifand onlyifthey are perpendicular, thatis, the angle between
vi and vy is /2.

Proof of Proposition 10.8 First consider the case where v, = 0y,. Then both sides of
(10.1) are 0, hence the inequality holds and, moreover, v; and v, are linearly dependent.

Let therefore be vy, vo € V with v» £ 0y, and consider the function p : R — R defined
by the rule

p(t) = (v1 + tva, vi + tw)
for all t € R. Using the bilinearity and the symmetry of (-,-), we expand
p(t) = (vi, vi) + 2t{v1, va) + t2(va, va) = ||va|* + 2t {v1, va) + 2 val|.

Since v, # 0y, the function p is a polynomial of degree 2 in the variable t. If the discrim-
inant of p is positive, then p has two distinct zeros and attains both positive and negative
values. The bilinear form (-,-) is positive definite, hence we have p(t) > Oforallt € R
and the discriminant A of p must be non-positive

A =14 (<V11 V2>2 - ||V1H2HV2||2) < 0.

Taking the square root implies (10.1).

If v1, vp arelinearly dependent and since v, # 0y, there exists a scalar s suchthat vy = sv,.
Hence ||va|||[v1]| = |s|||va]|? = |{sva, v2)| and equality holds in (10.1).
Conversely, suppose that (vi, vo) = £||vi||||v2]|. Then we obtain

p(t) = [wl® £ 2t|vi[[vall + E[lval? = ([l * t]lvall).

Taking ty = F||v1]|/||v2|| gives p(to) = (w1 + tova, vi + tov2) = 0. Since (-,-) is positive
definite, this implies that v; + tovo = 0y and hence vy, v, are linearly dependent. [

Example 10.11 (Cauchy-Schwarz inequality)

(i) Consider V = R" equipped with the standard scalar product (-,-). The Cauchy-
Schwarz inequality translates to the statement that for all X = (x;)1<i<» and
¥ = (¥i)i<icn € R", we have

n
‘ § XiYi
i=1

n

< Z(Xi)2 Z(%’)z-

i=1 i=1
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(i) For V = C([a, b], R) and inner product defined as in Example 10.4 (iii) above,
taking the square of the Cauchy-Schwarz inequality, we obtain that for all
f,geV

/a ’ f(x)g(x)dx’2 < / ’ F(x)%dx / ’ g(x)2dx.

The norm induced by an inner product satisfies a few elementary properties:

Proposition 10.12 (Properties of the norm) Let (V, (-,-)) be a Euclidean space with
induced norm || - || : V — R. Then

(i) forallv € V we have ||v|| > 0and |v|| = 0ifand only if v = Oy;

(ii) foralls € Randallv € V we have ||sv|| = |s||v|];

(iii) for all vectors v1, vo € V, we have the so-called triangle inequality

i+ va|| < [l + [lvall-

Proof The first two properties follow immediately from the definition of || - || and the
positive definiteness of (-,-). Using the Cauchy-Schwarz inequality (10.1), we obtain for
allvy, v, € V

lvi + vl = (vi +vo, vi + v2) = (v1, v1) + 2{v1, 2) + (v2, 1)

< vall® + 20 ¢va, va)| + [Ivall® < flvall + 2l vl vall + [lval1?

2
= (lall + lvall)"

and where we also used that (vi, vo) < [(v1, v2)|. Since both ||vi + || > 0and ||w || +
[[v2]| = 0, taking the square root implies

i+ v2|| <[l + [lvall,

as claimed. O

Likewise, we obtain:

Proposition 10.13 (Properties of the metric) Let(V, (-,-)) be a Euclidean space with
induced metricd : V x V — R. Then forall v, v», v3 € V we have

(i) d(v1,v2) =0ifandonlyifvy = vo;

(i) d(vi, va) = d(va, v1) (symmetry);

(iii) d(va,v3) < d(v1, v2) + d(va, v3) (triangle inequality).

Proof Exercise. O

10.2 The orthogonal projection

In the Euclidean setting, the restriction of an inner product to a subspace is again an
inner product:
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FIGURE 10.2. In [E? the triangle inequality states that for any triangle,
the sum of the lengths of any two sides must be greater than or equal
to the length of the remaining side.

Lemma10.14 Let(V, (-,-)) be a Euclidean space and U C V a subspace. Then the
restriction (-,-)|y of (-,-) to U is an inner product and hence (U, (-,-)|v) is a Euclidean
space as well.

Proof Symmetry and positive definiteness holds for all vectors or pairs of vectorsin V,
hence also for all vectors or pairs of vectorsin U C V. O

Remark 10.15 Since an inner productisamap (-,-) : V x V — R, it would be
more precise to write (-,-)|yx v and speak of the restriction of (-,-) to U x U. For
simplicity, we well use the terminology of Lemma 10.14.

Recall that a projection is an endomorphism 1 : V' — V which satisfies 1o 1 = N1 and
that for a projection 1 : V — V we have V = Ker 1 @ Im 1. Given two subspaces U;
and U, of V such that V = U; @ U,, we can write every vector v € V uniquely as a sum
v = 1y + up where u; € U, fori = 1,2. The mapping 1 : V — V defined by the rule
M(v) = vy forall v € V thusis a projection with Im I = U; and Ker 1 = Us. Notice that
IMis the unique projection whose image is U; and whose kernel is Us. If N:V - Vis
another projection with this property, then we have forall v € V

N N

N(v) = M(uy 4 wp) = N(w)

Since u; € U; = Im 1, we can write u; = ﬂ(w) for some vector w € V/, hence ﬁ(ul) =
A(M(w)) = M(w) = uy. We thus have

A(v) = M(uy) = vy = N(v)

so that I1 = . This shows that there is precisely one projection with Im M = U; and
Ker = Us.

Remark 10.16 By Lemma 10.14 and Remark 10.3, the restriction of an inner
product (-,-) on a finite dimensional vector space V to a subspace U C Vis al-
ways non-degenerate. Therefore, by Corollary 9.24, the orthogonal subspace U+ is
always a complement to U, so that V = U @ U~ and

dim U+ = dim V — dim U
by Remark 6.7 and Proposition 6.12.

This allows to define:
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Definition 10.17 (Orthogonal projection) Let (V, (-,-)) be a finite dimensional Euc-
lidean space and U C V asubspace. The projection whose image is U and whose
kernel is U~ is called the orthogonal projection onto the subspace U and will be
denoted by M.

While the existence of the orthogonal projection onto a subspace U of a Euclidean space
(V, () follows abstractly from the above considerations, it is illustrative to give an
explicit geometric construction. We first consider the case where U is spanned by a
non-zero vector u € V. We define a linear map I'Iﬁ :V — Vbytherule

Loy (v
ng(v) = ) u
forallv € V. Then N{j(u) = vand KerM{ = {ve V|{v,u) =0} = Ut. Since

Ny (v) = sufor some scalar s € K, we conclude that M§; o M = N{, hence M{; is the
orthogonal projection onto U.

ng(v) OR2 i

FIGURE 10.3. Orthogonal projection of the vector v € [E? onto the sub-
space U spanned by . Notice that the vector vV, = vV — N{(V) is
orthogonal to the vector &.

In general, we have:

Proposition 10.18 Let (V, (-,-)) be afinite dimensional Euclidean space and U C V
a subspace of dimension k € N. Let {uy, ..., ux} be an orthogonal basis of U, then
the map N{; : V — V defined by the rule

(102) Ny =3 L,

— (uj, u;)

forall v € V is the orthogonal projection onto U.

Proof Letn = dim V. Noticethatsince (-,-) is positive definite, we must have (u;, u;) > 0
for1 < i < k, hence the map I'Iﬁ is well defined. For 1 < j < k we obtain
k
u;, uj u;, u;
nfj(UJ):Z<J >U,‘:<J J>ui

— (uj,ui) (U

where we use the orthogonality of the basis {uy, ..., ux }. By definition, forall v € V we

have N{(v) = Zf;l s;u; for scalars s; = <<:Z>> . Since M (u;) = u;, we obtain

K K K
I'Ifj(l'lfj(v)) = I'If] (Z s,-u,-) = Zs,-l'lfj(u,-) = Zs,-u,- = I'Ifj(v).

Hence we have M§; o M{; = N{; and N{ is a projection.

By Remark 10.16 we can write V = U @ U and by Theorem 3.64 we can find a basis
{Uky1, ..., up} of Ut sothat {uy, ..., uk, uks1, ..., u,} isabasisof V. Let v € V. We write
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v =31, tjyforscalars t;,1 < j < n. Then v lies in the kernel of n¢ if and only if we
have
k <Z” tui U k n
Al _ j=1 """ /> .
oy =) = 3 A= -3 Y

i=1 i=1 j=1

(u)

Ty = tiuj,
o 2
where we use that the vectors {uy, ..., uy } are orthogonal and that {uk1, ..., u,} € U*.
The vector v thus lies in the kernel of M if and only if v = Y7, | tiu;, that s, if and
only if v € U+. The map N{; thus is the orthogonal projection on U. O

FIGURE 10.4. Orthogonal projection onto the plane U in E3.

Remark 10.19 Let (V, (-,-)) be a finite-dimensional Euclidean space and U C V
a subspace. Then forall v € V we canwrite v = v — N{(v) + N{(v). Since
N{(v) € Uand V = U & U+, it follows that the vector

vi, =v—NHv)e Ut

and moreover, v, , = 0y ifand onlyif v € U.

Exercises

Exercise 10.20 Let v}, v» € [E? be two non-zero vectors. Show that the angle 6
between v; and Vv satisfies

(10.3) (v, %) = ||| v cos 6.
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10.3 Gram-Schmidt orthonormalisation I%‘"Ir
$

Using the orthogonal projection onto a subspace, we can now describe an explicit com-
putational algorithm which constructs an orthonormal basis from a given ordered basis
b = (v, ..., v,) of a Euclidean space (V, (-,)). This algorithm is known as Gram-Schmidt
orthonormalisation.

We first consider the case of a 3-dimensional Euclidean space (V/, {-,-)) equipped with an

ordered basis b = (vq, v, v3). We take
Vi

u =
vl

as the first vector of our new orthonormal basis. We then construct a vector from v, that
is orthogonal to the subspace U; = span{u;}

1 (v2, tn)
W2:V2_I_I Vo) = Vp — up = vp — (o, Uy)Uy,
i) == s (v2, )
where we use that (uy, u1) = 1. As our second basis vector we can thus take
w2
Uy = ———.
[[wa|

We then define U, = span{uy, u»} and set

L (vs, u1) (v3, u2)
W3 = V3 — |_|U2(V3) = V3 — <U1, U1> uy — <U2, U2> Uy = v3 — <V3, U1>U1 — <V3, U2>U2

As our third basis vector we can thus take

w3

usz = .
[[ws]|

Setting b’ = (u1, ua, u3), we have obtained an orthonormal basis b’ of (V, (-,-)).

Example 10.21 We consider V = R with the standard scalar product (-,-) and the
ordered basisb = (1, V5, 3), where

1 1 1
i=|(1], o= (0], V3 =
1 1
We apply Gram-Schmidt orthonormalisation to b. We obtain
g =4 . 1
| = = —
Al V3,
and
o e (N2 (Y[
W2 = Vo — (V2, Uy U1 = - =7 == |-
1 3v3 1 3 1
so that
1
i = W _ [ V2
([ | Y3
V6
Likewise,
w3 = V3 — (3, th) i1 — (3, ta) il
1
1 1 NG 1
()= 2L 0) - (D) 5] -1
V33 V6 Y3l o2
0 1 -1
V6
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so that

=y
W

Sl

-1
and we have indeed (i, ij) = d; for1 < /,j < 3. Hence the ordered basis b’ =
(i, i, 03) is orthonormal with respect to (-,-).

The careful reader might object that we have not argued above that b’ is indeed well
defined and an ordered basis. This is however the case:

Theorem 10.22 (Gram-Schmidt orthonormalisation) Let (V,{-,-)) be an n-
dimensional Euclidean space and b = (vi, ..., v,) an ordered basis of V. For
2 < i < nwe define recursively

wi=v,—Ng (v) and b=

[will”
where U;_1 = span{uy, ...,ui_1} and uy = vi/||v1]|. Thenb’ = (u1,..., u,) is
well defined and an orthonormal ordered basis of V. Moreover, b’ is the unique
orthonormal ordered basis of V so that the change of basis matrix C(b’, b) is an
upper triangular matrix with positive diagonal entries.

Proof We will use induction on the dimension n of the Euclidean space (V, (-,-)). In the
case where dim V' = 1 we have a single basis vector v; # 0y. We set uy = vy /||v1||. Then
b’ = (uy) is an ordered basis of V which is orthonormal. The change of basis matrix
is C(b’,b) = (1/||v1]]) and hence is an upper triangular matrix with positive diagonal
entries. The only other ordered basis of V which is orthonormal is (—u1), but the change
of basis matrix for this basis has a negative diagonal entry. Therefore, the statement is
anchored.

Inductive step: Suppose n > 2 and that the statement is true for an (n — 1)-dimensional
Euclidean space. Let (V, (-,-)) be an n-dimensional Euclidean space and b = (vy, ..., v;)
an ordered basis of V. Consider the subspace U,_; = span{v, ..., v,_1} of dimension
n — 1 for which ¢ = (v, ..., v,_1) is an ordered basis. By the induction hypothesis,
there exists a unique ordered basis ¢’ = (uy, ..., u,—1) of U,—1 which is orthonormal and
such that the change of basis matrix C(c’, c) is an upper triangular matrix with positive
diagonal entries. Set w, = v, — MN{; _ (v,) so that w,, € U, ;. Since bis a basis it follows
that v, ¢ U,_1, therefore Remark 10.19 implies that w, # 0y and we conclude that
{uy, ..., up_1, w, } is orthogonal as well as linearly independent. Let u, = w,/||w,|, then
b’ = (u1, ..., u,) is an ordered basis of V which is orthonormal. By definition, we have

vy — I_Ib (va)
n—1 n
= + %
oo =g, Ga)ll T 1T, Z

(va)ll

u, =

for suitable scalars sy, ..., s,—1. Writing §'= (s,-)lg,-g,,,l, the change of basis matrix thus

takes the form
C(c’,c) 5
C(b/, b) = O]R 1 .

v 1 (o)l
Since C(c/, c) is an upper triangular matrix with positive entries, it follows that C(b’, b)
is an an upper triangular matrix with positive entries as well.

Finally, we argue that b’ is the unique ordered basis of V satisfying the conditions of the
theorem. Notice that u, must be an element of U;- ;. Now dim V = nand dim U,_; =
n —landsince V = U,_1 @ U= ; by Corollary 9.24, we must have dim U;- ; = 1 by
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Remark 10.16. Thisimplies that u,, is uniquely determined up to multiplication by +1, but
the above choice is the only one resulting in a change of basis matrix which has positive
diagonal entries. Since by the induction hypothesis the basis ¢’ is unique, it follows that
b’ is the unique ordered basis of V satisfying the conditions of the theorem. O

It follows from Theorem 3.64 that an ordered basis of a subspace U of afinite dimensional
vector space V can always be extended to a basis of V. A corresponding statement is
also true for orthonormal bases:

Corollary 10.23 Let (V, (-,-)) be a finite dimensional Euclidean space and U C V
a subspace. Suppose b is an ordered orthonormal basis of U, then there exists an
ordered orthonormal basis of VV which contains b.

Proof Let k = dimU,n = dim V andb = (v, ..., vx). Choose any ordered basis c of
U+ and apply Gram-Schmidt orthonormalisation to c to obtain an orthonormal basis
b’ = (Vki1, ..., V) of UL. Since all vectors of U are orthogonal to all vectors of U+, the
ordered basis (v1, ..., v,) is an orthonormal ordered basis for (V, (-,-)). O

Notice that if we carry out the Gram-Schmidt procedure without normalising the vectors
w; at each step - sometimes referred to as Gram-Schmidt orthogonalisation - then we
still obtain an ordered orthogonal basis (w1, ..., w,).

Example 10.24 (Legendre polynomials) We consider again the vector space V =
C([-1, 1], R) of continuous real-valued functions defined on the interval [-1, 1],
equipped with the bilinear form defined by the rule

1
(F.g) = / F(x)g (x)dx

~1
forall f,g € V. Forn € N U {0} let U, denote the subspace of V consisting
of polynomials of degree n. An ordered basis of U, is given by the polynomials
b = (1,x,x2 x3, ..., x"). Applying Gram-Schmidt orthogonalisation we obtain an
ordered orthogonal basis (po, p1, .., pn) of U,. That s, for i # j, the polynomials
satisfy )

i) = [ pix)pi (e =0

The polynomials p; are known at the Legendre polynomials. There are different
ways to normalise the Legendre polynomials. Besides the standard normalisation
which makes the polynomials orthonormal, that is, (p;, p;) = 1, itis also common to
request that (p;, p;) = 2/(2i + 1). The reason for this normalisation is that it allows
to give a neat formula for p; known as Rodrigues’ formula (which we will not prove)
- 20l dx

pi(x) (x* = 1),
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formula we obtain for the first four Legendre polynomials

1 d° 0 5 0
Po(X) = gt s~ 1) = (2 1P = 1,
pi(x) = 2111|dd (x 2—1)1:1(2x):x,
pa) = g =17 = L 2= Jee o),
p3(x) = 2313Iddj3( —1)3 = %dd—aa(x —3x* +3x° - 1) = %(5X373X).

The Gram-Schmidt orthonormalisation Theorem 10.22 has a matrix version known as
the Cholesky decomposition. In order to phrase it, we make the following definition.

