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Part 1

Linear Algebra I





CHAPTER 1

Fields and complex numbers

1.1 Fields WEEK 1

A fieldK is roughly speaking a number system in which we can add and multiply numbers,
so that the expected properties hold. We will only briefly state the basic facts about fields.
For a more detailed account, we refer to the algebra module.

Definition 1.1 A field consists of a setK containing distinguished elements0K ̸= 1K,
as well as two binary operations, addition +K : K × K → K and multiplication
·K : K×K → K, so that the following properties hold:
• Commutativity of addition

x +K y = y +K x for all x , y ∈ K.

• Commutativity of multiplication

(1.1) x ·K y = y ·K x for all x , y ∈ K.

• Associativity of addition

(1.2) (x +K y) +K z = x +K (y +K z) for all x , y , z ∈ K.

• Associativity of multiplication

(1.3) (x ·K y) ·K z = x ·K (y ·K z) for all x , y , z ∈ K.

• 0K is the identity element of addition

(1.4) x +K 0K = 0K +K x = x for all x ∈ K.

• 1K is the identity element of multiplication

(1.5) x ·K 1K = 1K ·K x = x for all x ∈ K.

• For any x ∈ K there exists a unique element, denoted by (−x) and called the
additive inverse of x , such that

(1.6) x +K (−x) = (−x) +K x = 0K.

• For any x ∈ K \ {0K} there exists a unique element, denoted by x−1 or 1
x and

called the multiplicative inverse of x , such that

(1.7) x ·K
1

x
=

1

x
·K x = 1K.

• Distributivity of multiplication over addition

(1.8) (x +K y) ·K z = x ·K z +K y ·K z for all x , y , z ∈ K.

Remark 1.2
• It is customary to simply speak of a field K, without explicitly mentioning 0K, 1K

and +K, ·K.

9



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

• When K is clear from the context, we often simply write 0 and 1 instead of 0K and
1K. Likewise, it is customary to write + instead of +K and · instead of ·K. Often ·K
is omitted entirely so that we write xy instead of x ·K y .

• We refer to the elements of a field as scalars.
• The set K \ {0K} is usually denoted by K∗.
• For all x , y ∈ K we write x − y = x +K (−y) and for all x ∈ K and y ∈ K∗ we

write x
y = x ·K 1

y = x ·K y−1.
• A field K containing only finitely many elements is called finite. Algorithms in

cryptography are typically based on finite fields.

Example 1.3
(i) The rational numbers or quotients Q, the real numbers R and the complex

numbers C – that we will study more carefully below – equipped with the usual
addition and multiplication are examples of fields.

(ii) The integers Z (with usual addition and multiplication) are not a field, as only 1
and −1 admit a multiplicative inverse.

(iii) Considering a set F2 consisting of only two elements that we may denote by 0
and 1, we define +F2 and ·F2 via the following tables

+F2 0 1

0 0 1

1 1 0

and
·F2 0 1

0 0 0

1 0 1

For instance, we have 1 +F2 1 = 0 and 1 ·F2 1 = 1. Then, one can check that
F2 equipped with these operations is indeed a field. A way to remember these
tables is to think of 0 as representing the even numbers, while 1 represents the
odd numbers. So for instance, a sum of two odd numbers is even and a product
of two odd numbers is odd. Alternatively, we may think of 0 and 1 representing
the boolean values FALSE and TRUE. In doing so, +F2 corresponds to the logical
XOR and ·F2 corresponds to the logical AND.

(iv) Considering a set F4 consisting of four elements, say {0, 1, a, b}, we define +F4

and ·F4 via the following tables

+F4 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

and

·F4 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

Again one can check that F4 equipped with these operations is indeed a field.

Lemma 1.4 (Field properties) In a field K we have the following properties:
(i) 0K ·K x = 0K for all x ∈ K.

(ii) −x = (−1K) ·K x for all x ∈ K.
(iii) For all x , y ∈ K, if x ·K y = 0K, then x = 0K or y = 0K.
(iv) −0K = 0K.
(v) (1K)

−1 = 1K.
(vi) (−(−x)) = x for all x ∈ K.

(vii) (−x) ·K y = x ·K (−y) = −(x ·K y).
(viii) (x−1)−1 = x for all x ∈ K∗.

10



1.1 — Fields

Proof We will only prove some of the items, the rest are an exercise for the reader.

(i) Using (1.41.4), we obtain 0K +K 0K = 0K. Hence for all x ∈ K we have

x ·K 0K = x ·K (0K + 0K) = x ·K 0K +K x ·K 0K,

where the second equality uses (1.81.8). Adding the additive inverse of x ·K 0K, we get

x ·K 0K − x ·K 0K = (x ·K 0K +K x ·K 0K)− x ·K 0K

using the associativity of addition (1.21.2) and (1.61.6), this last equation is equivalent to

0K = x ·K 0K

as claimed.

(iii) Let x , y ∈ K such that x ·K y = 0K. If x = 0K then we are done, so suppose x ̸= 0K.
Using (1.71.7), we have 1K = x−1 ·K x . Multiplying this equation with y we obtain

y = y ·K 1K = y ·K (x ·K x−1) = (y ·K x) ·K x−1 = 0K ·K x−1 = 0K

where we have used (1.51.5), the commutativity (1.11.1) and associativity (1.31.3) of multiplication
as well as (i) from above.

(v) By (1.51.5), we have 1K ·K 1K = 1K, hence 1K is the multiplicative inverse of 1K and since
the multiplicative inverse is unique, it follows that (1K)−1 = 1K. □

For a positive integer n ∈ N and an element x of a field K, we write

nx = x +K x +K x +K · · ·+K x︸ ︷︷ ︸
n summands

.

The field F2 has the property that 2x = 0 for all x ∈ F2. In this case we say the F2 has
characteristic 2. More generally, the smallest positive integer p such that px = 0K for
all x ∈ K is called the characteristic of the field. In the case where no such integer exists
the field is said to have characteristic 0. So Q,R,C are fields of characteristic 0. It can be
shown that the characteristic of any field is either 0 or a prime number.