Definition 10.25 (Positive definite matrix) Let n € Nand A € M,, ,(R). The matrix
A is called positive definite if the bilinear form (-,-)a on R" is positive definite.

Theorem 10.26 (Cholesky decomposition) Let n € Nand A € M, ,(R) be a sym-
metric positive definite matrix. Then there exists a unique upper triangular matrix
C € M, ,(R) with positive diagonal entries such that A = CTC.

Proof Since Ais positive definite and symmetric, (-,-}a isaninner productonR". Lete =
(é1, ..., €,) denote the standard ordered basis of R". Recall that we have M({-,-)a, €) =
A. Theorem 10.22 implies the existence of a unique ordered basis b’ of R” which is
orthonormal with respect to (-,-)a. Therefore, using Proposition 9.6, we obtain

A =M((-,-)a,e) = C"M((-,-)a,b)C =C'C,

where C = C(e, b’) and where we use that the matrix representation of an inner product
with respect to an orthonormal basis is the identity matrix. Theorem 10.22 implies that
C(b’, e) is an upper triangular matrix with positive diagonal entries. By Remark 3.105 we
have C(e, b’) = C(b’, e)~! and hence Corollary 5.46 implies that C is an upper triangular
matrix as well. Now for2 </ < n— 1, we have (the cases i = 1 and / = n are similar)

1=[cC]; = Z[cmc Y = [ClalC™ 11,,+Z[C],k[c Yy + Z [ClalC ki

k=1 k=i+1
= [Cl4[C Y,

where we use that C and C~ are upper triangular matrices. It follows that [C];; has the
same sign as [C™1];; for 1 < i < n. Therefore we conclude that C has positive diagonal
entries as well.

Suppose that € € M, »(R) is another upper triangular matrix with positive diagonal
entries so that A = C7C. Using Lemma 3.109 we conclude that there exists an ordered
basis ¢’ of R” such that € = C(e, ¢’). Since A = €7 € the basis ¢’ is orthonormal with
respect to (-,)a. The uniqueness statement of Theorem 10.22 implies that ¢’ = b” and
hence C = C. O
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Remark 10.27 Notice that every invertible matrix C € M, ,(R) gives rise to a
symmetric positive definite matrix A = C'C. Indeed, by Remark 2.18 we have
AT = (C'C)T = C’(C")T = C'C = A so that A is symmetric. Using
Remark 2.18 again we obtain for all x, € R”
(X, 5)a = xTCTCx = (CX)TCxX = (CX, Cx)

where the bilinear form on the right hand side denotes the standard scalar product
on R". In particular this implies that (-,-)a is positive. Since the standard scalar
product on R" is positive definite, the last expression is 0 if and only if CX = Og-.

Since Cis invertible this condition is equivalent to X = Og-. It follows that {-,-)a is
positive definite as well.

Finally, we observe that the coordinate representation of a vector with respect to an
orthonormal basis can be computed easily:

Remark 10.28 (Coordinate representation with respect to an orthonormal basis)
Let (V, (-,-)) be a finite dimensional Euclidean space equipped with an ordered
orthonormal basisb = (v, ..., v,) with corresponding linear coordinate system 3.
Then forall v € V we have

(v, v1) )
B(v) = = v:Z(v, Vi) Vi
(v, va) '

Indeed, since b is a basis we can write v = 27:1 s;v; for unique real numbers s;,
where 1 < i < n. Using that (v;, v;) = 0 for i # j and that (v;, v;) = 1, we obtain

(v,vj) = <zn:s;v,n Vj> = zn:SKny vj) = 5.
i=1

i=1
Correspondingly, for all v € V we obtain the following formula for the length of v

vl = [ 3o = [ (St )

i=1 j=1

n

= IS v v = || S vz

i=1 j=1 i=1

Remark 10.29 (Linear independence of orthogonal vectors) Let(V, (-,-)) be a Eu-
clidean space and {uy, ..., ux} be non-zero orthogonal vectors so that (u;, uj) =0
forall1 < i,j < kwith i # j. Suppose we have scalars sy, ..., sk € R such that
Z};l sjuj = Oy. Then, taking the inner product with u; gives
K
0= <0\/,u,'> = Sj<Uj,u,'> ZS,'<U,',U,'>.
j=1
Since by assumption u; # Oy, we have (u;, u;) # 0and hence s; = 0. It follows that
{uy, ..., ux}islinearly independent.
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Example 10.30 (Example 10.21 continued) If we want to compute C(b, b") we need
to compute B'(v,-) fori =1, 2,3 and write the resulting vectors into the columns of
C(b, b’). Since b’ is orthonormal, the preceding remark gives

(vi, 1) V3
Bv)=|(nw)|=1]0
(v1, u3) 0
Likewise we have
(v, ) el
5/(V2)7 <V27U2> = %
(v2, u3) 0
and
(vs, u1) 7
Bv)=|(sw) | =|-7
(v3, u3) N
so that
V35
Chbb)=|0 2 %
0o 0

The proof of Theorem 10.26 implies that C(b’, b) = C(b, b’)~!isan uppertriangular
matrix with positive diagonal entries as well, as predicted by Theorem 10.22.

Exercises

Exercise 10.31 Compute the Cholesky decomposition of the positive definite sym-
metric matrix

3 0 -1
A=|0 8 4
-1 4 3
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10.4 The orthogonal group "?Q%
6

Recallthat anisomorphism of vector spaces V and W is a bijectivelinearmapf : V — W.
In the case where both V and W are equipped with an inner product, we may ask that f
preserves the inner products in the following sense:

Definition 10.32 (Orthogonal transformation) Let (V, (-,-)) and (W, ((-,-))) be Euc-
lidean spaces. An isomorphism f : V — W is called an orthogonal transformation
if

forallu,v € V.

Recall thatin a Euclidean space (V, (-,-)) both the notion of angle between two vectors
(Definition 10.9) and the notion of distance between two vectors (Definition 10.7) only
depends on the inner product (-,-). Orthogonal transformations thus preserve both
angles between vectors and distances between vectors.

We can also consider the set of orthogonal transformations from a Euclidean space to
itself:

Definition 10.33 (Orthogonal group & orthogonal matrices)

« Let (V, (-,-)) be a Euclidean space. The set of orthogonal transformations from
(V,{-,")) to itself is called the orthogonal group of (V, (-,-)) and denoted by
OV, {-))-

« Amatrix R € M, ,(R) is called orthogonal if fg : R" — R" is an orthogonal
transformation of (R”, (-,-)), where (-,-) denotes the standard scalar product of
R". The set of orthogonal n x n-matrices is denoted by O(n) and called the
orthogonal group.

The use of the term group in the above definition is indeed justified:

Proposition 10.34 Let (V, (-,-)) be a Euclidean space. Then the set O(V, (-,-)) is
a group in the sense of Definition 8.4 when the group operation is taken to be the
composition of mappings. In particular, O(n) is a group when the group operation is
taken to be matrix multiplication.

Proof Let G = O(V, (-,-)). As the group identity element we take eg = Idy, where Idy
denotes the identity mapping on V/, so thatId(v) = vforall v € V. Clearlyldy € G and
foldy =Idy o f = fforall f € G. Likewise, if f € G, then the inverse mapping f ~!is
an element of G as well. Indeed, for all u, v € V we obtain

(u,v) = (idy (), ldv(v)) = ((f o F)(u). (Fo FH)(v)) = (F(F (), F(F (V)
= (7 (), F(v)),

where we use that ¥ € G. Therefore, for all f € G there exists a group element b, namely
f~lsuchthatfob = bof = eg = Idy. Since the composition of mappings is associative,
it follows that O(V, (-,-)) is a group with respect to the composition of mappings.

The second claim follows since for matrices A,B € M, ,(R), we have fa o fg = fag,
where AB denotes the matrix multiplication of A and B, see Theorem 2.21. O
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Lemma 10.35 Forall n € N we have
={ReM,,(R)R"R=1,} = {ReGL(n,R)RT =R'}.

Proof By definition, R € M, ,(IR) is an element of O(n) if and only if
(%,y) =xTy = (X,¥)1, = (RX,RY) = (RX) 'Ry = X"RTRY = (X, V)R
for all vectors X, y € R". From the exercises we known that this condition is equivalent

toRTR = 1,, as claimed.

In order to show the second equality sign in the lemma, recall that GL(n, R) consists of
the matrices A € M, ,(R) that are invertible. If R € GL(n, R) satisfiesR™! = RT, then
R"R = R™1R = 1, hence we have

{ReGL(nR)RT =R} c {Re M,,(R)R'TR=1,}.

The converse inclusion of sets follows from the observation that a matrix R € O(n)
satisfiesdet R = +1. Indeed, the product rule for the determinant Proposition 5.21 gives

det(RTR) = det(R7) det(R) = (det(R))? = det(1,) = 1,

where we also use that det(AT) = det(A) forall A € M, ,(R). Since detR = £1, the
matrix R is invertible and hence R"R = 1, impliesthat R” = R~!. O

The orthogonal transformations in a finite dimensional Euclidean space (V, (-,-)) can
similarly be characterised in terms of their matrix representation with respect to an
orthonormal basis:

Proposition 10.36 Let n € Nand (V, (-,-)) be an n-dimensional Euclidean space
equipped with an orthonormal ordered basis b. Then an endomorphismf : V — V'is
an orthogonal transformation if and only if its matrix representation R = M(f, b, b)
with respect to b is an orthogonal matrix.

Proof By definition an endomorphism f : V — V is an orthogonal transformation of
(V, (-,-))ifand only if (u, v) = (f(u), f(v)) for all vectors u, v € V. Writing X = B(u),
y = B(v) and R = M(f, b, b), this gives

(u,v) = XTM((), b)Y = (X, )1, = (F(u), F(v))
= (B(f(v)))"B(f(v)) = (RX) "Ry = X"RTRY = (X, y)r7r,

where we use that M((-,-), b) = 1,, Proposition 9.6 and Proposition 3.98. Since every
vector X € R" can be written as X = 3(u) for some vector u € V/, the claim follows as in
the proof of Lemma 10.35. O

Corollary 10.37 Let n € Nand (V, (-,-)) be an n-dimensional Euclidean space
equipped with an orthonormal ordered basis b. Then an ordered basis b’ of V is
orthonormal with respect to (-,-) if and only if the change of basis matrix C(b’, b) is
orthogonal.

Proof Writeb = (v1,...,v,),b’ = (v{, ..., v/) and let 3, 3’ denote the corresponding
linear coordinate systems. Consider the endomorphismg = (8 )10 :V — V
satisfying M(g, b, b) = C(b’, b). Using Proposition 10.36 it is sufficient to show that g
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is orthogonal if and only if b’ is orthonormal. By definition, g satisfies g(v;) = v/ forall
1 < i < n. Suppose the endomorphism g is orthogonal, then

(vi.vi) = (g(vi). 8(v)) = (vin vj) = 0,

where the last equality uses that b is orthonormal. We conclude that b’ is orthonormal as
well. Conversely, suppose that b’ is orthonormal. Let u, v € V and write u = Y"1, sjv;

andv = Z}’Zl tjvj forscalars s;, tj, i = 1,..., n. Then, using the bilinearity of (-,-), we
compute
<g(u).g(v)>:<g(zs,v,), (Ztv,)> >N sitlg(v).g(v)
i=1 i=1 j=1
= ZZsfw,-’, Vi) = ZZS:‘WU =) > sit{viov)
i=1 j=1 i=1 j=1 i=1 j=1
= <Zs,-v,-, > ij1> = (u,v),
i=1 j=1

so that g is orthogonal. O

Example 10.38 Amatrix A € M, ,(R) is orthogonal if and only if its column vectors
form an orthonormal basis of R” with respect to the standard scalar product (-,-).
Tothisend let ) : (R")” — M, ,(K) denote the map which forms an n x n matrix
from n column vectors of length n. That is, € satisfies

[, ... 3]y = 3]
forall1 < i,j < nand where [3}]; denotes the i-th entry of the vector ;. Then, by
the definition of matrix multiplication, we have forall1 < /,j < n

Q@ ..., 3,) 03, ..., 3, ,J_Z[Q L an) T wlQ(Er - d)]k
= Z[Q )il .., 3)]k

= Z[s,-]k[ij]k = (ai. ajh, = 0y,
k=1
as claimed.
The reader is invited to check that a corresponding statement also holds for the
rows of an orthogonal matrix.

Example 10.39 (Permutation matrices) Let n € Nand o € S, be a permutation.
Recall that for 1 < i < n, the i-th column of the permutation matrix P,, of o is given
by €, (i) where e = (&, ..., €,) denotes the standard ordered basis of R". Therefore,
the columns of a permutation matrix form an ordered orthonormal basis of R” and
hence permutation matrices are orthogonal by the previous remark.

Example 10.40 (Reflection along a hyperplane) A plane in R3 is a subspace U of
dimension 2 = 3 — 1. More generally, a hyperplane in an n-dimensional vector space
V'is a subspace U of dimension n — 1.
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We can reflect a vector orthogonally along a plane in E3, see Figure 10.5. This map
generalises to hyperplanes as follows: Let (V, (-,-)) be afinite dimensional Euclidean
spaceand U C V ahyperplane. Then the orthogonal reflection along U is the map
ry : V — V defined by the rule

ru(v) =v—=2(v— I_Iﬁ(v)) = QHﬁ(v) —v

forall v € V. This mapping is indeed an orthogonal transformation. To see this
consider an orthonormalbasis {us, ..., u,—1} of U. By Corollary 10.23 we can extend
this to an orthonormal basis {uy, ..., u,_1, u,} of V. Notice that dim U+ = 1 and
that U+ = span{u,}. Forv € V we write v = >, siu; for unique real numbers s;,
1 <7 < n. Then we obtain

-1
ru(v) +v =2 <i 5"“") - 2nz: <“Jv ansfu/>uj
i=1 j=1 i=1
- 2i i5i<uj: up)uj — Si{Un, Uj)Upn

i=1 \ j=1

= 2Zs;u,- - 2<u,,, Z s,-u,->u,, =2v — 2(u,, v)up,,
i=1 i=1

where we use (10.2). Writing u, = e, we conclude that for the orthogonal reflection
along a hyperplane U C V we have the formula

ru(v) =v —2{e, v)e,

where the vector e € V satisfies (e, ) = 1 and U+ = span{e}.
We can now verify that ry is an orthogonal transformation. For all vectors u, v € V
we have

(ru(u), ru(v))

u—2{e,uye, {v—2(e,v)e)

= < —
= {(u,v) — 2(u, e){e, v) — 2(e, u){e, v) + 4{e, u){e, v){e, e)
={u,v),

where we use that (-,-) is bilinear, symmetric and that (e, e) = 1. We conclude that

ry is an orthogonal transformation.
Finally, observe that with respect to the ordered basisb = (uy, ..., uy—1, u,) of V

we have
M(ry,b,b) = (1”1 _1> .

Indeed, since u; € Uforalll < i < n— 1, we obtain ry(y;) = 2I'It(u,-) —u =
2u; — u; = u;. Furthermore, ry(u,) = up — 2(up, Up)u, = —up,, as claimed. We
conclude thatdet ry = —1.

Definition 10.41 (Special orthogonal group & special orthogonal matrices)

. Let (V, (-,-)) be a Euclidean space. The subset of O(V/, {-,-)) consisting of en-
domorphisms whose determinant is 1 is called the special orthogonal group of
(V, (-,-)) and is denoted by SO(V/, (-,-)).

« Amatrix R € M, ,(R) is called special orthogonal if R € O(n) and detR = 1.
The set of special orthogonal n x n-matrices is denoted by SO(n) and called the
special orthogonal group.
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FIGURE 10.5. Orthogonal reflection along the plane U in E3.

Example 10.42 (The group O(2)) Recall from the exercises that if a matrix R €
M, »(R) satisfies RTR = 15, then it is either of the form

a —b a b
b a b -—a
for some real numbers a, b. The condition RTR = 1, implies that a> + b> = 1,

hence we can write a = cos @ and b = sin o for some « € R. In the second case we
havedetR = —a? — b®> = —1, thus

SO(2) = {Ra - (CF’S“ _S'”O‘> o € R} .
sina cosa
Recall also that the mapping fr, : R? — R? is the counter-clockwise rotation
around Op2 by the angle a. In the second case we obtain

cosa  sina \  fcosa —sina 1 0
sina —cosa) \sina cosa 0o —-1/°
1 0
0 -1

is the matrix representation of the orthogonal reflection along the x-axis in E2 with
respect to the standard ordered basis e of R?. We thus obtain a complete picture of
all orthogonal transformations of E2. An orthogonal transformation of E2 is either a

special orthogonal transformation in which case it is a rotation around Og: or else a
composition of the orthogonal reflection along the x-axis and a rotation around Og:.

The matrix

We will discuss the structure of O(n) for n > 2 below.

10.5 The adjoint mapping

In this section we discuss what one might consider to be the nicest endomorphisms of a
Euclidean space (V, (-,-)), the so-called self-adjoint endomorphisms. Such endomorph-
isms are not only diagonalisable, but the basis of eigenvectors can be chosen to consist
of orthonormal vectors with respect to (-,-).