A subset F of a field K that is itself a field, when equipped with the multiplication and
addition of K, is called a subfield of K.

Example 1.5
(i) The rational numbers Q form a subfield of the real numbers R. Furthermore,

as we will see below, the real numbers R can be interpreted as a subfield of the
complex numbers C.

(ii) F2 may be thought of as the subfield of F4 consisting of {0, 1}.

Throughout your studies in mathematics, you will encounter various mappings having
names ending in morphism, such as homomorphism, isomorphism, endomorphism, auto-
morphism. This is quite confusing and to make things worse, the precise meaning of
⋆-morphism depends on the structure of the set between which the mapping is defined.
But don’t worry, we will introduce one ⋆-morphism at a time, starting with homomorph-
ism. Broadly speaking, a homomorphism between sets X and Y that are equipped with
some extra structure of the same type is a map f : X → Y that respects the extra
structure.

In the case of a field K, the extra structure consists of addition +K, multiplication ·K, the
identity element of multiplication 1K and the identity element of addition 0K. A field
homomorphism respects this structure. More precisely:

11



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Definition 1.6 (Field homomorphism) Let F and K be fields. A field homomorphism
is a mapping χ : F → K satisfying χ(1F) = 1K as well as

χ(x +F y) = χ(x) +K χ(y) and χ(x ·F y) = χ(x) ·K χ(y)

for all x , y ∈ F.

Example 1.7 From the above tables we see that χ : F2 → F4 defined by χ(1F2) =

1F4 and χ(0F2) = 0F4 is a field homomorphism.

Remark 1.8
• We certainly also want that a field homorphism χ : F → K satisfies χ(0F) = 0K.

It turns out that we don’t have to ask for this in the definition of a field homo-
morphism, it is automatically satisfied with Definition 1.6Definition 1.6. Indeed, we have

χ(0F) = χ(0F +F 0F) = χ(0F) +K χ(0F).

Adding the additive inverse of χ(0F) in K, we conclude that 0K = χ(0F).
• A field homomorphism is injective. Suppose x , y ∈ F satisfy χ(x) = χ(y) so that
χ(x − y) = 0K. Assume w = x − y ̸= 0F, then χ(w) ·K χ(w−1) = χ(1F) = 1K.
Since by assumptionχ(w) = 0K, we thus obtain0K·Kχ(w−1) = 1K, contradicting
Lemma 1.4Lemma 1.4 (i). It follows that x = y and hence χ is injective.

1.2 Complex numbers

Video Complex numbersComplex numbers

Historically the complex numbers arose from an interest to make sense of the square root
of a negative number. We may picture the rational numbers Q as elements of an infinite
number line with an origin 0. Positive numbers extending to the right of the origin and
negative numbers to the left. Mathematicians have observed early on that this line of
numbers contains elements, such as π or

√
2, that are not quotients. Phrased differently,

the rational numbers do not fill out the whole number line, there are gaps consisting
of irrational numbers. In a sense to be made precise in the Analysis module, the real
numbers may be thought of as the union of the rational numbers and the gaps on the
number line, resulting in a gap less line of numbers, known as the complete field of real
numbers.

−1 0 1 2 3

FIGURE 1.1. The real number line.

The square x2 of a real number x is a non-negative real number, x2 ⩾ 0, hence if we want
to define what the square root of a negative number ought to be, we are in trouble, since
there are no numbers left on the line of numbers that we might use. The solution is to
consider pairs of real numbers instead. A complex number is an ordered pair (x , y) of
real numbers x , y ∈ R. We denote the set of complex numbers by C. We equip C with
the addition defined by the rule

(x1, y1) +C (x2, y2) = (x1 + x2, y1 + y2)

12
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1.2 — Complex numbers

for all (x1, y1) and (x2, y2) ∈ C and where + on the right denotes the usual addition +R
of real numbers. Furthermore, we equip C with the multiplication defined by the rule

(1.9) (x1, y1) ·C (x2, y2) = (x1 · x2 − y1 · y2, x1 · y2 + y1 · x2).

for all (x1, y1) and (x2, y2) ∈ C and where · on the right denotes the usual multiplication
·R of real numbers.

Definition 1.9 (Complex numbers) The set C together with the operations +C, ·C
and 0C = (0, 0) and 1C = (1, 0) is called the field of complex numbers.

The mapping χ : R → C, x 7→ (x , 0) is a field homomorphism. Indeed,

χ(x1 +R x2) = (x1 +R x2, 0) = (x1, 0) +C (x2, 0) = χ(x1) +C χ(x2),

χ(x1 ·R x2) = (x1 ·R x2, 0) = (x1, 0) ·C (x2, 0) = χ(x1) ·C χ(x2),

for all x1, x2 ∈ R and χ(1) = (1, 0) = 1C.

This allows to think of the real numbers R as the subfield {(x , 0)|x ∈ R} of the complex
numbers C. Because of the injectivity of χ, it is customary to identify x with χ(x), hence
abusing notation, we write (x , 0) = x .

Notice that (0, 1) satisfies (0, 1) ·C (0, 1) = (−1, 0) and hence is a square root of the real
number (−1, 0) = −1. The number (0, 1) is called the imaginary unit and usually denoted
by i. Sometimes the notation

√
−1 is also used. Every complex number (x , y) ∈ C can

now be written as

(x , y) = (x , 0) +C (0, y) = (x , 0) +C i ·C (y , 0) = x + iy ,

where we follow the usual custom of omitting ·C and writing + instead of +C on the right
hand side. With this convention, complex numbers can be manipulated as real numbers,
we just need to keep in mind that i satisfies i2 = −1. For instance, the multiplication of
complex numbers x1 + iy1 and x2 + iy2 gives

(x1 + iy1)(x2 + iy2) = x1x2 + i2y1y2 + i(x1y2 + y1x2) = x1x2 − y1y2 + i(x1y2 + y1x2)

in agreement with (1.91.9). Here we also follow the usual custom of omitting ·R on the right
hand side.

Definition 1.10 For a complex number z = x + iy ∈ C with x , y ∈ R we call
• Re(z) = x its real part;
• Im(z) = y its imaginary part;
• z̄ = x − iy the complex conjugate of z ;
• |z | =

√
zz =

√
x2 + y2 the absolute value or modulus of z .

The mapping z 7→ z̄ is called complex conjugation.

Remark 1.11
• For z ∈ C the following statements are equivalent

z ∈ R ⇐⇒ Re(z) = z ⇐⇒ Im(z) = 0 ⇐⇒ z = z .

• We have |z | = 0 if and only if z = 0.

13



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Example 1.12 Let z = 2+5i
6−i . Then

z =
(2 + 5i)(6− i)

(6− i)(6− i)
=

(2 + 5i)(6 + i)

|6− i|2
=

1

37
(7 + 32i),

so that Re(z) = 7
37 and Im(z) = 32

37 . Moreover,

|z | =

√(
7

37

)2

+

(
32

37

)2

=

√
29

37
.

Remark 1.13
• We may think of a complex number z = a+ ib as a point or a vector in the plane
R2 with x-coordinate a and y -coordinate b.

• The real numbers form the horizontal coordinate axis (the real axis) and the purely
imaginary complex numbers {iy |y ∈ R} form the vertical coordinate axis (the
imaginary axis).

• The point z is obtained by reflecting z along the real axis.
• |z | is the distance of z to the origin 0C = (0, 0) ∈ C
• The addition of complex numbers corresponds to the usual vector addition.
• For the geometric significance of the multiplication, we refer the reader to the

Analysis module.

i

z = a+ ibib

a |z |10

iR

R

z = a− ib−ib

FIGURE 1.2. The complex number plane C

We have the following elementary facts about complex numbers:

Proposition 1.14 For all z ,w ∈ C we have
(i) Re(z) = z+z

2 , Im(z) = z−z
2i ;

(ii) Re(z + w) = Re(z) + Re(w), Im(z + w) = Im(z) + Im(w);
(iii) z + w = z + w , zw = z w , z = z ;
(iv) |z |2 = |z |2 = zz = Re(z)2 + Im(z)2;
(v) |zw | = |z ||w |.

Proof Exercise. □

14



1.2 — Complex numbers

Exercises

Exercise 1.15 Check that C is indeed a field.
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CHAPTER 2

Matrices

2.1 Definitions WEEK 2

A matrix (plural matrices) is simply a rectangular block of numbers. As we will see below,
every matrix gives rise to a mapping sending a finite list of numbers to another finite list
of numbers. Mappings arising from matrices are called linear and linear mappings are
among the most fundamental objects in mathematics. In the Linear Algebra modules
we develop the theory of linear maps as well as the theory of vector spaces, the natural
habitat of linear maps. While this theory may come accross as quite abstract, it is in fact
at the heart of many real world applications, including optics and quantum physics, radio
astronomy, MP3 and JPEG compression, X-ray crystallography, MRI scans and machine
learning, just to name a few.

Throughout the Linear Algebra modules, K stands for either the real numbers R or the
complex numbers C, but almost all statements are also valid over arbitrary fields.

We start with some definitions. In this chapter, m, n, m̃, ñ denote natural numbers.

Definition 2.1 (Matrix)
• A rectangular block of scalars Aij ∈ K, 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

(2.1) A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
. . .

...
Am1 Am2 · · · Amn


is called an m × n matrix with entries in K.

• We also say that A is an m-by-n matrix, that A has size m × n and that A has m
rows and n columns.

• The entry Aij of A is said to have row index i where 1 ⩽ i ⩽ m, column index j

where 1 ⩽ j ⩽ n and will be referred to as the (i , j)-th entry of A.
• A shorthand notation for (2.12.1) is A = (Aij)1⩽i⩽m,1⩽j⩽n.
• For matrices A = (Aij)1⩽i⩽m,1⩽j⩽n and B = (Bij)1⩽i⩽m,1⩽j⩽n we write A = B,

provided Aij = Bij for all 1 ⩽ i ⩽ m and all 1 ⩽ j ⩽ n.

Definition 2.2 (Set of matrices)
• The set of m-by-n matrices with entries in K will be denoted by Mm,n(K).
• The elements of the set Mm,1(K) are called column vectors of length m and the

elements of the set M1,n(K) are called row vectors of length n.

17



CHAPTER 2 — MATRICES

• We will use the Latin alphabet for column vectors and decorate them with an
arrow. For a column vector

x⃗ =


x1
x2
...
xm

 ∈ Mm,1(K)

we also use the shorthand notation x⃗ = (xi )1⩽i⩽m and we write [x⃗ ]i for the i -th
entry of x⃗ , so that [x⃗ ]i = xi for all 1 ⩽ i ⩽ m.

• We will use the Greek alphabet for row vectors and decorate them with an arrow.
For a row vector

ξ⃗ =
(
ξ1 ξ2 · · · ξn

)
∈ M1,n(K)

we also use the shorthand notation ξ⃗ = (ξi )1⩽i⩽n and we write [ξ⃗]i for the i -th
entry of ξ⃗, so that [ξ⃗]i = ξi for all 1 ⩽ i ⩽ n.

Remark 2.3 (Notation)
• A matrix is always denoted by a bold capital letter, such as A,B,C,D.
• The entries of the matrix are denoted by Aij ,Bij ,Cij ,Dij , respectively.
• We may think of an m × n matrix as consisting of n column vectors of length m.

The column vectors of the matrix are denoted by a⃗i , b⃗i , c⃗i , d⃗i , respectively.
• We may think of an m × n matrix as consisting of m row vectors of length n. The

row vectors of the matrix are denoted by α⃗i , β⃗i , γ⃗i , δ⃗i , respectively.
• For a matrix A we also write [A]ij for the (i , j)-th entry of A. So for A =

(Aij)1⩽i⩽m,1⩽j⩽n, we have [A]ij = Aij for all 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n.