Lemma 10.43 Let(V, (-,-)) and (W, {(-,-))) be finite dimensional Euclidean spaces
andb = (v, ..., v,) an orthonormal basis of (V, (-,-)) and ¢ = (wa, ..., wn) an
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orthonormal basis of (W, (-,-))). Then the matrix representation of a linear map
f: V — W satisfies
[M(f, b, C)]u = (f(v;), wi))

foralll < i< mandforalll <j <

Proof By definition, we haveforalll <j < n
f(v;) =) [M(f,b,c)]xw.
k=1
Hence forall 1 < i < m, we obtain

W) = <<§m: M(, b, c)]igwic, i )) = f:[M(f, b, ¢)]ij (e, wi)
k=1

k=1

= [M(f, b, ©)]idk = [M(f, b, c)];,

k=1
as claimed. O

Proposition 10.44 Let (V,(-,-)) and (W, (-,-))) be finite dimensional Euclidean
spacesand f : V. — W a linear map. Then there exists a unique linear map * :
W — V such that

(f(v), w)) = (v, f*(w))

forallv € Vandw € W.

Proof Letb = (vq, ..., v,) be an orthonormal basis of (V, {-,-)) and ¢ = (wx, ..., w,,) be
an orthonormal basis of (W, {(-,-))). Let f* : W — V be the unique linear map such that

M(f*, c,b) = M(f,b,c)".
Since (-,-) and ((-,-)) are both bilinear it suffices to show that
(F(vp), wi)) = (vj, £* (i)

foralll1 <j < nandalll </ < m.Bythe previous lemma we have forall 1 < j < nand
ali1 <i<m

(f(vj), wi)) = [M(f, b, c)]j = [M(f*, ¢, b)];i = (f"(wi), vj) = (vj, F*(wi)).
This shows that f* : W — V exists. Let g : W — V be another linear map such that
(f(v), w)) = (v.g(w))
forallv € Vand w € W. Then we haveforallv € Vandw € W
(v. £ (w) — g(w)) = (v, f*(w)) = (v, g(w)) = (f(v), w)) — {(f(v) w)) =0.

This shows that for all w € W the vector f*(w) — g(w) € V is orthogonal to all vectors
of V. Since (-,-) is non-degenerate this implies that f*(w) — g(w) = 0y, thatis, f*(w) =
g(w)forallw € W and hence f* = g. O

Linear maps for which f = f* are of particular importance:

Definition 10.45 (Adjoint mapping, self-adjoint mappings and normal mappings)

« Let (V, (-,-)) and (W, {(-,-))) be finite dimensional Euclidean spacesand f : V —
W a linear map. The unique mapping f* : W — V guaranteed to exist by
Proposition 10.44 is called the adjoint mapping of f.
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+ An endomorphism f : V — V of a Euclidean space (V, (-,-)) is called self-adjoint
if f = f*andnormaliffof* =f*of.

Example 10.46

(i) The proof of Proposition 10.44 implies that an endomorphism f : V — V of
a finite dimensional Euclidean space (V, (-,-)) is self-adjoint if and only if its
matrix representation with respect to an orthonormal basis b of V is symmetric.
In particular, in R"” equipped with the standard scalar product, a mapping
fa :R" — R"for A € M, ,(R) is self-adjoint if and only if A is symmetric.

(i) Let (V,{-,-)) be a finite dimensional Euclidean space and f : V — V an
orthogonal transformation. Then f is normal. Indeed, using that f is orthogonal,
we obtain forallu, v € V

(FH(u),v) = (F(F (), F(v)) = (u, F(v))
so that the adjoint mapping of an orthogonal transformation is its inverse
mapping, f* = f L Itfollowsthat fo f* = fof ' =Idy = f tof=f*of
so that f is normal.

Exercises

Exercise 10.47 Verify that SO(V/, (-,-)) is a subgroup of O(V, (-,)) in the sense of
Definition 8.8. In particular, SO(V, (-,-}) isindeed a group and hence so is SO(n).

157



CHAPTER 10 — EUCLIDEAN SPACES

10.6 The spectral theorem ‘”é‘g,r
>

We now come to one of the core results of the Linear Algebra Il module:

Theorem 10.48 (The spectral theorem) Letf : V — V be an endomorphism of the
finite dimensional Euclidean space (V, {-,-)). Then there exists an orthonormal basis
of V consisting of eigenvectors of f if and only if f is self-adjoint.

For the proof of this statement we need two lemmas.

Lemma 10.49 Let (V, (-,-)) be a finite dimensional Euclidean space of dimension
n>1landf :V — V aself-adjoint endomorphism. Then f admits an eigenvalue
AeR

Proof Letb be an ordered orthonormal basis of (V, (-,-)) and A = M(f, b, b). Since f
is self-adjoint, we have that A = AT. Recall that the characteristic polynomial chary :
R — R of f satisfies chars(x) = det(x1, — A) for all x € R. We may interpret each
entry of A as a complex number and hence the characteristic polynomial as a function
chars : C — C. In doing so, we can apply the fundamental theorem of algebra and
conclude that there exists a complex number w such that char¢(w) = 0. We next argue
that w has vanishing imaginary part and hence is a real number. Since det(wl, — A) = 0
we can find a non-zero vector Z € C" such that AZ = wZ. We write Z = X + iy for vectors
X, ¥ € R"and w = s+it forreal numbers s, t. Decomposing A(X+iy) = (s+it)(X+iy)
into real and imaginary parts, we obtain the equations

AX = sX — ty,

Ay = sy + tX.
Using the symmetry of A, we compute

(AX,¥)1, = (AX)Ty = XTAY = (X, AY)1,.

Using the above equations, we obtain
(AX,¥)1, = (X = t7, 7)1, = s(X, ¥)1, — tllY]* = (X, AV)1, = (X, 57 + t2)1,
= s(x, ), + tlIx]?,

where || - || denotes the norm induced by the standard scalar product (-,-);, onR". The
last equation is equivalent to

0 = t([IX]I* + [I¥11%)-

Since Z # QOcn, the properties of the norm || - || - see Proposition 10.12 - imply that
(IX]1? + [|¥]I?) > 0 and hence we must have t = 0. O

Recall that a subspace U C V is said to be stable under an endomorphism f : V — V if
f(u) € Uforallu e U.

Lemma 10.50 Let (V, (-,-)) be a Euclidean space, f : V — V a self adjoint endo-
morphism and \ an eigenvalue of f. Then (Eigs(\))~ is stable under f.

Proof Write U = Eig/(\) and let w € U~. Then, forall u € U we obtain
(u, f(w)) = (u, " (w)) = (f(u), w) = Au, w),
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where we use the self-adjointness of f and that u is an eigenvector of f. Since w € U+,
we have (u, w) = 0and hence (u, f(w)) = Oforall u € U. This shows that f(w) € U+,
hence U+ is stable under f. a

Proof of Theorem 10.48 We first show that if f admits an orthonormal basis consisting
of eigenvectors of f, then f must be self-adjoint. Letb = (u1, ..., u,) be such a basis. We
need to show that for all v, w € V we have

(f(v), w)) = (v, f(w))

There exist unique scalars s, ..., s, € Rand ty, ..., t, € Rsuchthatv = 27:1 s;u; and
w = >, tju;. From this we compute

(f(v),w)) = <f (Z s,-u,-) Z tjuj> = ZZs;tj(f(u ), uj)
i=1 j=1 i=1 j=1
=33 sitihilui, uj) ZZS,L‘ Aidj = Zs,t i,
i=1 j=1 i=1 j=1
where \; € R denotes the eigenvalue of the eigenvector u; fori =1, ..., n. Likewise we
have

(v, ZZS, uj, f(uj)) ZZs,t)\ uj, uj) is,-t,-)\,-,
i=1

i=1 j=1 i=1 j=1

as claimed.

Conversely, assume that f is self-adjoint. We will use induction on the dimension n of
V to show that (V, (-,-)) admits an orthonormal basis consisting of eigenvector of f.
For n = 1 every endomorphism is diagonal, hence there is nothing to show and the
statement is anchored.

Inductive step: Assume n > 2 and that the statement is true for all Euclidean spaces of
dimension at most n — 1. By Lemma 10.49 the self-adjoint endomorphism f : V — V
admits an eigenvalue \ € R. Write U = Eig;()). By Remark 10.16 we have V = U@ U+
and by Lemma 10.50 we have that U~ is stable under f. We thus obtain a linear map
f = fly. : U+ — U™ by restricting f to UL. Recall that the restriction (-,-)] . of
(-,-) to Ut turns (U, (-,-)|y1 ) into another Euclidean space. Since dim U > 1, the di-
mension of U+ is at most n — 1. The self-adjointness condition f(v) = f*(v) must
hold for all vectors v € V and hence in particular also for all vectors of U+ C V. It
follows that # : UL — U1 is self-adjoint with respect to (-,-)| .. Write k = dim U~.
By the induction hypothesis there exists an orthonormal basis {uy, ..., ux} consisting
of eigenvectors of f.Since f = flys, the vectors {uy, ..., ux } are also eigenvectors of
f and since the inner product of vectors in U+ is the same as the inner product com-
putedin Vit follows that {uy, ..., ux } is orthonormal with respect to (-,-). Finally, using
Gram-Schmidt orthonormalisation (Theorem 10.22), we can find an orthonormal basis
{1, ..., va—k } of U = Eigs()\) consisting of eigenvectors with eigenvalue \. It follows
that {u1, ..., Uk, va, ..., Va—k } is @an orthonormal basis of V consisting of eigenvectors of
f. O

Again, there is a matrix version of Theorem 10.48:

Theorem 10.51 (Matrix version of the spectral theorem) Letn € Nand A € M, ,(R)
be a matrix. Then there exists an orthogonal matrix R € M, ,(R) such that RAR is
a diagonal matrix if and only if A is symmetric.
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Proof We first show that if there exists an orthogonal matrix R € M, ,(R) such that
RART = D for some diagonal matrix D € M, ,(R), then A must be symmetric. Since
A = RTDR we obtain

A" =(R'DR)" =R"D'R=R'DR=A,
whereweuse D7 = D and Remark 2.18.

For the converse direction consider V = R" equipped with its standard scalar product
(-,-). Since A is symmetric, the endomorphism fa : R” — R" is self-adjoint with respect
to (-,-). Applying Theorem 10.48 we can thus find an ordered orthonormal basis b of R”
consisting of eigenvectors of fa. Denoting by e the standard ordered basis of R”, we have
by Theorem 3.107

M(fa, b, b) = C(e,b)M(fa, e, e)C(e,b) .

The basis b consists of eigenvectors of fa, hence M(fa, b, b) is a diagonal matrix by
Remark 6.30. Now recall from Example 3.96 that M(fa, e,e) = A, thus writing R =
C(e, b), we conclude that RAR™ is diagonal. The standard ordered basis e of R” is
orthonormal with respect to the standard scalar product of R”, hence Corollary 10.37
implies that R is orthogonal, R~! = R”. We have thus found an orthogonal matrix R so
that RART is diagonal. O

10.6.1 Geometric description of self-adjoint endomorphisms

The spectral theorem tells us that self-adjoint endomorphisms can be diagonalised with
an orthonormal basis. As a consequence one can give a precise geometric description of
self-adjoint mappings. A first key observation towards this end is the following:

Lemma 10.52 Let (V, (-,-)) be a Euclidean space and f : V — V a self-adjoint
endomorphism. Then the eigenspaces of f are orthogonal. That is, for eigenvalues
X # pof f we have (u, vy = 0forall u € Eigs(\) and forall v € Eigs(p).

Proof Letu € Eigs(\) and v € Eige(p). Then

Mu, v) = (f(u), v) = (u, f(v)) = p(u, v)
and hence 0 = (A — u)(u, v). It follows that (u, v) = 0since A — p # 0. O

Recall that a vector space V is the direct sum of vector subspaces Uy, ..., Ui of V if every
vector v € V can be written uniquely asasum v = uy + up + - - - + ug with u; € U; for
1 < i < k. Inthis case we write V = EBLl U;. In the presence of an inner product on V,
we may ask that the subspaces U; are all orthogonal:

Definition 10.53 (Orthogonal direct sum) Let (V, (-,-)) be a Euclidean space and
Ui, ..., Uk be subspaces of V such that V = @fle U;. We say V is the orthogonal
direct sum of the subspaces U, ..., Ui if for all i # j, we have (u;, uj) = 0 for all
uj € U;andforall u; € U;. In this case we write

k
V= @L U;.
i=1

160



10.7 — Quadratic forms

Example 10.54
(i) Let (V,{(-,-)) be a Euclidean space and U C V a subspace. Then V is the
orthogonal direct sum of U and U+.
(ii) Let(V,(-,-)) be a Euclidean space and {u1, ..., u,} an orthogonal basis of V.
Then V is the orthogonal direct sum of the subspaces U; = span{u;} for1 <
i< n.

Proposition 10.55 Let (V, (-,-)) be a finite dimensional Euclidean space and f :
V — V aself-adjoint endomorphism. Let {\1, ..., A} denote the eigenvalues of f.
Then

k
V =P Eigi(N).
i=1

Proof By Proposition 6.46 the eigenspaces of f are in direct sum and by Lemma 10.52
this direct sum is orthogonal with respect to (-,-). By Theorem 10.48 f is diagonalisable,
hence

k
V =P Eig(N). 0
i=1

We now obtain the aforementioned geometric description: A self adjoint endomorphism
of a finite dimensional vector space is a linear combination of orthogonal projections.

Proposition 10.56 Let (V, (-,-)) be a finite dimensional Euclidean space and f :
V — V aself-adjoint endomorphism with eigenvalues { Ay, ..., Ax}. Then we have
forallv € V

k
F(v)=>_ AMG(v),
i=1

where we write U; = Eig(\;).

Proof Letg : V — V be the endomorphism defined by the rule g(v) = Z,.kzl AiNg (v)
forall v € V. We want to show that f(v) = g(v) forall v € V. Recall that for an
orthogonal projection onto a subspace U C V we have

1o v vevuy,
”U(V)_{ 0y ve U

Letj € {1,..,k} and v € U; = Eigs()\;). By Lemma 10.52 we have U; C U;* for all
i€{1,..., k}withj = i. Therefore,

and the two mappings agree on all eigenspaces. Since V = @Ll Eigs(\;), the claim
follows. 0

10.7 Quadratic forms

Closely related to the notion of a symmetric bilinear form is that of a quadratic form.
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Definition 10.57 (Quadratic form) Afunction g : V — Ris called a quadratic form
on V if there exists a symmetric bilinear form (-,-) on V such that

q(v) = (v,v)
forallv € V.

Remark 10.58

- The adjective quadratic is used since a quadratic form g : V — R is so-called
2-homogeneous, that is, it satisfies

q(sv) = s*q(v)
foralls e Randv € V.
By definition, every symmetric bilinear form (-,-) on V gives rise to a quadratic
form g. The mapping (-,-) — g from the set of symmetric bilinear forms into the
set of quadratic forms is thus surjective. That this mapping is also injective is a
consequence of the so-called polarisation identity

4(vi, v2) = (vi + v2, 1 + v2) — (V1 — V2, v1 — W)
which holds for all vq, vo € V. Written in terms of the quadratic form associated
to (-,-), it becomes
4(vi, v2) = q(v1 + v2) — g(v1 — v2).

Therefore, if two symmetric bilinear forms define the same quadratic form, then
they must agree.

Example 10.59

(i) Consider V = R?. The function
X
y
is a quadratic form. Indeed, we have (V) = (V, V)a, where

qg:R?> >R, V:()Hq(?):2x24xy+5y2

(i) Likewise, the function
X
q:R> >R, V=1|y | — q(V) = 4xy — 6yz + 2°
V4

5\

is a quadratic form. Indeed, we have q(V) = (V, V)a, where

0 2 0
A=(2 0 -3
0 -3 1

Applying the spectral theorem Theorem 10.48, we see that we can "diagonalise" quad-
ratic forms.
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Theorem 10.60 (Principal axes theorem) Let (V, (-,-)) be a Euclidean space of di-
mension n € Nand q : V — R a quadratic form. Then there exists an orthonormal
ordered basisb = (v, ..., v,) of V with corresponding linear coordinate system
B :V — R"and adiagonal matrix D € M, ,(R) such that forall v € V

q(v) = B(v)"DB(v).

Remark 10.61 The lines spanned by the vectors v; for 1 < i < nofthe orthonormal
basis are known as the principal axes of the quadratic form q. We will explain this
terminology below.

Proof of Theorem 10.60 Fix an orthonormal ordered basis b’ of (V, (-,-)) and let ((-,-))
denote the symmetric bilinear form on V such that g(v) = (v, v)) forallv € V. Let A =
M({-,-)),b’)and f : V — V denote the endomorphism whose matrix representation is
A with respect to the ordered basis b’ of V. Since ((-,-)) is a symmetric bilinear form, the
matrix A is symmetric and hence f is self-adjoint with respect to (-,-) by Example 10.46.
Theorem 10.48 implies that there exists an orthonormal ordered basis b of (V/, (-,-))
consisting of eigenvectors of f. Let D = M(f, b, b) be the diagonal matrix representation
of f with respect to b. From Proposition 9.6 we have forall v € V

(10.4) q(v) = {v.v)) = B) TM({-), b)B(v).
By construction we have M({(-,-), b’) = M(f, b’, b’), hence Proposition 9.6 gives
M({(-),b) = CTM({-),b’)C = CTM(f, b’ b)C,

where C = C(b, b’). Since both b’ and b are ordered basis that are orthonormal with
respect to (-,-), Proposition 10.36 implies that C is orthogonal, C” = C~1. Finally, using
Theorem 3.107, we thus obtain

(10.5) M(((-,-),b) = C"*M(f,b’,b')C = M(f,b,b) = D.
Combining (10.4) and (10.5), we get
q(v) = B(v) " DB(v),

as claimed. O

Example 10.62 (Example 10.59 (i) continued) Hereweareinthe casewhere V = R?
and (-,-) is the standard scalar product. We have q(V) = (v, V)) = (V, V)a. Taking
b’ = e to be the orthonormal standard ordered basis of R?, we get

M((-,-),b') = A = (22 —52> |

Orthonormal eigenvectors of A can be computed to be

- (3)-)
NG V5

so that . ,
C(b,b) = (‘ﬁ P
V5 VA

and
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FIGURE 10.6. The ellipse defined by the equation 2x? — 4xy +5y? =1
and its principal axes spanned by the orthonormal vectors v; and v5.