Example 2.4 For

A =

 π
√
2

−1 5/3

log 2 3

 ∈ M3,2(R),

we have for instance [A]32 = 3, [A]12 =
√
2, [A]21 = −1 and

a⃗1 =

 π

−1

log 2

 , a⃗2 =


√
2

5/3

3

 , α⃗2 =
(
−1 5/3

)
, α⃗3 =

(
log 2 3

)
.

Recall that for setsX andY we writeX ×Y for the Cartesian product ofX andY , defined
as the set of ordered pairs (x , y) with x ∈ X and y ∈ Y . Moreover, X × X is usually
denoted as X 2. Likewise, for a natural number n ∈ N, we write X n for the set of ordered
lists consisting of n elements of X . We will also refer to ordered lists consisting of n
elements as n-tuples. The elements of X n are denoted by (x1, x2, ... , xn) with xi ∈ X for
all 1 ⩽ i ⩽ n. In particular, for all n ∈ N we have a bijective map from Kn to Mn,1(K)

given by

(2.2) (x1, ... , xn) 7→

x1
...
xn

 .

For this reason, we also write Kn for the set of column vectors of length n with entries in
K. The set of row vectors of length n with entries in K will be denoted by Kn.

18



2.2 — Matrix operations

Definition 2.5 (Special matrices and vectors)
• The zero matrix 0m,n is the m × n matrix whose entries are all zero. We will also

write 0n for the n × n-matrix whose entries are all zero.
• Matrices with equal number n of rows and columns are known as square matrices.
• An entry Aij of a square matrix A ∈ Mn,n(K) is said to be a diagonal entry if i = j

and an off-diagonal entry otherwise. A matrix whose off-diagonal entries are all
zero is said to be diagonal.

• We write 1n for the diagonal n × n matrix whose diagonal entries are all equal to
1. Using the so-called Kronecker delta defined by the rule

δij =

{
1 i = j ,

0 i ̸= j ,

we have [1n]ij = δij for all 1 ⩽ i , j ⩽ n. The matrix 1n is called the unit matrix or
identity matrix of size n.

• The standard basis ofKn is the set {e⃗1, e⃗2, ... , e⃗n} consisting of the column vectors
of the identity matrix 1n of size n.

• The standard basis of Kn is the set {ε⃗1, ε⃗2, ... , ε⃗n} consisting of the row vectors of
the identity matrix 1n of size n.

Example 2.6
(i) Special matrices:

02,3 =

(
0 0 0

0 0 0

)
, 12 =

(
1 0

0 1

)
, 13 =

1 0 0

0 1 0

0 0 1

 .

(ii) The standard basis of K3 is {e⃗1, e⃗2, e⃗3}, where

e⃗1 =

1

0

0

 , e⃗2 =

0

1

0

 and e⃗3 =

0

0

1

 .

(iii) The standard basis of K3 is {ε⃗1, ε⃗2, ε⃗3}, where

ε⃗1 =
(
1 0 0

)
, ε⃗2 =

(
0 1 0

)
and ε⃗3 =

(
0 0 1

)
.

2.2 Matrix operations

We can multiply a matrix A ∈ Mm,n(K) with a scalar s ∈ K. This amounts to multiplying
each entry of A with s :

Definition 2.7 Scalar multiplication in Mm,n(K) is the map

·Mm,n(K) : K×Mm,n(K) → Mm,n(K), (s,A) 7→ s ·Mm,n(K) A

defined by the rule

(2.3) s ·Mm,n(K) A = (s ·K Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K),

where s ·K Aij denotes the field multiplication of scalars s,Aij ∈ K.
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Remark 2.8 Here we multiply with s from the left. Likewise, we define A ·Mm,n(K)

s = (Aij ·K s)1⩽i⩽m,1⩽j⩽n, that is, we multiply from the right. Of course, since
multiplication of scalars is commutative, we have s ·Mm,n(K) A = A ·Mm,n(K) s , that is,
left multiplication and right multiplication gives the same matrix. Be aware that this
is not true in every number system. An example that you might encounter later on
are the so-called quaternions, where multiplication fails to be commutative.

The sum of matrices A and B of identical size is defined as follows:

Definition 2.9 Addition in Mm,n(K) is the map

+Mm,n(K) : Mm,n(K)×Mm,n(K) → Mm,n(K), (A,B) 7→ A+Mm,n(K) B

defined by the rule

(2.4) A+Mm,n(K) B = (Aij +K Bij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K),

where Aij +K Bij denotes the field addition of scalars Aij ,Bij ∈ K.

Remark 2.10 (Abusing notation)
• Field addition takes two scalars and produces another scalar, thus it is a map
K × K → K, whereas addition of matrices is a map Mm,n(K) × Mm,n(K) →
Mm,n(K). For this reason we wrote +Mm,n(K) above in order to distinguish matrix
addition from field addition of scalars. Of course, it is quite cumbersome to always
write +Mm,n(K) and +K, so we follow the usual custom of writing +, both for field
addition of scalars and for matrix addition, trusting that the reader is aware of
the difference.

• Likewise, we simply write · instead of ·Mm,n(K) or omit the dot entirely, so that
s · A = sA = s ·Mm,n(K) A for s ∈ K and A ∈ Mm,n(K).

Example 2.11
(i) Multiplication of a matrix by a scalar:

5

(
1 2

3 4

)
=

(
1 2

3 4

)
5 =

(
5 · 1 5 · 2
5 · 3 5 · 4

)
=

(
5 10

15 20

)
.

(ii) Addition of matrices:(
3 −5

−2 8

)
+

(
−3 8

7 10

)
=

(
0 3

5 18

)
.