Writing
L (x . X(\7)>
V= and V) = 2,
;) 5= (%3
we obtain
X ! —\% X 2y
X(V) = Sl =——=+—F%
@=(;) <f> NG
and
X ’ % 2x y
Y(V)=— Sl=-2 - 2
@=-(;) <f> 5
so that
q(V) = 2x* — 4xy + 5y% = 6X(V)? + Y (V)%

Remark 10.63 Especially in the physics literature it is customary to also use the
letters x, y to denote functions from R? — R (and likewise for higher dimensions).
The function x returns the first component of a vector v € R? and y returns the
second component, so that for instance

() = Q)

Thinking of x, y as functions - and doing the same for X, Y, the quadratic form from
the previous example can then be written as (notice that we write g and not g(V))

g =2x> —4xy +5y%> = 6X°> + Y2

Definition 10.64 (Quadric) Letq: V — R beaquadraticformand ¢ € R. Aquadric
Qin V isthe set of solutions v € V to an equation of the form g(v) = c.

Example 10.65 The set
Q= {(x,y) € R2|2x2 —4xy +5y% = 1}
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is a quadric in R2. Written this way it is not immediately clear how the set of solution
looks like. With respect to our new orthonormal orthonormal basis b = (vy, v2)
provided by the example above, we can however write Q as

Q= {VeR6X(V) + Y(V) =1}
and we recognise @ as an ellipse. The X-axis spanned by v; and the Y'-axis spanned

by v, are symmetry axes for the ellipse and are known as its principal axes, see
Figure 10.6.

Remark 10.66 (O - not examinable) Quadratic forms also play an important role
in calculus. Let f : R” — R be a twice continuously differentiable function. The
Hessian matrix of f at X = (x;)1<i<n € R"is given by

0*f
Dxi0x;
where 1 < /,j < n. By the Schwartz theorem, this matrix is symmetric and hence
for each X € R"” we obtain a quadratic form on R" defined by the rule

Lo1. e 1
q(h) = EhTHf(X)h = §<h: h)u,(x)-

forall h € R" and where (-,-) denotes the standard scalar product of R”. The
significance of this quadratic form arises from the Taylor approximation of . For
vectors h € R" of small length we have the approximation

[He(x)]; =

o . 1 - -

where V(X) denotes the gradient of f at X. Recall that at a critical point X of f we
have Vf(x) = Og» and hence

f(X+ h) ~ £(X) + q(h).

In order to decide whether f admits a local maximum / a local minimum at a critical
point, one thus needs to investigate the sign of g(h) for all h.

The previous remark is one motivation for the following definition:

Definition 10.67 Letq : V — R be a quadratic form on the R-vector space V. Then
qis called

- positive or positive semi-definite if g(v) > 0forallv € V;

« positive definite if g(v) > 0and g(v) = 0ifand onlyif v = 0y;

+ negative or negative semi-definite if g(v) < Oforallv € V;

« negative definite if g(v) < 0and g(v) = 0ifand only if v = Oy;

« indefinite if there exists v € V and w € V such that g(v) < 0and g(w) > 0.

By the principal axes theorem (Theorem 10.60), we can write a quadraticformg : V — R
on a Euclidean space (V, (-,-)) as g(v) = B(v) TDB(v), where b is an ordered orthonor-
mal basis of V and D a diagonal matrix.
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Exercises

Exercise 10.68 Show the following characterisations:

(i) gis positive if and only if all diagonal entries of D are greater than or equal to
zero;

(i) gis positive definite if and only if all diagonal entries of D are positive;

(iii) gisnegative if and only if all diagonal entries of D are less than or equal to zero;

(iv) g is negative definite if and only if all diagonal entries of D are negative;

(v) qisindefinite if and only if D has positive and negative diagonal entries.
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Unitary spaces W
3
ke

Unitary spaces are the complex companions of Euclidean spaces. Much of the theory of
Euclidean spaces also holds over to the complex numbers when we suitably adapt the
notion of an inner product. In addition, almost all proofs carry over from the real case,
hence we will only provide proofs when the arguments from the real case do not work.

11.1 Hermitian inner products

Naively one might define a “standard scalar product” on C" as in the case of R”, that is,
forZ = (z;)1<i<nand w = (w;)1<i<n € C"weputZ-w = Y | zw;. However, doing
so, it is not true any more that Z'- Z = 0 only for the zero vector in C". For instance, the

vector
pa— .
|

satisfies Z- Z = 0, but Z # Oc2. Instead of the above definition we define the Hermitian
standard scalar product on C" by the rule

<Z, V_V> = Zf;w,',
i=1
where Z denotes the complex conjugate of the complex number z € C. Recall that
zZ = Re(z)? + Im(z)? > 0so that zz = 0if and only if z = 0. The Hermitian standard
scalar product is an example of a sesquilinear form:

Definition 11.1 (Sesquilinear form) Let V' be a complex vector space. A sesquilinear
formon Visamap (-,-) : V x V — Csuch that

(i) (-,-)islinearin the second variable, that is,
<V, siwy + 52W2> = 51<V, W1> + 52<V, W2>

foralls;,s, € Candall v, wy, w, € V;
(i) (-,-) is conjugate linear in the first variable, that is,

(s1iw1 + owe, v) = 51(wy, v) + S (wa, v)

foralls;,s, e Candall v, wy, wr € V;
Moreover, a sesquilinear form is called Hermitian if

(v.w) = (w,v)

forallv,w e V.

Remark 11.2

« Sesquilinear forms correspond to bilinear forms in the real setting and Hermitian
forms correspond to symmetric bilinear forms.
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« In our convention a sesquilinear form is conjugate linear in the first variable and
linear in the second variable. The reader is warned that some authors use the
opposite convention so that a sesquilinear form is linear in the first variable and
conjugate linear in the second variable.

Let V be a finite dimensional C-vector space and b = (v, ..., v,) an ordered basis of V.
Asinthe case of bilinear forms over real vector spaces, we define the matrix representation
of a sesquilinear form (-,-) on V with respect to b

M((,), b) = ((vi, vi) )1<ij<n-

Recall that in the real setting symmetric bilinear forms are represented by symmetric
matrices. Similarly, sesquilinear Hermitian forms - usually just called Hermitian forms -
are represented by so-called Hermitian matrices. For a precise definition, we need:

Definition 11.3 (Conjugate matrix) Let A = (Aj)i<i<cmi<i<n € Mma(C). The
conjugate matrix of A'is the matrix A = (A;)1<i<m1<j<n € Mm n(C) whose entries
are the complex conjugates of the entries of A.

Lemma 11.4 (Properties of the conjugate matrix)
(i) ForallA,B € M, ,(C)andalls, t € C, we have
sSAttB=5A+18, A=A AT=A
(ii) Forall A € My, ,(C)and B € M, ,(C), we have
AB = AB.
In particular, A € M, ,(C) is invertible if and only if A is invertible and (A) o
AL
(iii) Forall A € M, ,(C) we have
det A = det(A).

Proof (i) and (ii) follow from the definitions of matrix operations and fromz = z
and zw = Zw for all complex numbers z, w. (iii) follows from the Leibniz formula
Proposition 5.39. (]

Hermitian matrices have the property that their transpose equals their conjugate matrix.

Definition 11.5 (Hermitian matrix) Amatrix A = (Ajj)1<ij<n € Man(C)is called
Hermitian if

AT=A — A=A = A;=A; 1<ij<n

Remark 11.6

+ Notice that the diagonal entries of a Hermitian matrix A = (Ajj)1<ij<n € Mnn(C)
satisfy A; = A;; forall 1 < i < nand hence must be real.
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. Ifwewrite A € M, ,(C)as A =B+ iCforB, C € M, ,(R), then Ais Hermitian
if and only if

AT =(B+iC)" =BT +iC"=A=B-iC

which is equivalent to B being symmetric and C being anti-symmetric.

Example 11.7 2 x 2 and 3 x 3 Hermitian matrices are of the form

3 2 a V4 w
<z b)’ i 2 “
w u C

fora,b,c € Randu,z,w € C.

In analogy to Proposition 9.6 we obtain:

Proposition 11.8 Let V be a finite dimensional C-vector space andb = (v, ..., vp)
an ordered basis of V with associated linear coordinate system 3 : V — K". Suppose
(-,-) is a sesquilinear form on V/, then

(i) forallv,w € V we have
(v, w) = B(v) M((--), b)B(w);

(ii) (-,-) is Hermitian if and only if M({-,-), b) is a Hermitian matrix;
(iii) ifb’ is another ordered basis of V, then

M((--),b') = € M((-,-), b)C,

where C = C(b’, b) denotes the change of basis matrix.

Proof Exercise. O

Non-degenerateness of a sesquilinear form is defined exactly as in the real case and
correspondingly, a sesquilinear form on a finite dimensional complex vector space is
non-degenerate if and only if its matrix representation with respect to some (and hence
any) basis has non-vanishing determinant (c.f. Proposition 9.10).

Again, in analogy to the real case we call a sesquilinear form (-,-) on V positive if (v, v) > 0
forall v € V and positive definite if (-,-) is positive and (v, v) = 0ifand only if v = Oy,.
Also, in analogy to Definition 10.2, we define:

Definition 11.9 (Hermitian inner product) Let V' be a C-vector space. A sesquilinear
form on V that is positive definite and Hermitian is called a Hermitian inner product.

Example 11.10 (Hermitian forms and Hermitian inner products)

(i) Suppose A € M, ,(C)isaHermitian matrix, thenthemap (-,-) : C" xC" — C
defined by the rule
(Z,W)a = (2)TAW

forall Z, w € C" defines a Hermitian form on C".
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(i) Leta < bbereal numbers and consider V = C(]a, b], C), the complex-vector
space of continuous complex-valued functions on the interval [a, b]. We define
() : Vx V = Cbytherule

b
(F.g) = / (g (x)dx.

Then the properties of integration from the Analysis module show that (-,-) is a
Hermitian inner product on V.

(iii) Let V = M, ,(C) denote the C-vector space of n x n-matrices with complex
entries. We defineamap (-,-) : V x V — C defined by the rule

(A,B) =Tr (KTB)

forall A,B € M, ,(C). Since the trace is a linear map Tr : M, ,(C) — C
satisfying Tr(A) = Tr(A) forall A € M, ,(C), it follows that (,-) is a Hermitian
form on M, ,(C). Writing A = (Aj;)1<i j<n, We obtain

(AR =D "> AiAi=> > AP
i=1 j=1 i=1 j=1

sothat (A, A) > 0and (A, A) = 0ifand only if all entries of A are zero, that is,
A = 0. We conclude that (-,-) defines a Hermitian inner product on M, ,(C).

The complex companions of Euclidean spaces (c.f. Definition 10.7) are the so-called unit-
ary spaces:

Definition 11.11 (Unitary space) A pair (V, (-,-)) consisting of an C-vector space V
and a Hermitian inner product (-,-) on V is called a unitary space.

As in the case of Euclidean spaces, a Hermitian inner product {-,-) on a complex vector

space V allows to defineanorm || - || = v/(:,-) on V. Since (-,-) is a Hermitian form, we
have that (v, v) = (v, v) forall v € V. Therefore, (v, v) is a non-negative real number
forall v € V and hence || - || is well defined. Although we will not prove it here, the

Cauchy-Schwarz inequality holds as well in the setting of unitary spaces. That is, asin
Proposition 10.8, we have again that forall v, v, € V

[{(vi, v < [vallllve

with equality if and only if {v, v»} are linearly dependent. Here | - | on the left denotes
the absolute value.

The distance function is also defined analogously and again we have the triangle inequal-
ity. Again, we will not prove this.

The notions of orthogonality, orthonormality, the orthogonal complement, the ortho-
gonal projection onto a subspace are again defined analogously to the Euclidean case.

Example 11.12 Consider V = C([0, 27], C), the C-vector space of continuous com-
plex-valued functions defined on the interval [0, 27]. We equip V with the Hermitian
inner product (-,-) as defined in Example 11.10 above. Forn € Zlet f,, : [0, 27] — C
be defined by the rule

int

fo(t) = e

1
V2T
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forall t € [0, 27]. Then for n # m, we obtain
27

1 2‘”'7 imt 1 2 i(m—n)t 1 i(m—n)t
<f;~,,fm> = — elnte dtzi e dt: - e :O
27 Jo 27 Jo 27wi(m — n) 0

and for all n € Z we have that (f,, f,) = 1. It follows that {f,|n € Z} is an or-
thonormal subset of V. This observation is at the heart of the theory of Fourier
series.

Again, Theorem 10.22 also has a complex version:

Theorem 11.13 (Gram-Schmidt orthonormalisation for unitary spaces) Let
(V,{-,-)) be an n-dimensional unitary space andb = (v, ..., v,) an ordered basis of
V. For2 < i < nwe define recursively

W = v — I'Ifjl__l(v,-) and u; Wi

~ wll
where Ui_1 = span{uy,...,ui—1} and vy = vi/||vi|. Thenb’ = (uy,..., u,)is
well defined and an orthonormal ordered basis of V. Moreover, b’ is the unique
orthonormal ordered basis of V so that the change of basis matrix C(b’, b) is an

upper triangular matrix whose diagonal entries are real and positive.

As in Definition 10.25, we have:

Definition 11.14 (Positive definite matrix) Letn € Nand A € M,, ,(C). The matrix
A is called positive definite if the sesquilinear form (-,-)o on C" is positive definite.

Asin Theorem 10.26, we obtain:

Theorem 11.15 (Cholesky decomposition over C) Letn € Nand A € M, ,(C) be a
positive definite Hermitian matrix. Then there exists a unique upper triangular matrix
C € M, »(C) with real and positive diagonal entries such that A = CTC.

Remark 11.16 Similar to the real case (c.f. Remark 10.27), for an invertible complex
matrix C € M, ,(C), the matrix €’ Cis Hermitian and positive definite.

Remark 11.17 Asin Remark 10.28, in a finite dimensional unitary space (V, (-,-))
equipped with an ordered orthonormal basisb = (v, ..., v,), we have the following
identities forall v € V

v=> (v,vi)vy and |v|=

i=1
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Exercises

Exercise 11.18 Compute the Cholesky decomposition of the positive definite Her-
mitian matrix

6 —1+i -2
A=|-1—i 3 —2+i
-2 —2—i 3
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11.2 The unitary group %Z?r
9

Orthogonal transformations between Euclidean spaces correspond to so-called unitary
transformations between unitary spaces:

Definition 11.19 (Unitary transformation) Let (V, (-,-)) and (W, {(-,-))) be unitary
spaces. An isomorphism f : V — W is called a unitary transformation if

(u,v) = (f(u). £(v))

forallu,v e V.

With this definition, all the statements about orthogonal transformations have corres-
ponding statements for unitary transformations.

Definition 11.20 (Unitary group & unitary matrices)

« Let(V, (-,-)) be a unitary space. The set of unitary transformations from (V, (-,-))
to itself is called the unitary group of (V, (-,-)) and denoted by U(V, (-,-)).

« AmatrixR € M, ,(C)iscalled unitaryif fg : C" — C"isan unitary transformation
of (C", {-,-)), where (-,-) denotes the standard Hermitian scalar product of C".
The set of unitary n x n-matrices is denoted by U(n) and called the unitary group.

Like the orthogonal group, the unitary group is indeed a group:

Proposition11.21 Let(V, (-,-)) beaunitaryspace. ThenthesetU(V, (-,-))isagroup
in the sense of Definition 8.4 when the group operation is taken to be the composition
of mappings. In particular, U(n) is a group when the group operation is taken to be
matrix multiplication.

We have the characterisation:

Lemma 11.22 forall n € N we have
U(n) = {R € M, ,(C)RTR = 1n} - {R € GL(n,C)RT = R*l} .

A unitary transformation has a unitary matrix representation with respect to an orthonor-
mal basis:

Proposition 11.23 Let n € Nand (V, (-,-)) be an n-dimensional unitary space
equipped with an orthonormal ordered basis b. Then an endomorphismf : V — V'is
a unitary transformation if and only if its matrix representation R = M(f, b, b) with
respect to b is a unitary matrix.

We also have:
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Corollary11.24 Letn € Nand(V, (-,-)) be an n-dimensional unitary space equipped
with an orthonormal ordered basis b. Then an ordered basis b’ of V is orthonormal
with respect to (-,-) if and only if the change of basis matrix C(b’, b) is unitary.

The special unitary transformations are those with determinant one:

Definition 11.25 (Special unitary group & special unitary matrices)

. Let (V, (-,-)) be a unitary space. The subset of U(V, (-,-)) consisting of endo-
morphism whose determinant is 1 is called the special unitary group of (V, {-,-))
and is denoted by SU(V/, (-,-)).

« Amatrix R € M, ,(C) is called special unitary if R € U(n) and detR = 1. The
set of special unitary n x n-matrices is denoted by SU(n) and called the special
unitary group.

Again, we have indeed groups:

Example 11.26 While O(1) just consists of the matrices £(1). The group U(1) has
infinitely many elements. Indeed (z) € U(1) if and only if | z|> = 1 so that

U(1) = {(e")|¥ € R}.