If the number of columns of a matrix A is equal to the number of rows of a matrix B, we
define the matrix product AB of A and B as follows:

Definition 2.12 (Matrix multiplication — VideoVideo) Let A ∈ Mm,n(K) be an m-by-n
matrix and B ∈ Mn,m̃(K) be an n-by-m̃ matrix. The matrix product of A and B is the
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m-by-m̃ matrix AB ∈ Mm,m̃(K) whose entries are defined by the rule

[AB]ik = Ai1B1k + Ai2B2k + · · ·+ AinBnk =
n∑

j=1

AijBjk =
n∑

j=1

[A]ij [B]jk .

for all 1 ⩽ i ⩽ m and all 1 ⩽ k ⩽ m̃.

Remark 2.13 (Pairing of row and column vectors) We may define a pairing Kn ×
Kn → K of a row vector of length n and a column vector of length n by the rule

(ξ⃗, x⃗) 7→ ξ⃗x⃗ = ξ1x1 + ξ2x2 + · · ·+ ξnxn

for all ξ⃗ = (ξi )1⩽i⩽n ∈ Kn and for all x⃗ = (xi )1⩽i⩽n ∈ Kn. So we multiply the first
entry of ξ⃗ with the first entry of x⃗ , add the product of the second entry of ξ⃗ and the
second entry of x⃗ and continue in this fashion until the last entry of ξ⃗ and x⃗ .

The (i , j)-th entry of the matrix product of A ∈ Mm,n(K) and B ∈ Mn,m̃(K) is then
given by the pairing

[AB]ij = α⃗i b⃗j

of the i -th row vector α⃗i of A and the j-th column vector b⃗j of B.

Remark 2.14 (Matrix multiplication is not commutative — VideoVideo) If A is a m-by-n
matrix and B a n-by-m matrix, then both AB and BA are defined, but in general
AB ̸= BA since AB is an m-by-m matrix and BA is an n-by-n matrix. Even when
n = m so that both A and B are square matrices, it is false in general that AB = BA.

The matrix operations have the following properties:

Proposition 2.15 (Properties of matrix operations)
• 0m,n + A = A for all A ∈ Mm,n(K);
• 1mA = A and A1n = A for all A ∈ Mm,n(K);
• 0m̃,mA = 0m̃,n and A0n,m̃ = 0m,m̃ for all A ∈ Mm,n(K);
• A+ B = B+ A and (A+ B) + C = A+ (B+ C) for all A,B,C ∈ Mm,n(K);

• 0 · A = 0m,n for all A ∈ Mm,n(K);
• (s1s2)A = s1(s2A) for all A ∈ Mm,n(K) and all s1, s2 ∈ K;
• A(sB) = s(AB) = (sA)B for all A ∈ Mm,n(K) and all B ∈ Mn,m̃(K) and all
s ∈ K;

• s(A+ B) = sA+ sB for all A,B ∈ Mm,n(K) and s ∈ K;
• (s1 + s2)A = s1A+ s2A for all A ∈ Mm,n(K) and for all s1, s2 ∈ K;
• (B+ C)A = BA+ CA for all B,C ∈ Mm̃,m(K) and for all A ∈ Mm,n(K);
• A(B+ C) = AB+ AC for all A ∈ Mm̃,m(K) and for all B,C ∈ Mm,n(K).

Proof We only show the second and the last property. The proofs of the remaining
ones are similar and/or elementary consequences of the properties of addition and
multiplication of scalars.
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To show the second property consider A ∈ Mm,n(K). Then, by definition, we have for all
1 ⩽ k ⩽ m and all 1 ⩽ j ⩽ n

[1mA]kj =
m∑
i=1

[1m]ki [A]ij =
m∑
i=1

δkiAij = Akj = [A]kj ,

where the second last equality uses that δki is 0 unless i = k , in which case δkk = 1. We
conclude that 1mA = A. Likewise, we obtain for all 1 ⩽ i ⩽ m and all 1 ⩽ k ⩽ n

[A1n]ik =
n∑

j=1

[A]ij [1n]jk =
n∑

j=1

Aijδjk = Aik = [A]ik

so that A1n = A. The identities

m∑
i=1

δkiAij = Akj and
n∑

j=1

Aijδjk = Aik

are used repeatedly in Linear Algebra, so make sure you understand them.

For the last property, applying the definition of matrix multiplication gives

AB =

(
m∑
i=1

AkiBij

)
1⩽k⩽m̃,1⩽j⩽n

and AC =

(
m∑
i=1

AkiCij

)
1⩽k⩽m̃,1⩽j⩽n

,

so that

AB+ AC =

(
m∑
i=1

AkiBij +
m∑
i=1

AkiCij

)
1⩽k⩽m̃,1⩽j⩽n

=

(
m∑
i=1

Aki (Bij + Cij)

)
1⩽k⩽m̃,1⩽j⩽n

= A(B+ C),

where we use that

B+ C = (Bij + Cij)1⩽i⩽m,1⩽j⩽n .

□

Finally, we may flip a matrix along its “diagonal entries”, that is, we interchange the role
of rows and columns. More precisely:

Definition 2.16 (Transpose of a matrix)
• The transpose of a matrix A ∈ Mm,n(K) is the matrix AT ∈ Mn,m(K) satisfying[

AT
]
ij
= [A]ji

for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m.
• A square matrix A ∈ Mn,n(K) that satisfies A = AT is called symmetric.
• A square matrix A ∈ Mn,n(K) that satisfies A = −AT is called anti-symmetric.

Example 2.17 If

A =

1 2

3 4

5 6

 , then AT =

(
1 3 5

2 4 6

)
.
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Remark 2.18 (Properties of the transpose)
• For A ∈ Mm,n(K) we have by definition (AT )T = A.
• For A ∈ Mm,n(K) and B ∈ Mn,m̃(K), we have

(AB)T = BTAT .

Indeed, by definition we have for all 1 ⩽ i ⩽ m̃ and all 1 ⩽ j ⩽ m[
(AB)T

]
ij
= [AB]ji =

n∑
k=1

[A]jk [B]ki =
n∑

k=1

[
BT
]
ik

[
AT
]
kj
=
[
BTAT

]
ij
.