11.3 Adjoint and normal endomorphisms

The notion of the adjoint for maps between unitary spaces is defined as in the case of
Euclidean spaces. Given finite dimensional unitary spaces (V, (-,-)) and (W, {-,-))) and
alinearmap f : V — W, the adjoint of f is the unique map * : W — V such that

(F(v), w)) = (v, F*(w))

forallv € Vand w € W. The adjoint f* is constructed by choosing an orthonormal
basis b of V and an orthonormal basis c of W and by requesting that

(11.1) M(f*,c,b) = M(f,b,c) .

The self-adjoint mappings of a unitary space (V, (,-)) arethenthelinearmapsf : V — V
satisfying * = f. If we equip V with an ordered orthonormal basis b, then a linear map
f: V — Visself-adjoint if and only if M(f, b, b) is a Hermitian matrix.

Let A € M, ,(C) and equip C" with the standard Hermitian scalar product (-,-). Then
(11.1) implies that (fa)* = fg7. This motivates the following definition:

Definition 11.27 (Adjoint matrix) Fora matrix A € M, ,(C) we define
A =RA"

and call A* the adjoint matrix of A.

The spectral theorem also holds in the unitary setting:
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Theorem 11.28 (The spectral theorem for unitary spaces) Let (V, (-,-}) be a finite
dimensional unitary space and f : V — V a self-adjoint endomorphism. Then there
exists an orthonormal basis of V consisting of eigenvectors of f. In particular, f is
diagonalisable.

Again we have a matrix version:

Theorem 11.29 Letn € Nand A € M, ,(C) be a Hermitian matrix. Then there exists
a unitary matrix R € M, ,(C) such that RAR* is a diagonal matrix.

As in the real case we call an endomorphism f : V — V of a unitary space (V, (-,-))
normal if f o f* = f* o f. Normal endomorphisms can be characterised in terms of the
following lemma:

Lemma11.30 Let (V, (-,-)) be a unitary space and f : V — V an endomorphism.
Then f is normal if and only if

W)= £ (V)i

forallv € V.

Before we give a proof, we remark:

Remark 11.31 Let V be afinite dimensional C-vector space and (-,-) and Hermitian
form on V. Similar to the real case, writing g(v) = (v, v), we obtainforallv, w € V

4Re(v, w) =2({v,w) + (v, w)) =2({v, w) + (w, v))
=(v4+w,v+w)—{(v—w,v—w)=gq(v+w)—qg(v—w),

so that the real part of (-,-) is determined by g. On the other hand, we have for all
v,weV

Re((iv, w)) = — Re(i{v, w)) = Im({v, w)),
so that the imaginary part of (-,-) is determined by g as well. It follows that two
Hermitian forms (-,-) and ((-,-)) on V satisfy (-,-) = ((-,-)) ifand only if (v, v) = (v, v))
forallv e V.

Proof Suppose f is normal, then we have forallv € V

IEW)IIZ = (F(v), £(v)) = (v, F(F(v))) = (v, (F" o F)(v)) = (v, (F o £)(v))
= (F*(v). £ (v)) = [ ()]

Taking the square root implies that || f(v)|| = ||f*(v)]|| forallv € V.

Conversely, suppose ||f(v)|| = [|[f*(v)]| forall v € V, then the previous calculation
implies that

(v (F o F)(v)) = (v, (f o £7)(v))

forall v € V. We define Hermitian forms ;1 and ¢, on V by the rule
pr(v, w) = (w, ("o f)(v)) and (v, w) = (w,(fof")(v))
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forall v, w € V. We have 1(v, v) = pa(v, v) forall v € V. By the previous remark this
implies that ¢; = . Henceforall v, w € V, we have

(w,(f*of —fof*)(v))=0.

Takingw = (f* o f — f o f*)(v), we conclude that ||(f* o f — f o f*)(v)|| = O forall
v € V. ltfollows that f is normal. O

Similar to the real case, every unitary endomorphism is normal. In addition, we mention
the following properties of normal endomorphisms:

Proposition 11.32 (Properties of normal endomorphisms) Let (V, (-,-)) be a finite
dimensional unitary space and f : V. — V a normal endomorphism. Then
(i) Kerf = Kerf*;
(ii) X\is an eigenvalue of f if and only if X is an eigenvalue of f*;
(iii) the eigenspaces of f are orthogonal. That is, for eigenvalues \ # 1 of f we have
(u,v) = 0forall u € Eigs(\) and for all v € Eigs(1);
(iv) if f is self-adjoint, then the eigenvalues of f are real;
(v) if f is unitary, then the eigenvalues of f are complex numbers of modulus 1.

Proof (i) By definition, v € Ker f if and only if f(v) = 0y . This condition is equivalent to
[If(v)]| = 0, by the property (i) of norms, see Proposition 10.12. Since || (v)]|| = ||f*(v)]|
forall v € V by the previous lemma, we conclude that Ker f = Ker f*.

(ii) Observe that if f is normal then f — sldy is normal as well for all s € C. Indeed, using
the normality of £, we compute
(sldy — f)o(sldy — f)* = (sldy — f) o (5ldy — f*) = f o f* —5f — sf* + |s|?Idy
=f*of —sf* —35f +|s]’ldy = (5ldy — f*) o (sldy — f)
= (sldy — f)* o (sldy — f).
Using (i), we conclude that for all s € C we have

Eigs(s) = Ker(sldy — f) = Ker(sldy — )" = Ker(sldy — *) = Eig. (3).

(iii) Let A be an eigenvalue of f with eigenvector v and p be an eigenvalue of f with
eigenvector v. Then, using (ii) and the conjugate linearity of (-,-) in the first argument,
we obtain

Mu,v) = (Au, v) = (f*(u), v) = (u, f(v)) = (u, pv) = p{u, v)
If X # u, it follows that (u, v) = 0, as claimed.

(iv) if there exists a non-zero vector v € V and a scalar A € Csuch that f(v) = Av, then
we obtain

(v, f(v)) = (v, \v) = Xv, v) = (f(v),v) = (Av, v) = X(v, V).
Since (v, v) # 0, thisimplies that A = X and hence \ is real.

(v) Suppose A is an eigenvalue with non-zero eigenvector v of the unitary endomorphism
f,then

AP (v, v) = A\v,v) = (v, Av) = (F(v), f(v)) = (v, F*(F(V))) = (v, ),
where we use the conjugate linearity of (,-) in the first argument and that f* = f~ fora

unitary endomorphism. Since (v, v) # 0, it follows that |\?| = 1. O
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Itturns out that an endomorphism of a unitary space is diagonalisable with a orthonormal
basis if and only if it is normal. This is a statement which is not true in the real setting.
For instance, a rotation around the origin in R? is a normal endomorphism with respect
to the standard scalar product of R?, but rotations have in general no eigenvectors.

Theorem 11.33 (Spectral theorem for normal endomorphisms) Let (V, (-,-}) bea
finite dimensional unitary space and f : V. — V an endomorphism. Then there exists
a basis of V consisting of orthonormal eigenvectors of f if and only if f is normal.

We need the following lemma in order to prove Theorem 11.33.

Lemma11.34 Let (V, (-,-)) be a finite dimensional unitary space equipped with an
orthonormal ordered basisb and f : V — V an endomorphism. Then f is normal if
and only if AA* = A*A, where A = M(f, b, b).

Proof Letf : V — V be anendomorphism, then
M(f o f*,b,b) = M(f,b,b)M(f*, b, b) = AA™
and likewise
M(f* o f,b,b) = M(f*,b,b)M(f,b,b) = A*A,
where we use Corollary 3.101 and that M(f*, b, b) = M(f, b, b)* by (11.1). Applying
Proposition 2.20, we conclude that f o * = f* o f ifand only if AA* = A*A. O

Proof of Theorem 11.33 = Suppose there exists an ordered orthonormal basis b of
(V, (-,-)) consisting of eigenvectors of f. Hence A = M(f, b, b) is diagonal, that is,
A = Y7  NE;;, where )y, ..., \, denote the eigenvalues of f and {E; ;}1<;j<n the
standard basis of M, ,(C). We thus have that A* = ZJ'.’ZI E;jand

AA* =D NEi;i > NEj;=> > ANEE ;=) |[APEi;,
i=1 j=1 i=1 j=1 i=1
where we use Lemma 4.4. Likewise we compute that A*A = "7 | |\;|°E; ; and applying
Lemma 11.34 we conclude that f is normal.

< We use induction. For n = 1 every endomorphism is diagonal, hence there is nothing
to show and the statement is anchored.

Inductive Step: Assume that n > 2 and that the statement is true for all unitary spaces
of dimension at most n — 1. Since we work over the complex numbers, we can apply
Theorem 6.49to concludethat f : V — V admitsan eigenvalue A € C. Let W = Eigs(\).
We will argue next that the orthogonal complement W= of W is stable under f. Let
wi € W and wy, € W = Eigs(\) = Eigs. ()). Then, we have

(f(wa), wa) = (w1, F(w2)) = (w1, Awz) = A(wy, wa) =0,

where the last equality follows since w; € W+ and w, € W. Itfollows that f(w;) € W+,
hence W+ is stable under f. Let g = |1 : WL — W denote the restriction of f
to W+, We want to show that g is normal with respect to the restriction of (-,-) to W+.
Using Lemma 11.30, we have forallw € W+

gl = [IF (W)l = IF*(w)ll = llg"(w)
and hence g is normal. By the induction hypothesis, there exists an orthonormal basis
of W+ consisting of eigenvectors of g. As in the real case, we can complement this
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basis with an orthonormal basis of W = Eig.()\) to obtain an orthonormal basis of
V = W @ W+ consisting of eigenvectors of f. O

Exercises

Exercise 11.35 Letn € Nand A € M, ,(C). Show that A is unitary if and only if
its column vectors form an orthonormal basis of C" with respect to the standard
Hermitian scalar product (-,-).

Exercise 11.36 Verify that SU(V/, (-,-)) is a subgroup of U(V/, (-,-)) in the sense of
Definition 8.8. In particular, SU(V, (-,-)) is indeed a group and hence so is SU(n).

Exercise 11.37 Show that

SU(2) = {(Z _ZW> lz,w € C,|z]? + |w|]? = 1}.

w
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The Jordan normal form

12.1 Generalised eigenvectors and eigenspaces ‘%&r
{7

Let f : V — V be an endomorphism of a finite dimensional K-vector space V. Recall
from Proposition 6.46 that the eigenspaces of f are in direct sum. Denoting by Ay, ..., Ak
the eigenvalues of f, we have

(12.1)  Eigs(M) @ Eige(A2) @ --- @ Eigg(Ak) =V <= f isdiagonalisable.

Not every endomorphism is diagonalisable, therefore the left hand side of (12.1) does
not hold in general. We would like to remedy this by replacing each eigenspace in (12.1)
with a suitable notion of generalised eigenspace. The idea is to consider “eigenvectors of
higher rank”. For an endomorphism f : V — V and k € N, we write

fK=fofo---of and define O =1dy.

k—times

Definition 12.1 (Generalised eigenvector) Letf : V — V be an endomorphism of
a K-vector space V. A non-zero vector v € V is called a generalised eigenvector of f
with eigenvalue ) € K if

(f = Aldy)"(v) = 0y
forsomeinteger m € N. If a generalised eigenvector v satisfies (f —Aldy)™(v) = Oy
and (f — Aldy)™1(v) # 0y, then v is said to have rank m.

Remark 12.2 Notice that a generalised eigenvector of f : V — V of rank 1 and
with eigenvalue ) satisfies

(f — )\ldv)(v) = 0\/ and |d\/(V) 7& Ov.

Equivalently,
f(v)=Av and v #Oy.
Generalised eigenvectors of rank 1 are thus precisely the usual eigenvectors.

The good definition of a generalised eigenspace is a bit trickier.

Definition 12.3 (Generalised eigenspace) Letf : V — V be an endomorphism of a
K-vector space V. For all A € K we define the generalised A-eigenspace of f to be
the set -

Er(N) = | Ker((f — Aldy)*)

k=0

179



CHAPTER 12 — THE JORDAN NORMAL FORM

The previous definition, while convenient for proofs, is not particularly handy for compu-
tations. Observe however thatif g : V — V isa endomorphism of a K-vector space V,
then

{0y} = Ker(g°) C Ker(g') C Ker(g?) C Ker(g*) C ---
and correspondingly we have
0 < dimKer(g) < dimKer(g?) < dimKer(g®) < - -~

If V is finite dimensional, then dim Ker((f — Aldy)¥) can be at most dim V forall k € N
and therefore there exists an integer m € N so that the generalised \-eigenspace of f
satisfies

E(\) = Ker((f — Aldy)™).

Lemma 12.4 [etf : V — V be an endomorphism of a K-vector space V. Then
Er(N) # {0y} ifand only if X is an eigenvalue of f.

Proof If \isan eigenvalue of f then there exists a non-zero vector v € Ker(f — Aldy/) and
hence dim &r(\) > 0so that Er(A\) # {0y }. Conversely, suppose Er(A) # {0y} so that
there exists an integer m and a non-zero vector v € V such that (f — Aldy)™(v) = Oy.
We may assume m to be the smallest such integer. Then, by assumption, w = (f —
Aldy)™=1(v) # 0y and w satisfies f(w) = Aw and hence is an eigenvector of f with
eigenvalue \. O

By a generalised eigenvector or generalised eigenspace of a matrix A € M, ,(K) we
mean those of f4 : K" — K".

Example 12.5 Consider

31
A =
(0 )
The characteristic polynomial of A is chara(\) = (X — 3)?, hence we have a single
eigenvalue 3 of algebraic multiplicity 2. A simple calculation gives that Eigs(3) =

span{é; }. Now
2
s > (0 1y /0 O
(A=3-15) _<0 o) _<0 o)'

hence & satisfies (A — 3 - 1,)?& = Og> and (A — 3 - 1,)& # Og. Therefore,
& is a generalised eigenvector of A of rank 2 with eigenvalue 3. We thus have
Ea(3) = span{éy, &}.

Recall that an eigenspace of an endomorphism f : V — V is a subspace of V that is
stable under 7. The same holds true for generalised eigenspaces.

Lemma 12.6 Letf : V — V be an endomorphism of a K-vector space V and A € K.
Then E¢()\) is a subspace of V that is stable under f.

Proof By definition, the zero vector Oy is an element of £¢(\), hence () is non-empty.
Lett;, t» € Kand vy, vo € & (). Then there exist kq, ko such that (f — Aldy )% (v;) = 0y
and (f — Aldy)*(v;) = 0y. Take k to be the maximum of {k;, k,}. Then, using the
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linearity of f — Aldy, and its powers, we compute

ti(f — Mdy)* "M (0y) + t(f — Aldy)**(0y)

t1(F — Mdy) R ((F = Aldy) R (v1)) + ta(F — Aldy)< 2 ((F = Aldy)*(v))
t1(F — Mdy)*(v1) + t2(F — Ady) (v2) = (f = Mdy) (tivi + tava)

Ov

sothat vy + tova € Ker((f — Aldy)*) C &¢()\) and hence & () is a subspace by
Definition 3.21.

We now show that £¢(\) is stable under f. Let v € E¢(\) so that there exists k > 0 with
(f — Aldy)*(v) = Oy. Write w = f(v). Then we obtain

(f — Mdy) (w) = (F = Aldy)*(F(v) — Av + \v)
= (f = Mldy)*(f(v) = Av) + A(f — Aldy)*(v)
= (f = Aldy) ™ (v) + X(f — Aldy)*(v) = 0.
Therefore w = f(v) € () and hence £¢(\) is stable under f. O

As for usual eigenspaces, generalised eigenspaces are also in direct sum:

Lemma 12.7 Letf : V — V be an endomorphism of a finite dimensional K-vector
space V. Then the generalised eigenspaces of f are in direct sum.

Proof Let Ay, ..., \x be distinct eigenvalues of f and let n; for 1 < i < k be such that
Er(N;) = Ker((f — \ildy)™). For1 < i < kletv;, ; € E()\;) be such that

(12.2) vitvatotve=0+ 04+ U

We want to show that w; = v; — ¥; = 0y forall 1 <7 < k. For1l < i < k consider the
endomorphism

8 — (f — )\1|d\/)n1 o---0 (f — )\,'_1|d\/)n"’1 o (f — )\,'_,_1|dv)"’ur1 O:--0 (f — )\k|d\/)nk.

Notice that g; does not contain the mapping (f — A;ldy)™. For i # j the mapping g;
contains (f — \jldy)™. Rearranging the mappings in g; if necessary, we can assume that
gi = ho (f — Ajldy)" for some endomorphism h. Rearranging does not change g; since
forall 1, 2 € Kwe have

(f — pldy) o (f — paldy) = (f — paldy) o (f — pualdy).
Since w; € &r(\j) = Ker((f — Ajldv)"™) we thus conclude that gj(w;) = Oy.
By Lemma 12.6 the subspace &¢()\;) is stable under f and hence it is also stable under
f — pldy forall © € K. Thisimplies that £¢();) is also stable under g;. Write (12.2) as
wi + w4 -+ wi = Oy

Applying the endomorphism g; to the previous equation and using that g;j(w;) = Oy
for i # j, we obtain that gj(w;) = 0y. Since for j # i none of the J; is a generalised
eigenvalue of f|¢, (), the restriction of g; to & ();) is invertible as an endomorphism
of &r(\;). Since gi(w;) = Oy, this implies that w; = 0. Since i is arbitrary, we have
wi = wy =--- = w, = 0y, as desired. O

We now obtain the desired improvement of (12.1) which holds true without the diagonal-
isability assumption of f.
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Proposition 12.8 Letf : V — V be an endomorphism of a finite dimensional C-
vector space V of dimension n > 1 and let \1, ..., \x denote the distinct eigenvalues
of f. Then we have

(M) ®EN) D - B E(M) = V.

Proof Let U = &(A\1) @ Er(N\2) @ -+ - @ Er(Ak) and suppose that U # V. Then, by
Corollary 6.11 there exists a complement U’ of U withdim U’ > 1. Letl : V — U’
denote the projection onto U’ with kernel U and consider the endomorphism £ = Mo
flyr = U — U'. Since we work over the complex numbers and since dim U’ > 1,
Theorem 6.49 implies that f admits an eigenvalue p. Let v € U’ be a corresponding
eigenvector of f.Since U =KerMisa complement of U’, we obtain

f(v)=pv+u

for some vector u € U. We can write u = Zf;l ui with u; € &f(\;). Now define
g=1f—puldy:V — Vsothat

g(v) = Z uj.

Suppose 1 < i < kissuch that \; # p. By definition, Eigs()\;) C &¢(\;), hence the
restriction of g = f — puldy to Er () isinvertible as an endomorphism of £¢(\;), so there
exists a vector v; € £¢()\;) such that g(v;) = u;. If \; # pforalll < i < k, then we

obtain )
g (v — Z v,-) =0y

i=1
so that v — Zf.‘zl v; is an element of Ker g = Ker(f — uldy) = {0y}, where the last
equality follows since piis not an eigenvalue of f. We can therefore write v = Zf;l vi € U,
but this contradicts the assumption that v € U’.

We conclude that we can find an integer / with 1 < i < k such that \; = p. After possibly
renumbering the eigenvalues we can assume that A; = p and hence that \; # u for
2 < i < k, since the eigenvalues are distinct. So again for 2 < i < k we have vectors
v; € E(\;) such that g(v;) = u;. We thus have

k
g(v—Zv,-) = uz.
i=2

Since Er(A1) = Ker((f — A1ldy)™) for some integer ny and g = f — A\qldy, applying g™,

we obtain )
gmtt (V - Z V/) =g"(u1) =0y,
i=2
where the last equality uses that u; € E¢(A1). It follows that v — fozz vi € (A1) and
hence that v € U which is again a contradiction to the assumption that v € U'. O

Each generalised eigenspace &¢()\;) is stable under f. Therefore, if we fix an ordered
basis b; of £¢(;), then we obtain matrices A; = M(f|¢,(»,), bi, b;) and the matrix rep-
resentation of f : V — V with respect to the ordered basis b of V obtained by joining
the ordered bases by, ..., by takes the block diagonal form (where unprinted entries are
understood to be zero)
A,
A;
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We write diag(A1, A, ..., Ay) for such a block diagonal matrix.

Example 12.9 Let

1 3 7 -5 2
A1—<4 8), A= (2, A=[0 1 -1),
9 2 0
then we have

1 -3 00 O 0
4 8 0 0 O 0
. 0O 0 2 0 O 0
dlag(Al, Az, A3) = 0 0 0 7 _5 5
O 0 00 1 -1
0 0 0 9 2 0

183



CHAPTER 12 — THE JORDAN NORMAL FORM

12.2 Jordan blocks ‘”é‘g,r
244

The Proposition 12.8 thus tells us that for an endomorphism f : V' — V of a finite
dimensional C-vector space V, we can always find an ordered basis of V so that the
matrix representation of f takes block diagonal form diag(A1, A, ..., A). Thisis already
a nice statement, but it turns out that we can say more about how the individual blocks
A, look like. For a precise statement, we need the notion of a Jordan block. For m € N
and A € KletJ,,(A\) € Mp m(K) denote the m x m-matrix

> =
—_

In(\) = [ SOE)+ T B m>1
’ (A) m=1

> =

>

where {E; j }1<i j<m denotes the standard basis of M, ,,(K). A matrix of the form J,,,(\)
is known as a Jordan block of size m.

Example 12.10 (Jordan blocks)

B =0 2= (5 3) k-

o O O
O O =
O = O

We can now state precisely how the individual matrix blocks look like:

Proposition 12.11 Let f : V — V be an endomorphism of a finite dimensional
K-vector space V and A € K an eigenvalue of f. Then there exists an integer ¢ € N,
integers my, ..., my and an ordered basis b of £¢(\) such that

M(flg;(2), b, b) = diag(Jm, (A), Im, (A), - s Im, (A))-

By Proposition 12.8, the vector space V is a direct sum of the generalised eigenspaces of
f and by the previous proposition we can find an ordered basis of each eigenspace so
that the matrix representation of the restriction of f onto each eigenspace is a sum of
Jordan blocks. Combining these two statements, we have thus shown:

Theorem 12.12 (Jordan normalform) Letf : V — V be anendomorphism of a finite
dimensional C-vector space V of dimension n > 1. Then there exists an ordered basis
bofV,aninteger k > 1, integers ny, ..., nx withn = ny + ny + - - - + nx and complex
numbers 1, ..., A such that M(f, b, b) = diag(J,, (A1), In,(A2), ..., In. (Ak)), that
is,

Jﬂ1 (/\1)

M(f,b,b) _ an(/\2)

Jnk()\k)

184



12.2 — Jordan blocks

Remark 12.13 The ordered basis b of V provided by the Jordan normal form the-
orem is called a Jordan basis for f.

Before we prove Proposition 12.11, we first relate Jordan blocks to the notion of general-
ised eigenvectors. To this end we first show:

Lemma12.14 Let m € Nand ) € K. The only eigenvalue of J,,(\) is \. Its algebraic
multiplicity is m and its geometric multiplicity is 1.

Proof Recall from Proposition 5.24 that the determinant of an upper triangular matrix
is the product of its diagonal entries, hence the characteristic polynomial of the Jordan
block J(A) is

chary (y(x) = (x = A)™,
where here we denote the variable of the characteristic polynomial by x. It follows that A
is the only eigenvalue of J,,,(\) and that its algebraic multiplicity is m. An eigenvector
V = (vi)1<i<m of Jm(\) with eigenvalue A satisfies J,,(A\)V = AV, that s,

AVi+wm=Avi, AW+ v3=Avs, - AVp_ 1+ Vn=AVm_1, AV = AVp.
Hence v, = v3 = -+ = v, = 0 while vy is arbitrary. It follows that the geometric
multiplicity of Ais 1. O

The relation between generalised eigenvectors and Jordan blocks is explained by the
following two lemmas:

Lemma 12.15 Let m € Nand )\ € K. Then e, is a generalised eigenvector of rank m
and with eigenvalue X of the endomorphism fy () : K™ — K.

Proof We assume m > 1 since for m = 1 the statement is trivial. By definition, we need
to show that

(f1,00) — Aldgm)™(E,) = 0km  and (i, () — Aldgn)™ (&) # Ok

By definition, we have J,(\) — A1, = J,(0) = Zf’;‘ll E; 1. We use induction to show
thatfor1l < kK < m— 1, we have

m—k
(12.3) Im(0)) =D Eiirk.
i=1
For k = 1 the statement is obviously correct and hence anchored.

Inductive step: Suppose the statement is correct for k > 1. We want to show that it is
correct for k + 1 < m — 1. Using the induction hypothesis, we compute

m—1 m—k m—k
(Im(0) ™ = Jm(0)(Im(0))* = > Ejji1 Y Eiju =Y Eiivits,
=1 i=1 i=2

where the last equality uses Lemma 4.4. Since
m—k—1

m—k
Y Eivik= Y Eiikin,
i=2 i=1

(12.3) follows. Now we obtain

(ﬂm()\) - Ald]K"’)mil(é‘m) - (Jm(o))mile_’m = El,mgm - gl # OK”',
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CHAPTER 12 — THE JORDAN NORMAL FORM

where the last equality uses that
(12.4) E;jé = 0jké],

forall1 < i,j,k < m, as can be verified by direct computation. Moreover, using
Lemma 4.4 again, we have

(12.5) (Jm(0)™ = (Jm(0))™ 1 Jn(0) = Eq mz_: Eiit1 = Omm

and hence (f — Mdgn)™(v) = Ogn forall v € V. In particular &, is a generalised
eigenvector of rank m and with eigenvalue . O

Using the identities (12.3) and (12.4), we computeforl < k< m—1
m—k m—k
(Jm(o))kém = Z Ei,i+k€m = Z 6/+k,mé;' = é'm—k
i=1 i=1
so that

(I (0™ e, (Im(0)" 26, ..., Im(0)Em, En) = (61,8, ..., Em_1, Ep).

Applying J,,(\) — A1, repeatedly to the generalised eigenvector &,, thus gives an ordered
basis of V. In general we have:

Lemma1l12.16 LetV beaK-vectorspaceandf : V — V anendomorphism. Suppose
v € Visa generalised eigenvector of f of rank m € N with eigenvalue \ € K and
define u; = (f — Aldy)™~/(v) for1 < i < m. Then
(i) b = (u1,...,um) is an ordered basis of the subspace Z(gx,v) =
span{uy, ..., Um};
(ii) the subspace Z(gy, v) is stable under f;
(iii) let f denote the restriction of f to Z(gy, v), then we have M(f, b, b) = J,()\).

Proof (i) We only need to show that the vectors {u, ..., u, } are linearly independent as
by definition, {u1, ..., uy, } is a generating set for Z(g, v). Write g, = f — Aldy then

m—2

(U, s ) = (&7 (¥), 87 2(V), . (V). V).

Suppose we have scalars 1, ..., im such that

m—2

(12.6) Oy = pyus+-++ fimlm = 1187 (V) + 11287 2 (V) + -+ ttm—187(V) + fimV.

Since by assumption g"(v) = 0y we have gf(v) = Oy forall k > m. Applying g\
(m — 1)-times to (12.6) thus gives

m—1

VW) A 180 (V) + gy (V) = pmgl (v) = Oy

183" 2 (v) + pogy

By assumption gi" *(v) # Oy, hence we conclude that ,, = 0. Therefore, (12.6)
becomes

paus + - fimtm = pagn N(v) 4 pogl (V) + o+ pme182(v) = Oy

Applying gy (m — 2)-times to the previous equation we conclude that y,,—1 = 0 as well.
Continuing in this fashion it follows that y; = po = - -+ = u, = 0, hence the vectors
{u1, ..., um} arelinearly independent, as claimed.
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12.3 — Nilpotent endomorphisms

(ii) Since {u, ..., un } is a basis of Z(gy, v), itis sufficient to show thatforalll < i< m
the vector f(u;) is a linear combination of {uy, ..., uy, }. By construction, we have

(f = Aldv)(un) = g'(v) = Ov,
(f = Ndv)(2) = g7 (v) = un,
(f = Aldv)(us) = g0 7*(v) = w2,

(f — )\Idv)(um) =a(v)=un-1
Equivalently, we have
f(u) = A, f(w)=uw1+ A, f(us)=uw+Aus, ... Ff(um)=tm-1+ Atnm,

which shows the claim.

(iii) Previously we showed that f(u;) = Au, hence the first column vector of M(7, b, b)
is \é. For2 < i < m,we have f(u;) = 1u;—1 + Au; and hence the i-th column vector of
M(f, b, b) is given by &_; + A&. This shows that M(f, b, b) = J,(\). O

12.3 Nilpotent endomorphisms

We will prove Proposition 12.11 as a consequence of a statement about so-called nilpo-
tent endomorphisms.

Definition 12.17 (Nilpotent endomorphism) An endomorphismg : V — V of
a K-vector space V is called nilpotent if there exists an integer m € N such that
g™ = o,whereo : V — V denotes the zero endomorphism defined by the rule
o(v) =0y forallv € V. Amatrix A € M, ,(K) is called nilpotent if fs : K" — K"
is nilpotent.

Lemma12.18 Let V be a finite dimensional K-vector space and A € K an eigenvalue
oftheendomorphism f : V — V. Thentherestriction g = (f—Aldy)|g,(x) of f—=Aldy
to the generalised eigenspace E¢(\) is a nilpotent endomorphism.

Proof There exists aninteger m € Nsuchthat &(\) = Ker((f — Aldy)™). Therefore, for
allv € &(\) we have (f — Aldy)™(v) = 0y which shows that g™ = o, as claimed. O

For nilpotent endomorphisms, we can always find a natural ordered basis of V:

Theorem 12.19 Let V be a finite dimensional K-vector spaceandg : V — V a
nilpotent endomorphism. Then there exists an integer ¢ € N, integers my, ..., my € N
and vectors v1, ..., vy € V such that

b=(g™ '(v).g™ (1) .. g(v1), vi, 8™ H(v2), g™ 2 (v2) ., g(12), V2 .
8™ (i), g™ 2 (ve), - g (ve), i)

is an ordered basis of V and such that g™ (v1) = g™(v2) = - - = g™ (vy) = 0y. In
particular, we have

M(g, b, b) = diag(Jm, (0), Im,(0), - Im, (0))-
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Proof We use induction on the dimension of the vector space V. Fordim V = 1 the only
nilpotent endomorphism is the zero endomorphismo : V — V and we can take ¢ = 1,
my = land b = (v) for any non-zero vector v € V. The statement is thus anchored.

Inductive step: Suppose dim V > 1 and that the statement is true for all vector spaces
of dimension at most dim(V) — 1. Since g is nilpotent, we must have detg = 0 and
hence g cannot be surjective by Proposition 6.22. Therefore U = Im(g) is a subspace of
V whose dimension is at most dim( V) — 1. Observe that U is stable under g and hence
h=g|y : U— Uisanilpotent endomorphism of U. The induction hypothesis implies
that there exists an integer k, integers ny, ..., n and vectors uy, ..., ux € U such that

C = (h"fl(ul), h"172(u1), ey h(ul), uy, hnzil(UQ), hn272(u2)' ceey h(UQ), up, ...
e hnkil(uk), hm‘iz(uk), e h(uk), Uk)
is an ordered basis of U and such that h™ (u;) = h™(u2) = -+ - = h™(ux) = 0y.

Since uy, ..., ux € U = Im(g), there exist vectors vy, ..., vk such that u; = g(v;) for all
1<i<k.Setm; =n; +1forl < i < kand consider the set

S={g™ Mwv). g™ *(n1),....g(n1), v1,8™ (), g™ (v2), ..., g(v2), v, ...

" (vie) 8™ (ie) e 8 (Vk), vk}

g

We claim S is linearly independent. Suppose we can find a linear combination w of the
elements of S that gives the zero vector. Applying g to this linear combination, we obtain
a linear combination of the elements of

{g™(v1).g™ (1), ... 8% (n1), 8(n1), g™ (v2), ™ (va), ..., 8 (v2). 8(w2), ...
8™ (i), 8™ M (i), o 8 (i), 8 (vi) }

that gives the zero vector. Equivalently, we obtain a linear combination of the elements
of

{g™ HNw), g™ (v1), ..., g(u1), ur, g™ Hw), g™ (), ..., g(t2), o, ...

8™ (we), g™ (k) g (uk), uk}

that gives the zero vector. Equivalently, we obtain a linear combination of the elements
of

{h"l(ul), hnlil(ul), ceey h(ul), uq, hnz(UQ), hnzil(UQ), ey h(UQ), us, ...
ceey h”k(uk), h"k_l(uk), ey h(uk), Uk}

that gives the zero vector. Here we use that m; = n; + 1for1 < /i < k and that
h = gonlm(g). The tuple cis an ordered basis of U, hence all the coefficients in this
linear combination must vanish, except the coefficients before each vector h" (u;), since
h"(u;) = 0y forall1 < i < k. Theinitial linear combination w thus simplifies to become

g™ (i) + pag™ T H(va) - kg™ (vie) = Ov.

forsomescalars iy, ..., pk. ltremainsto argue that these scalars are all zero. The previous
equation is equivalent to

ph™ =) + pph™ 2 () + - pch™ " ug) = Oy

Using the linear independence of the elements of c again, we conclude that y; = - -+ =
1k = 0, as desired.

Observe that by construction, the vectors vy, ..., v satisfy g™ (v1) = g™(v2) = -+ =
g™ (vk) = Ov.
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12.3 — Nilpotent endomorphisms

By Theorem 3.64 we can an integer ¢ > k + 1 and vectors T = {Vk41,..., V¢} C V such
that SU T is a basis of V. Foreach k + 1 < i < ¢, the vector g(¥;) is an element of Im(g)
and hence a linear combination of the elements of c. By construction, the elements of c
arise by applying g to the elements of S. It follows that for each k+1 < i < ¢ there exists
avector z; € span(S) suchthat g(z;) = g(V). Fork + 1 < i < ¢, define v; = ¥; — z and
consider the tuple

b= (g™ (v1). g™ *(v),....g(w1), v1,8™ (v2), g™ *(v2), ..., g(v2), va, ...

8™ ), ™R (v). e (V) Vi Vi1, 1 )

Observe that by construction we have g(v;) = 0y for k + 1 < 7 < ¢ so that m; = 1 for
k + 1 < i < L. Furthermore, the tuple b has the same number of elementsas S U T it
must thus be the desired ordered basis of V, provided the elements of b span all of V.
Since each v; arises from ¥; by subtracting an element in the span of Sand since SU T
generates V, the elements of b must also generate V.