2.3 Mappings associated to matrices

Definition 2.19 (Mapping associated to a matrix) For an (m × n)-matrix A =

(Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K) with column vectors a⃗1, ... , a⃗n ∈ Km we define a
mapping

fA : Kn → Km, x⃗ 7→ Ax⃗ ,

where the column vectorAx⃗ ∈ Km is obtained by matrix multiplication of the matrix
A ∈ Mm,n(K) and the column vector x⃗ = (xi )1⩽i⩽n ∈ Kn

Ax⃗ = a⃗1x1 + a⃗2x2 + · · ·+ a⃗nxn =


A11x1 + A12x2 + · · ·+ A1nxn
A21x1 + A22x2 + · · ·+ A2nxn

...
Am1x1 + Am2x2 + · · ·+ Amnxn

 .

Recall that if f : X → Y and g : X → Y are mappings from a set X into a set Y , then we
write f = g if f (x) = g(x) for all elements x ∈ X .

The matrix A ∈ Mm,n(K) uniquely determines the mapping fA:

Proposition 2.20 Let A,B ∈ Mm,n(K). Then fA = fB if and only if A = B.

Proof If A = B, then Aij = Bij for all 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, hence we conclude
that fA = fB. In order to show the converse direction we consider the standard basis
e⃗i = (δij)1⩽j⩽n, i = 1, ... , n of Kn. Now by assumption

fA(e⃗i ) =


A1i

A2i

...
Ami

 = fB(e⃗i ) =


B1i

B2i

...
Bmi

 .

Since this holds for all i = 1, ... , n, we conclude Aij = Bij for all j = 1, ... ,m and
i = 1, ... , n. Therefore, we have A = B, as claimed. □

Recall that if f : X → Y is a mapping from a setX into a setY and g : Y → Z a mapping
from Y into a set Z , we can consider the composition of g and f

g ◦ f : X → Z, x 7→ g(f (x)).
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The motivation for the Definition 2.12Definition 2.12 of matrix multiplication is given by the following
theorem which states that the mapping fAB associated to the matrix product AB is the
composition of the mapping fA associated to the matrixA and the mapping fB associated
to the matrix B. More precisely:

Theorem 2.21 Let A ∈ Mm,n(K) and B ∈ Mn,m̃(K) so that fA : Kn → Km and
fB : Km̃ → Kn and fAB : Km̃ → Km. Then fAB = fA ◦ fB.

Proof For x⃗ = (xk)1⩽k⩽m̃ ∈ Km̃ we write y⃗ = fB(x⃗). Then, by definition, y⃗ = Bx⃗ =

(yj)1⩽j⩽n where

(2.5) yj = Bj1x1 + Bj2x2 + · · ·+ Bjm̃xm̃ =
m̃∑

k=1

Bjkxk .

Hence writing z⃗ = fA(y⃗) = Ay⃗ , we have z⃗ = (zi )1⩽i⩽m, where

zi = Ai1y1 + Ai2y2 + · · ·+ Ainyn =
n∑

j=1

Aijyj =
n∑

j=1

Aij

m̃∑
k=1

Bjkxk

=
m̃∑

k=1

 n∑
j=1

AijBjk

 xk

and where have used (2.52.5). Since AB = (Cik)1⩽i⩽m,1⩽k⩽m̃ with

Cik =
n∑

j=1

AijBjk ,

we conclude that z⃗ = fAB(x⃗), as claimed. □

Combining Theorem 2.21Theorem 2.21 and Proposition 2.20Proposition 2.20, we also obtain:

Corollary 2.22 Let A ∈ Mm,n(K), B ∈ Mn,m̃(K) and C ∈ Mm̃,ñ(K). Then

(AB)C = A(BC),

that is, the matrix product is associative.

Proof Using Proposition 2.20Proposition 2.20 it is enough to show that

fAB ◦ fC = fA ◦ fBC.

Using Theorem 2.21Theorem 2.21, we get for all x⃗ ∈ Kñ

(fAB ◦ fC) (x⃗) = fAB(fC(x⃗)) = fA(fB(fC(x⃗))) = fA(fBC(x⃗)) = (fA ◦ fBC) (x⃗).

□

Remark 2.23 For all A ∈ Mm,n(K), the mapping fA : Kn → Km satisfies the
following two very important properties

(2.6)
fA(x⃗ + y⃗) = fA(x⃗) + fA(y⃗), (additivity),

fA(s · x⃗) = s · fA(x⃗), (1-homogeneity),

for all x⃗ , y⃗ ∈ Kn and s ∈ K. Indeed, using Proposition 2.15Proposition 2.15 we have

fA(x⃗ + y⃗) = A(x⃗ + y⃗) = Ax⃗ + Ay⃗ = fA(x⃗) + fA(y⃗)

and
fA(s · x) = A(sx) = s · (Ax) = s · fA(x).
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Mappings satisfying (2.62.6) are called linear.

Example 2.24 Notice that “most” functions R → R are neither additive nor 1-
homogeneous. As an example, consider a mapping f : R → R which satisfies the
1-homogeneity property. Let a = f (1) ∈ R. Then the 1-homogeneity implies that
for all x ∈ R = R1 we have

f (x) = f (x · 1) = x · f (1) = a · x ,

showing that the only 1-homogeneous mappings from R → R are of the form
x 7→ ax , where a is a real number. In particular, sin, cos, tan, log, exp,

√
and all

polynomials of degree higher than one are not linear.
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Vector spaces and linear maps

3.1 Vector spaces WEEK 3

We have seen that to every matrix A ∈ Mm,n(K) we can associate a mapping fA : Kn →
Km which is additive and 1-homogeneous. Another example of a mapping which is
additive and 1-homogeneous is the derivative. Consider P(R), the set of polynomial
functions in one real variable, which we denote by x , with real coefficients. That is, an
element p ∈ P(R) is a function

p : R → R, x 7→ anx
n + an−1x

n−1 + · · ·+ a1x + a0 =
n∑

k=0

akx
k ,

where n ∈ N and the coefficients ak ∈ R for k = 0, 1, ... , n. The largest m ∈ N∪{0} such
that am ̸= 0 is called the degree of p. Notice that we consider polynomials of arbitrary,
but finite degree. A power series x 7→

∑∞
k=0 akx

k , that you encounter in the Analysis
module, is not a polynomial, unless only finitely many of its coefficients are different
from zero.