Finally, the first m; vectorsof bare y; = g™ ~/(v;) for 1 < i < m; and we have g(y;) =
Oy and g(y;) = yi—1 for2 < i < my. This contributes the Jordan block J,,, (0) to the
matrix representation of g with respect to b. The remaining blocks arise by considering
the vectors g™~/ (v;) for2 < k < fand where 1 < i < my. O

As an application, we obtain:

Proof of Proposition 12.11 Letf : V — V be an endomorphism of the finite dimen-
sional K-vector space V and A an eigenvalue of f. By Lemma 12.18, the restriction of
g = f — Mdy to the generalised eigenspace W = £¢()\) is nilpotent. By Theorem 12.19,
there exists an integer ¢ € N, integers my, ..., my € N and vectors vy, ..., vp such that
b= (g™ (), g™ (W) - g(1), v1, 8™ (v2), g™ (v2), . g (12), v, .
g (ve), g™ (), - g (ve), ve)

is an ordered basis of W and such that g™ (v1) = g™ (v2) = --- = g™(v¢) = Ov. Notice
that this implies that forall 1 < i < ¢, the vector v; is a generalised eigenvector of rank
m; with eigenvalue \ of f and moreover that we have

4
Er(N\) = @ Z(gx, vi)-

With respect to this basis we obtain

M(gle,(r), b b) = diag(Jm, (0), Im,(0), ... Im, (0))
Since f = g + Aldy, it follows that

M(fle,(n), b, b) = diag(Jm, (A), Im, (), - I, (N)),

as claimed. O
Exercises

Exercise 12.20 Show that A € M, ,(K) is nilpotent if and only if there exists an
integer m € Nsuchthat A™ = 0,,.
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12.4 Calculations %Z“/r
2

Let f : V — V be an endomorphism of the finite dimensional K-vector space V. A
generalised eigenvector of rank m € N with eigenvalue A € K of f is an element of
Unm = Kerg{", where g\ = f — Aldy. Therefore, we have at most dim Ker g{" linearly
independent generalised eigenvectors of rank m. However the subspace Ker g{” also
contains generalised eigenvectors of rank j for 1 < j < m — 1 and those are elements of
Unm_1 = Ker g/’\”*1 C Up. The number p,,(X) of generalised eigenvectors of rank m with
eigenvalue \ of f in a Jordan basis of f is thus given by the dimension of the quotient
vector space U,/ Upn—1. For A € Kand m € N we define

pm(N) = dim(Up/Up—1) = dim Ker(g") — dim Ker(g 1),

where the second equality uses Proposition 7.10. Using the rank-nullity Theorem 3.76,
we obtain

pm(A) = dim V — rank g — (dim V — rank g{" 1) = rank g{""! — rank g".

There are only finitely many integers m for which pp,,(A) > 0is non-zero. This follows
from the following observation:

Lemma 12.21 Letg : V — V be an endomorphism of the K-vector space V and
suppose there exists m € N such that

Ker(g™™) = Ker(g™).
Then we have
Ker(g™) = Ker(g™"") = Ker(g™"?) = Ker(g™"®) = Ker(g™**) = - -

Proof Let k € N be arbitrary. We want to show that Ker(g™+*) = Ker(g™***1). Since
Ker(g™*) C Ker(g™**1) we only need to show that Ker(g™+*+1) C Ker(g™*). Let
v € Ker(g™**1). Then

g™ (gk(v)) = g™ (v) =0y

and hence gk(v) € Ker(g™*1) = Ker(g™). This implies that g™(g*(v)) = g™ (v) =
Oy, therefore v € Ker(g™*) which shows that Ker(g™%*1) C Ker(g™*). O

Example 12.22 Let

21 -1 0 0 0
02 1 00O
A— 00 2 00O
00 0 210
00 0 0 21
00 0 OO0 4

Since A is an upper triangular matrix we see immediately that its eigenvalues are
A1 = 2and )\, = 4. We compute

01 -1 00 0
00 1 00 0
00 0 00 0

A—2.1 =

®“ 1o 0 0 0 1 0
00 0 00 1
00 0 00 2
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and

(A—2-16)% = (A—2-16)% =

O O O O o
O O O O O
O O O O o o
O O O O o o
AN =R O O O

0
0
0
0
0
0

O O O O o o
O O O O o o

0
0
0
0
0
0

O O O O oV
O O O O O o

o

0
0
0
2
4
0 8
f

From the expression for (A — 2 - 14)3 we conclude that rank((A — 2 - 1)) = 1 for
k > 3. We thus obtain

p1(2) =ranklg —rank(A —2-16) =6 — 4 =2,
p2(2) = rank(A —2-15) —rank((A —2-16)*) =4 -2 =2,
p3(2) = rank((A —2-16)%) —rank((A —2-16)%>) =2 -1=1,
pk(2) =0, k> 4.
A Jordan basis of fa thus contains 1 = p3(2) generalised eigenvector of rank 3 with
eigenvalue 2. Since
Ker((A —2-14)%) = span{&}, &, &, &, &}

and (A—2-14)2& = Os for i # 3, 6 we conclude that & is a generalised eigenvector
of rank 3 with eigenvalue 2. The first three vectors of a Jordan basis of fa are thus
given by

(A-2-1)’s=6a, (A-2-l)&=-&+8& &
By construction, —é; + & is a generalised eigenvector of rank 2 and since p,(2) = 2,
there must be one more generalised eigenvector of rank 2 in a Jordan basis of fa.
We compute

Ker((A —2-14)%) = span{&, &, &, &}

and that (A — 2 - 14)é& # Ogs and (A — 2 - 1g)é5 # Ogs. While & is a generalised
eigenvector of rank 2 with eigenvalue 2, it is not linearly independent from our
first three Jordan basis vectors {&;, —€; + &, & }. The vector & is however linearly
independent from the previous Jordan basis vectors and we obtain (A—2-14)é5 = €.
The linearly independent vectors ), —é; + &, &, &y, & thus span Ea(2).
The eigenvalue A\, = 4 has algebraic multiplicity 1 and hence also geometric multi-
plicity 1. We compute

En(4) = Eiga(4) = span{& + 2& + 4&}.
Summarising, an ordered Jordan basis of fa is given by
b= (é,—€ + &,e3, 6,6, e + 26& + 46).
and by construction, we have
M(fa, b, b) = diag(J3(2), J2(2), J1(4)).

as can also be verified by direct computation.

Example 12.23 Let

O O O =
O O = =
O = O O
=)
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Here we have a single eigenvalue 1 of algebraic multiplicity 4. We obtain

01 0 -1
looo o ,
A7114— 0 0 0 1 and (A 1 14) —04.
0 00 O

Correspondingly, we compute p(1) = 2 and p1(1) = 2. A Jordan basis thus
contains 2 = p,(1) generalised eigenvectors of rank 2 with eigenvalue 1 and those
can be chosen to be & and &,. We obtain (A —1-14)& =& and (A —1-1,)& =
—€& + &. Summarising, an ordered Jordan basis of fa is given by

b= (&, & —¢& + &, é).
and by construction, we have
M(fa, b, b) = diag(J2(1), J2(1))

as can also be verified by direct computation.

Example 12.24 Let

4 0 1 0
2 2 30
A= -1 0 2 0
4 0 1 2

Here the characteristic polynomial is chara(x) = (x — 3)?(x — 2)? so that we have
eigenvalues \y = 3 and X\, = 2, both with algebraic multiplicity 2. As before,
we compute that p2(3) = 1 and p1(3) = 1 so that a Jordan basis for fa contains
1 = p2(3) generalised eigenvector of rank 2 and 1 = p;(3) generalised eigenvector
of rank 1, both with eigenvalue 3. The generalised eigenvector of rank 2 can be
chosentobe & +3& + & andhence (A—3-1,)(é1+3& + &) =& — & — & +3&,
is the corresponding generalised eigenvector of rank 1.

Likewise, we obtain p1(2) = 2 so that a Jordan basis contains two eigenvectors (of
rank 1) with eigenvalue 2. These can be chosen to be & and é&j.

Summarising, an ordered Jordan basis of fa is given by

b= (& -&—&+38,8+38&+6,6,&)
and by construction, we have
M(7a, b, b) = diag(J2(3), J1(2), J1(2))

as can also be verified by direct computation.

12.5 Applications

12.5.1 The Cayley-Hamilton theorem

Recall that the K-vector space M, ,(K) of n x n-matrices has dimension n?. Therefore,
for a matrix B € M, ,(K) the sequence of vectors in M, ,(KK) given by the powers of B

1,,B,B? B3 B, ..
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must become linearly dependent. That is, there must exist coefficients a; € K for 0 <
i < n?, not all zero such that

a,,zB”2 + a,,z_lB"zf1 4+ 4+ aB%+ 3B+ a1, =0,.

Remark 12.25 (Notation) Leta,, a,_1, ..., a1, ag € K. Fora polynomialp : K — K
defined by the rule p(x) = apx" + a,_1x" ' + -+ 4+ a;x + ap forallx € Kand a
matrix B € M, ,(K), we define

p(B) = a,B" + a,_1B" 4+ 3B+ apl,.
We say a matrix B € M, ,(K) is a zero of the polynomial p if p(B) = 0,,.

Above we have seen that every matrix B € M, ,(K) is a zero of a polynomial of degree
at most n?. One might wonder whether there exists a positive integer d that is strictly
smaller than n? so that every n x n-matrix is a zero of a polynomial of degree d.

It turns out that such an integer d must be at least as big as n. For scalars A1, Ao, ..., A,
consider the diagonal matrix

A A

o A
D= . with DK = ?

An Ax
for all k € N. Say we can find a polynomial p of degree n — 1 such that p(D) = 0,.
Write p(x) = a,_1x""! + a,_2x""? + -+~ + a;x + ap for coefficients a,_1, ..., ap. All
off-diagonal entries of p(D) are zero and for the i-th diagonal entry of p(D) we obtain
[p(D)];i = a,,_l)\}”_l + a,,_z)\,’.’_z +---+ai1 A+ ap. The equation p(D) = 0, is equivalent

to the linear system of equations [p(D)]11 = [p(D)]22 = -+ = [p(D)]s» = 0 for the
coefficients ag, a1, ..., a,—1 and it can be written as

1 M\ ()\1)2 cee ()\1)’7_1 ao

1 X ()\2)2 s ()\2)n_1 ai

1A (A3)7 o () ! a2 | = Ogn

L X ()2 o (W)™t an—1

The matrix on the left hand side is the Vandermonde matrix V5 for the vector X =
(Mi)1<i<n- Unless det(V5) = 0, we cannot find a non-zero solution of coefficients
an—1, ..., d such that p(D) = 0,,. By, Example 5.42, we have

det(Vy) = J[ (N—M)
1<i<j<n

and hence if all eigenvalues of D are distinct, then det(V,) # 0. It follows that the
smallest positive integer d, so that every n x n-matrix is a zero of a polynomial of degree
d, must be at least n.

For every n x n-matrix A we can indeed always find a polynomial p of degree n, so that
p(A) =0,

Theorem 12.26 (Cayley-Hamilton theorem) Every matrix A € M, ,(K) is a zero of
its characteristic polynomial charp : K — K

charA(A) = 0,,.
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Example 12.27 Recall from Remark 6.42 that for A € M, >(KK) we have chara(\) =
A2 — Tr(A)X + det(A). Thus, Theorem 12.26 implies that for all A € M,»(K) we
have
A% — Tr(A)A + det(A)1, = 0,.
For aninvertible 2 x 2-matrix A we may write 1, = AA~! so that
A(A — Tr(A)1, + det(A)A™1) = 0,

and hence )

~ detA (Tr(A)12 — A)
which can of course also be verified by direct computation.

-1

Remark 12.28 It is tempting to argue that
chara(A) = det(Al, — A) = 0.

Notice however that chara(A) is an n x n-matrix, whereas det(A1, — A) is a scalar,
so the previous equation makes no sense if n > 1.
That this incorrect calculation gives the correct answer is an accident. To see this
observe that for any function h : M, ,(K) — Kandtoevery A € M, ,(K) we obtain
a function

q:K—K, x +— h(x1, — A).
If his polynomial in the entries of the input matrix, the function g is a polynomial
pa : K — Kdependingon A, so that g(x) = pa(x) forall x € K. Arguing (wrongly!)
as before we would expect that pa(A) = 0,,. This is however not true in general.
Consider for instance

a b
h: M22(K) — K, (C d) — bd

so that for A A
11 A
A= <A21 A22>
we have
q(x) = pa(x) = —Ana(x — Az)
and hence
pa(A) = —ARA + ApAxl,.
For

0 1
A =
(0 o)
we thus obtain

pA(A):1<8 (1)>+1~o((1) (1)>=<8 _01>7é02.

Proof of Theorem 12.26 Let B € M, ,(KK). Recall that charg(x) = det(x1, — B) forall
x € K. Using the product rule Proposition 5.21, for an invertible n x n-matrix C we thus
obtain

det(C(x1, — B)C ) = det(C) det((x1, — B)C ) = det(C) det(x1, — B) det(C})
= det(x1, — B) = det(x1, — CBC™ %)

and hence conjugate matrices have the same characteristic polynomial, that is

(12.7) charg(x) = charcgc-1(x)
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forall x € K.

We first consider the case K = C. Let A € M, ,(C) be an n x n-matrix with complex
entries. By Theorem 12.12, there exists an ordered basis b of C", an integer k > 1,
integers ny, ..., nx and complex numbers A1, ..., A such that M(7a, b, b) = B, where we
write

B = diag(Jn (M), In(A2), -, Ini(Ak))-

Let e denote the standard ordered basis of C" so that M(fa, e,e) = AandletC = C(b, e)
denote the change of basis matrix. By Theorem 3.107 we have A = CBC™ 1.

We want to show that
0, = chara(A) = charcgc-1(CBC™1) = charg(CBC™1),

where the third equality uses (12.7). By induction one shows that (CBC 1)k = CB¥C~!
forall k € N U {0}. Therefore, we obtain

charg(CBC™!) = Ccharg(B)C™!
and hence - since C is invertible - we have
0, = chara(A) — 0, = charg(B).

It is thus sufficient to show that charg(B) = 0,. A Jordan block is an upper triangu-
lar matrix and hence a block diagonal matrix consisting of Jordan blocks is an upper
triangular matrix as well. The Proposition 5.24 thus shows that

charg(x) = (x — A1)™(x — A2)™ -+ (x — Ag)™
forall x € C and hence
charg(B) = (B — A\11,)™(B — \21,)™ -+ (B — Ax1,)™.

Since B1, = 1,B, we can rearrange factors in the expression for charg(B) so that for
each1l < <k,

charg(B) = (B — A\11,)™--- (B — Ap_11,)" (B — A, 11,)" - -
(B = Ae1,)™(B = A\1,)™.
Now observe that
B — )\,'1,, = diag(J,,l()\l - )\,‘), ey Jn,-fl()\ifl — )\,’), J,,,.(O), Jn;+1()\i+1 - )\,‘),
e dn e = AD).
By (12.5), we have (J,,,(0))" = 0,, and hence
(B — Ai1,)" = diag(..., (4,,(0))™, ...) = diag(..., 0y, ...).

Therefore, the matrix (B — A;1,)" contains a zero block of size n; after a diagonal block
of size ny + ny + - - - + nj_1. This shows that charg(B)éj = 0¢- for

m4mt+-+ng<j<nm+n+-+nio1+ 0.

Since charg(B)€] equals the j-th column vector of charg(B), it follows that charg(B) =
0,.

Finally, for K = R (or in fact any subfield of C) the claim follows by interpreting the
entries of A € M, ,(K) as complex numbers. O
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12.5.2 A matrix is similar to its transpose

Let A € Kand n € N. Observe that the matrix representation of fj ) : K” — K" with
respect to the ordered basisb’ = (&, €,_1, ..., &, &) of K" satisfies M(fJn(A), b, b') =
(J,(X\))T. This shows that a Jordan block is similar to its transpose, that is,

(Jn(A))" = C(b,b")J5(N)C(b,b") "

by Theorem 3.107. Using the Jordan normal form, we obtain:

Corollary 12.29 Letn € Nand A € M, ,(C). Then A and AT are similar, that is,
there exists an invertible matrix X € M, ,(C) such that AT = XAX~L.

Proof By the Jordan normal form theorem there exists an integer ¢ € N, integers
ny, ..., ng and complex numbers \q, ..., Ay such that A is similar to the matrix

B = diag(Jn, (A1), In,(X2), oy I, (Ar)).-
That is, there exists an invertible matrix C € M, ,(C) such that A = CBC~!. Each
Jordan block is similar to its transpose, for 1 < i < £ we can thus find invertible matrices
Y; € My, n.(C) such that
(Jni()‘i))T = YfJﬂi()‘i)le'
The invertible block diagonal matrix Y = diag(Y4, ..., Y/) thus satsfies
YBY ! = diag((Jn, (M) ", (Jn (A1) o (I, (M1))T) = BT
Since A = CBC~1, we obtain
AT =(CcH'B’c" =(cHTyBY!CcT = (Cc)TYC'cBClcyIcT
= XAX !,
where X = (C~1)TyC 1 a
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CHAPTER 13

Duality

13.1 The dual vector space "?Q.lr
&L

Animportant class of vector spaces arises from considering the set of linear maps between
two given vector spaces. This set can be turned into a vector space itself in a natural way.

Definition 13.1 (Homomorphism between vector spaces) Let V, W be K-vector
spaces. Alinearmap f : V — W is also called a homomorphism between the
vector spaces V and W. The set of linear maps between V and W is denoted by
Hom(V, W).

We define addition for f, g € Hom(V, W) by the rule
(f FHom(V, W) g) (v) =f(v) +wg(v)

forall v € V. Here +y denotes the addition of vectors in W. We define scalar multiplic-
ation for f € Hom(V, W) and s € K by the rule

(S Hom(v,w) F)(v) = s -w f(v)

forall v € V. Here -\ denotes the scalar multiplication in W. Furthermore, we define
the zero vector Onom(v,w) to be the function o : V — W defined by the rule o(v) = 0w
forall v € V. With these definitions, Hom(V, W) is a K-vector space, as can be checked
without difficulty.