Clearly, we can multiply p with a real number s ∈ R to obtain a new polynomial s ·P(R) p

(3.1) s ·P(R) p : R → R, x 7→ s · p(x)

so that (s ·P(R) p)(x) =
∑n

k=0 sakx
k for all x ∈ R. Here s ·p(x) is the usual multiplication

of the real numbers s and p(x). If we consider another polynomial

q : R → R, x 7→
n∑

k=0

bkx
k

with bk ∈ R for k = 0, 1, ... , n, the sum of the polynomials p and q is the polynomial

(3.2) p +P(R) q : R → R, x 7→ p(x) + q(x)

so that (p +P(R) q)(x) =
∑

k=0(ak + bk)x
k for all x ∈ R. Here p(x) + q(x) is the usual

addition of the real numbers p(x) and q(x). We will henceforth omit writing +P(R) and
·P(R) and simply write + and ·.

We may think of the derivative with respect to the variable x as a mapping
d

dx
: P(R) → P(R).

Now recall that the derivative satisfies

(3.3)

d

dx
(p + q) =

d

dx
(p) +

d

dx
(q) (additivity),

d

dx
(s · p) = s · d

dx
(p) (1-homogeneity).

Comparing (2.62.6) with (3.33.3) we notice that the polynomials p, q take the role of the vectors
x⃗ , y⃗ and the derivative takes the role of the mapping fA. This suggests that the mental
image of a vector being an arrow in Kn is too narrow and that we ought to come up with
a generalisation of the space Kn whose elements are abstract vectors.
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Video Vector spacesVector spaces

In order to define the notion of a space of abstract vectors, we may ask what key structure
the set of (column) vectors Kn carries. On Kn, we have two fundamental operations,

+ : Kn ×Kn → Kn (x⃗ , y⃗) 7→ x⃗ + y⃗ , (vector addition),

· : K×Kn → Kn, (s, x⃗) 7→ s · x⃗ , (scalar multiplication).

A vector space is roughly speaking a set where these two operations are defined and obey
the expected properties. More precisely:

Definition 3.1 (Vector space) A K-vector space, or vector space over K is a set V
with a distinguished element 0V (called the zero vector) and two operations

+V : V × V → V (v1, v2) 7→ v1 +V v2 (vector addition)

and
·V : K× V → V (s, v) 7→ s ·V v (scalar multiplication),

so that the following properties hold:
• Commutativity of vector addition

v1 +V v2 = v2 +V v1 (for all v1, v2 ∈ V );

• Associativity of vector addition

v1 +V (v2 +V v3) = (v1 +V v2) +V v3 (for all v1, v2, v3 ∈ V );

• Identity element of vector addition

(3.4) 0V +V v = v +V 0V = v (for all v ∈ V );

• Identity element of scalar multiplication

1 ·V v = v (for all v ∈ V );

• Scalar multiplication by zero

(3.5) 0 ·V v = 0V (for all v ∈ V );

• Compatibility of scalar multiplication with field multiplication

(s1s2) ·V v = s1 ·V (s2 ·V v) (for all s1, s2 ∈ K, v ∈ V );

• Distributivity of scalar multiplication with respect to vector addition

s ·V (v1 +V v2) = s ·V v1 +V s ·V v2 (for all s ∈ K, v1, v2 ∈ V );

• Distributivity of scalar multiplication with respect to field addition

(s1 + s2) ·V v = s1 ·V v +V s2 ·V v (for all s1, s2 ∈ K, v ∈ V ).

The elements of V are called vectors.

Example 3.2 (Field) A field K is a K-vector space. We may take V = K, 0V = 0K
and equip V with addition +V = +K and scalar multiplication ·V = ·K. Then the
properties of a field imply that V = K is a K-vector space.

Example 3.3 (Vector space of matrices) Let V = Mm,n(K) denote the set of m ×
n-matrices with entries in K and 0V = 0m,n denote the zero vector. It follows
from Proposition 2.15Proposition 2.15 that V equipped with addition +V : V × V → V defined
by (2.42.4) and scalar multiplication ·V : K × V → V defined by (2.32.3) is a K-vector
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space. In particular, the set of column vectors Kn = Mn,1(K) is a K-vector space as
well.

Example 3.4 (Vector space of polynomials) The set P(R) of polynomials in one
real variable and with real coefficients is an R-vector space, when equipped with
addition and scalar multiplication as defined in (3.13.1) and (3.23.2) and when the zero
vector 0P(R) is defined to be the zero polynomial o : R → R, that is, the polynomial
satisfying o(x) = 0 for all x ∈ R.

More generally, functions form a vector space:

Example 3.5 (Vector space of functions) We follow the convention of calling a
mapping with values in K a function. Let I ⊂ R be an interval and let o : I → K
denote the zero function defined by o(x) = 0 for all x ∈ I . We consider V = F(I ,K),
the set of functions from I to K with zero vector 0V = o given by the zero function
and define addition +V : V × V → V as in (3.23.2) and scalar multiplication ·V :

K× V → V as in (3.13.1). It now is a consequence of the properties of addition and
multiplication of scalars that F(I ,K) is a K-vector space. (The reader is invited to
check this assertion!)

Example 3.6 (Vector space of sequences) A mapping x : N → K from the natural
numbers into a field K called a sequence in K (or simply a sequence, when K is clear
from the context). It is common to write xn instead of x(n) for n ∈ N and to denote a
sequence by (xn)n∈N = (x1, x2, x3, ...). We write K∞ for the set of sequences in K.
For instance, taking K = R, we may consider the sequence(

1

n

)
n∈N

=

(
1,

1

2
,
1

3
,
1

4
,
1

5
, ...

)
or the sequence (√

n
)
n∈N =

(
1,
√
2,
√
3, 2,

√
5, ...

)
.