Proposition 13.2 Let V, W be finite dimensional K-vector spaces and b an ordered
basis of VV and c an ordered basis of W. Then the mapping

© : Hom(V, W) = Mp.(K),  f— M(f,b,c)
is an isomorphism. In particular dim Hom(V, W) = dim(V) dim(W).

Proof Supposedim V = n,dim W = mandwriteb = (v1, ..., v,)andc = (wy, ..., wp,).

We first show that © is linear. Let 51, 5, € Kand f1, f, € Hom(V, W). By definition
O(s1fi + s2b) = M(s1fi + 52, b, ©),
where we omit writing -Hom(v,w) and where we write + instead of +pom(v,w)-. Linearity
means that
O(s1fi + s2f2) = siM(f1, b, c) + ssM(f, b, ©).
Hence we need to show that
M(s1fi + s, b, €) = siM(f1, b, ) + $sM(f, b, ).
Write

M(fi,b,c) = (Aj)i<ismigi<n  and  M(f, b, c) = (Bj)i<i<m,1<j<n-

197



CHAPTER 13 — DUALITY

Recall from Proposition 3.93 that this means that forall 1 < j < n, we have
m m
A(y)=> Ajwi and  h(y)=> Bjw.
i=1 i—1

Therefore, forall 1 < j < n, we obtain

m

(s1fi + 956)(v)) = sth(v) + 96(v) = (5145 + 5:Byj)wi
i=1

so that
M(Slfl + s 65, b, C) = SlM(fl, b, C) + 52M(f2, b, C)

as claimed.

We next show that © is surjective. Let A = (Aj)i<i<mi<j<n € Mmn(K) and define
f:V — W asfollows. For v € V there exist unique scalars sy, ..., s, such that v =
>, sivi (since bis an ordered basis of V). We define

j=1 i=1

Then f satisfies f(v;) = >, Ajw; forall1 < j < n. Hence ©(f) = M(f, b, c) = A and
© is surjective.

If mappings f, g € Hom(V, W) satisfy ©(f) = M(f,b,c) = ©(g) = M(g, b, c), then
they agreein particular on the ordered basis b and hence agree by Lemma 3.88. It follows
that © is injective as well and hence bijective and thus an isomorphism. Since © is an
isomorphism we have dim Hom(V, W) = dim M, ,(K) = mn = dim(V)dim(W). O

A case of particular interest is when W = K.

Definition 13.3 (Dual vector space) Let V be a K-vector space. The K-vector space
Hom(V, K) is called the dual vector space of V and denoted by V*.

Remark 13.4 Notice thatif V is finite dimensional, then
dim(V*) = dim(Hom(V, K)) = dim(V) dim(K) = dim(V),

since dimK = 1. Therefore, V and V* have the same dimension and are thus
isomorphic vector spaces by Proposition 3.80.

Remark 13.5 (Notation) Forv € V* and v € V we will sometimes write v J v for
“plugging v into v”, that is
vov =v(v).

Example 13.6
(i) For V =IK"we consider the map which sends a vector X = (xj)1<i<n toits i-th
entry, X — x;. This map is linear and hence an element of (K")*.
(i) Recall that the trace of a matrix is a linear map Tr : M, ,(K) — K and hence
we may think of the trace as an element of (M,, ,(K))*.
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(iii) For V = P(K) and xo € K, we can consider the evaluation map
evy, : P(K) —» K, p— p(x0).

The map ev,, is linear and hence an element of V*.
(iv) Let(V,(-,-)) be afinite dimensional Euclidean and let u € V. Then we obtain
a map
oy V-oR, v (U, v).
The bilinearity of (-,-) implies that ¢,, is linear and hence an element of V*. We
thus obtainamap . ., : V — V* defined by the rule

u— oy = (u, >
forall v € V. This mapis linear an moreover an isomorphism. The linearity
is a consequence of the bilinearity of (-,-) and since dim V = dim V*, itis
sufficient to show that Ker @ . y = {0y }. So suppose that ¢, = Oy~ so that
wu(v) = (u,v) = 0forall v € V. Since (-,-) is non-degenerate, this implies
that u = Oy, hence ® is injective and an isomorphism.

Recall that if V is a K-vector space of dimension n € N, then a linear coordinate system
on Vis an injective (and hence bijective) linear map 3 : V — K”. For a linear coordinate
system Band 1 < i/ < n, we may define

vi: V=K, v = [B(V)]i

where [3(v)]; denotes the i-th entry of the vector 3(v) € K". Both B and taking the
i-th entry of a vector in K" are linear maps, hence v; : V — Kis linear as well and
thus an element of V*. We will argue next thatif 3 : V — K" is a linear coordinate
system, then (v, ..., v,) is an ordered basis of V*. Since dim V* = n, we only need to
show that {v4, ..., v, } is linearly independent. Suppose therefore that there are scalars
S1,..., S, € Ksuch that

(131) Siv1 + -+ Spv, = OV* =0,

where o : V — K denotes the zero function, that is, o(v) = Oforallv € V. Let
b = (v, ..., v,) denote the ordered basis of V corresponding to the linear coordinate
system 3 so that 3(v;) = € forall 1 < j < n. Thisis equivalent to

vi(vj) = [B(v)]i = [g]i = 9

forall1 < /,j < n. The Equation (13.1) needs to hold for all choices of v € V, choosing
vk for1 < k < ngives

sivi(vi) + - 4 savn(vk) = sk = o(vk) =0

sothats; = --- =s, = 0and {vy, ..., v, } arelinearly independent and hence (v4, ..., v,)
isindeed an ordered basis of V*. We may write

B = (Vlv e Vn)

and think of a linear coordinate system 3 on V as an ordered basis (v1, ..., v,) of V*.

Definition 13.7 (Dual basis) Let V be a finite dimensional K-vector space and
b = (v, ..., v,) an ordered basis of V. The ordered basis 3 = (v1, ..., v,) of V*
satisfying v;(v;) = ¢ forall 1 < i, j < nis called the ordered dual basis of b.
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13.2 The transpose map

We now come to an important application of the theory of dual vector spaces which leads
to a deeper understanding of the matrix transpose.

Definition 13.8 (The transpose map) Let V, W be K-vector spacesand f : V — W
alinear map. Themap f 7 : W* — V* defined by the rule
fT(w)=wof

forallw € W™ is called the transpose of f. Notice that for all w € W* and for all

v € V wehave
vafT(w) = f(v)sw = w(f(v)).

The transpose map is linear as well.

Lemma 13.9 The transpose fT : W* — V* ofalinearmap f : V — W is linear.

Proof We need to show that forall s;, s, € Kand wy,w» € W*, we have
fT(slwl + 52(.02) = SlfT(Lch) + S2fT(OJ2).

This is a condition that needs to hold for all v € V and indeed, by definition, we have for
allve Vv

vV fT(slwl + SQCUQ) = f(V) i (51(.01 + SQWQ) = slwl(f(v)) + Sng(f(v))
s1(v fT(wl)) + s(v fT(wg)),

as claimed. O

The relation between the matrix transpose and the transpose mapping is given by the
following proposition which states that the matrix representation of the transpose of a
linear map is the transpose of the matrix representation of the linear map.

Proposition 13.10 Let V, W be finite dimensional K-vector spaces equipped with
ordered basesb, cand corresponding ordered dual bases 3, v of V*, W*, respectively.
Iff . V. — Wisalinear map, then

M(f",~,8) = M(f,b,c)".

Proof Letb = (vi,...,vp), € = (wy, ..., wy)and 8 = (v1, ..., vp), ¥ = (w1, o, Wi)-
Then, by definition, we haveforall1 < j < m

Z[M Y, B)] iV

Hence forall 1 < k < n, we obtain

Vi o FT(wi) = vies D _IM(FT v, B)]vi = Z[M v B)i (v o)
i=1
= Z[M 1 Bivi(vie) = [M(FT, v, B)]i,
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where the last equality uses that v;(vx) = 0. By definition, we also have

Vi J fT(wJ') = f(vk) dWj = (Z[M(f, b,C)],‘kW,'> Wy

i=1
= > [M(f, b, ¢)uw;(wi) = [M(f, b, c)]x = [M(f, b, c) ],

where the second last equality uses w;(w;) = d;i. O

Corollary 13.11 Let V, W be finite dimensional K-vector spacesand f : V. — W a
linear map. Then det(fT) = det(f) and Tr(f ) = Tr(f).

Proof The proofis an exercise. d

Remark 13.12 Recall that for matrices A € My, ,(K) and B € M, ,(K), we have
(AB)" = BTAT. Correspondingly, let V, W, Z be finite dimensional vector spaces
andf : V — Wandg : W — Zbelinear maps. Thenwe obtain (gof)" = fTog’.
Indeed, forall ( € Z* we have

(of)T(¢)=Cogof=rfT(Cog)=r"(g"(¢))=(fTog")().

13.3 Properties of the transpose

For a subspace U C V we can consider those elements of V* that map all vectors of U
to 0.

Definition 13.13 (Annihilator) Let V be a K-vector space and U C V a subspace.
The annihilator of U is the subspace

U ={ve V' v(u)=0VYuc U}.

Remark 13.14 The annihilator is indeed a subspace. The zero mappingo : V — K
is clearly an element of U°, hence U° is non-empty. If v, 1, € U, then we have for
alls;, s, e Kandallu e U

(511 + s212)(u) = s1va(u) + sa2(u) =0,

hence by Definition 3.21 it follows that U° is a subspace of V*.

Example 13.15

(i) Consider V = P(R) and U to be the subspace of polynomials which contain x?
as a factor

U = {p € P(R) | there exists g € P(R) such that p(x) = x*q(x)Vx € R} .
Define a linear map ¢ : P(R) — R by the rule
¢(p) = p'(0)
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for all p € P(R) and where p’ denotes the derivative of p with respect to x.

Then ¢ € U°.
(i) Let(V,(:,-)) be afinite dimensional Euclidean space and U C V a subspace.
Recall that (-,-) gives us anisomorphism ® ., : V — V*, u+ (u, -). Observe

that & ,(U+) C U°. Indeed, let v € U™, then

pv(u) =(v,u) =0
forallu € U. Infact, ® . .,(U*+) = U°. To see this consider an element v € U°.

Since ®. .y is surjective it can be written as v = ¢, for some vector v € V. Now
forall v € U we have

v(u)=0=(v,u)
whichshowsthat v € U~. Therestrictionof ®,. ., to U~ is thus anisomorphism
from U to U°.

Previously we saw that for a finite dimensional Euclidean space (V, (-,-)) and a subspace
U C V we have that U° is isomorphic to U*. Since V = U @ U+, this implies that
dim V = dim U + dim U°. We will give a proof of this fact which also holds over the
complex numbers (and in fact over an arbitrary field).

Proposition 13.16 For a finite dimensional K-vector space V and a subspace U C V
we have
dim V = dim U + dim U°.

For the proof we need the following lemma which shows that we can always extend
K-valued linear mappings from subspaces to the whole vector space:

Lemma 13.17 Let V be a finite dimensional K-vector space and U C V a subspace.
Then for every w € U* there exists an Q € V* such that Q(u) = w(u) forall u € U.

Proof Choose a complement U’ of Uin V sothat V = U @ U'. Recall that such a
complement exists by Corollary 6.11. Consequently, every vector v € V can be written
uniquely as v = u + v’. We then define Q(v) = w(u). O

Proof of Proposition 13.16 We use the rank-nullity Theorem 3.76. Recall that the iden-
tity mapping of U is the linear mapping from U to U which returnsits input Idy(u) = u
forall u € U. Since U C V, we can also think of the identity mapping on U as a mapping
into V,Idy : U — V. Applying the rank-nullity theorem to the transpose IdE VE— U,
we obtain

dim V = dim V* = dim Ker(Id/,) + dim Im(Id/)),
where the first equality uses Remark 13.4. By definition we have

Ker(1df)) = {v € V* 1] (v) = v oldy = 0u- }.

Again by definition 0y~ is the linear map o : U — K which satisfies o(u) = 0 for all
u € U. Therefore we have

Ker(ld))) = {r € V*|v(u) =0V ue U} = U°.

We want to show next that IdE . V* — U~ issurjective. Let w € U*, by the previous
lemma we have Q € V* sothat Q(v) = w(u) forall v € U. Now notice thatforall v € U
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we have
uold(Q) = us(Qoldy) = Qu) = w(u) = vow

and hence Id]} is surjective. It follows that dim Im(Id/}) = dim U* = dim U. Putting all
together, we obtain

dimV =dim U + dim U°,

as claimed. O

The kernel of the transpose of a linear map is related to the image of the map:

Proposition 13.18 Let V, W be finite dimensional K-vector spacesand f : V — W
a linear map. Then we have

(i) KerfT = (Imf)5;

(i) dimKer fT = dim Ker f + dim W — dim V.

Proof (i) Anelementw € W* liesinthe kernelof f7 : W* — V* ifand only if
vafT(w)=0=f(v)w
forall v € V. Equivalently, w sw = 0 for all elements w in the image of f, that is,
w € (Imf)°.
(i) We have
dimKer fT = dim(Im f)° = dim W — dimIm f = dim Ker f 4 dim W — dim V..

The first equality uses (i), the second equality uses Proposition 13.16 and the last equality
uses the rank-nullity Theorem 3.76. O

Surjectivity of a linear map corresponds to injectivity of its transpose:

Proposition 13.19 Let V, W be finite dimensional K-vector spacesand f : V — W
a linear map. Then f is surjective if and only if f T is injective.

Proof The linearmap f : V — W is surjective if and only if Im(f) = W, equivalently
Im(f)° = {Ow~} = Ker(fT), where the second equality uses the previous proposition.
By the characterisation of injectivity of a linear map, Lemma 3.31, we have {Ow-} =
Ker(fT)ifand only if T is injective. O

Similar to Proposition 13.18 we obtain:

Proposition 13.20 Let V, W be finite dimensional K-vector spacesand f : V — W
a linear map. Then we have

(i) dimIm(fT) = dim Im(f);

(i) Im(f7) = (Ker f)°.

Proof (i) We have
dimIm(f7) = dim W* — dimKer(f ") = dim W* — dim Im(f)° = dim Im(f),
where the first equality uses the rank-nullity Theorem 3.76, the second equality uses

Proposition 13.18 and the third equality uses Proposition 13.16.
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(ii) First suppose v € Im(f ). Then there exists w € W* with f7 (w) = v. We want to
argue that v € (Ker £)°. By definition

(Kerf)° = {v € V*|u(v) =0 Vv € Kerf}.
Let v € Ker f, then
v(v)=vov=vifT(w)=f(v)ow=0w_ow=0.

It follows that Im(f ") C (Ker £)°. We complete the proof by showing that Im(f ") and
(Ker £)° have the same dimension. We compute

dimIm(f7) = dimIm(f) = dim V — dim Ker(f) = dim Ker(f)°,

where the first equality uses (i), the second equality uses the rank-nullity Theorem 3.76
and the last equality uses Proposition 13.16. O

Again, similar to Proposition 13.19 we obtain:

Proposition 13.21 Let V/, W be finite dimensional K-vector spacesand f : V — W
a linear map. Then f is injective if and only if f T is surjective.

Proof Recall that surjectivity of f T means that Im(fT) = V*. By the characterisation of
injectivity, Lemma 3.31, f isinjective ifand only if Ker f = {0y}, equivalently, (Ker f)° =
V* =Im(fT), by the previous proposition. O

13.3.1 The rank of a matrix

Recall that for A € M, ,(K) we have defined rank(A) = dim Im(fa) (c.f. Definition 3.75).
By Lemma 4.13, we have

Im(fa) = span{Aéi, ..., A&},

where {é, ..., €,} denotes the standard basis of K”. If we think of the matrix A as con-
sisting of n column vectors 31 = Aéy, ..., a, = Aé,, then we obtain

Im(fa) = span{a, ..., a,}

and hence the rank of A equals the number of linearly independent column vectors of A,
the so-called column rank of A. Likewise, we may think of A as consisting of m row vectors
a1, ..., @m and we can define the row rank of A to be the number of linearly independent
row vectors of A. The row rank of a matrix and the column rank are always the same (and
hence we simply speak of the rank of the matrix):

Proposition 13.22 The row rank of every matrix A € M, ,(K) equals its column
rank.

Proof The column rank of A equals dim Im(fa). Now
dimIm(fa) = dimIm((fa)") = dim Im(far),

where we first use Proposition 13.20 and then Proposition 13.10. Since the matrix trans-
pose interchanges the role of rows and columns, dim Im(far) is equal to the number of
linearly independent row vectors of A. O
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Exercises

Exercise 13.23 Show that the dual basis isindeed uniquely defined by the condition
vi(vj) =g foralll <i,j < n.

Exercise 13.24 For a finite dimensional K-vector space V, we may consider the
dual of the dual space, thatis (V*)*. So an element of (V*)* is a linear map which
takes an element of V* as its input and produces a scalar as its output. Consider
themap=: V — (V*)* defined by the rule

viZ(v)=viv=v(v)

forallv € Vandallv € V*. Thatis, the map =(v) € (V*)* appliedtor € V*is
given by the application of v to v. Show that = is an isomorphism.

Exercise 13.25 Consider V = R® equipped with the ordered standard basis e =
(é1,.... &) and let U = span{é, &}. Show that

Ul = span{&3, €, &5},

where e = (&1, ..., £5) denotes the ordered dual basis of e.
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