If we equip K∞ with the zero vector given by the zero sequence (0, 0, 0, 0, 0, ...),
addition given by (xn)n∈N +(yn)n∈N = (xn + yn)n∈N and scalar multiplication given
by s · (xn)n∈N = (sxn)n∈N for s ∈ K, then K∞ is a K-vector space.

Example 3.7 (Zero vector space) Consider a set V = {x} consisting of a single
element. We define 0V = x , addition by x +V x = x and scalar multiplication by
s ·V x = x . Then all the properties of Definition 3.1Definition 3.1 are satisfied. We writeV = {0V }
or simply V = {0} and call V the zero vector space (over K).

The notion of a vector space is an example of an abstract space. Later in your studies you
will encounter further examples, like topological spaces, metric spaces and manifolds.

Remark 3.8 (Notation & Definition) Let V be a K-vector space.
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• For v ∈ V we write −v = (−1) ·V v and for v1, v2 ∈ V we write v1 − v2 =

v1+V (−v2). In particular, using the properties from Definition 3.1Definition 3.1 we have (check
which properties we do use!)

v − v = v +V (−v) = v +V (−1) ·V v = (1− 1) ·V v = 0 ·V v = 0V

For this reason we call −v the additive inverse of v .
• Again, it is too cumbersome to always write +V , for this reason we often write
v1 + v2 instead of v1 +V v2.

• Likewise, we will often write s · v or sv instead of s ·V v .
• It is also customary to write 0 instead of 0V .

Lemma 3.9 (Elementary properties of vector spaces) Let V be a K-vector space.
Then we have:

(i) The zero vector is unique, that is, if 0′V is another vector such that 0′V + v =

v + 0′V = v for all v ∈ V , then 0′V = 0V .
(ii) The additive inverse of every v ∈ V is unique, that is, if w ∈ V satisfies v +w =

0V , then w = −v .
(iii) For all s ∈ K we have s0V = 0V .
(iv) For s ∈ K and v ∈ V we have sv = 0V if and only if either s = 0 or v = 0V .

Proof (The reader is invited to check which property of Definition 3.1Definition 3.1 is used in each of
the equality signs below)

(i) We have 0′V = 0′V + 0V = 0V .
(ii) Since v + w = 0V , adding −v , we obtain (−v) + v + w = 0V + (−v) = −v = w .

(iii) We compute s0V = s(0V + 0V ) = s0V + s0V so that s0V − s0V = 0V = s0V .
(iv) ⇐ If v = 0V , then sv = 0V by (iii). If s = 0, then sv = 0V by (3.53.5).

⇒ Let s ∈ K and v ∈ V such that sv = 0V . It is sufficient to show that if s ̸= 0, then
v = 0V . Since s ̸= 0 we can multiply sv = 0V with 1/s so that

1

s
(sv) =

(
1

s
s

)
v = v =

1

s
0V = 0V .

□

3.2 Linear maps

Throughout this section, V ,W denote K-vector spaces.

Previously we saw that the mapping fA : Kn → Km associated to a matrix Mm,n(K) is
additive and 1-homogeneous. These notions also make sense for mappings between
vector spaces.

Definition 3.10 (Linear map) A mapping f : V → W is called linear if it is additive
and 1-homogeneous, that is, if it satisfies

(3.6) f (s1v1 + s2v2) = s1f (v1) + s2f (v2)

for all s1, s2 ∈ K and for all v1, v2 ∈ V .
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The reader is invited to check that the condition (3.63.6) is indeed equivalent to f being
additive and 1-homogeneous.

Example 3.11 As we have seen in Remark 2.23Remark 2.23, the mapping fA : Kn → Km associ-
ated to a matrix A ∈ Mm,n(K) is linear. In Lemma 3.18Lemma 3.18 below we will see that in fact
any linear map Kn → Km is of this form.

Example 3.12 The derivative d
dx : P(R) → P(R) is linear, see (3.33.3).

Example 3.13 The matrix transpose is a map Mm,n(K) → Mn,m(K) and this map is
linear. Indeed, for all s, t ∈ K and A,B ∈ Mm,n(K), we have

(sA+ tB)T = (sAji + tBji )1⩽j⩽n,1⩽i⩽m = s(Aji )1⩽j⩽n,1⩽i⩽m+

t(Bji )1⩽j⩽n,1⩽i⩽m = sAT + tBT .

Example 3.14 IfX is set, the mapping IdX : X → X which returns its input is called
the identity mapping. Let V be a K-vector space and IdV : V → V the identity
mapping so that IdV (v) = v for all v ∈ V . The identity mapping is linear since for
all s1, s2 ∈ K and v1, v2 ∈ V we have

IdV (s1v1 + s2v2) = s1v1 + s2v2 = s1IdV (v1) + s2IdV (v2).

A necessary condition for linearity of a mapping is that it maps the zero vector onto the
zero vector:

Lemma 3.15 Let f : V → W be a linear map, then f (0V ) = 0W .

Proof Since f : V → W is linear, we have

f (0V ) = f (0 · 0V ) = 0 · f (0V ) = 0W .

□

Proposition 3.16 Let V1,V2,V3 be K-vector spaces and f : V1 → V2 and g : V2 →
V3 be linear maps. Then the composition g ◦ f : V1 → V3 is linear. Furthermore,
if f : V1 → V2 is bijective, then the inverse function f −1 : V2 → V1 (satisfying
f −1 ◦ f = f ◦ f −1 = IdV1) is linear.

Proof Let s, t ∈ K and v ,w ∈ V1. Then

(g ◦ f ) (sv + tw) = g(f (sv + tw)) = g(sf (v) + tf (w))

= sg(f (v)) + tg(f (w)) = s(g ◦ f )(v) + t(g ◦ f )(w),

where we first use the linearity of f and then the linearity of g . It follows that g ◦ f is
linear.
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Now suppose f : V1 → V2 is bijective with inverse function f −1 : V2 → V1. Let s, t ∈ K
and v ,w ∈ V2. Since f is bijective there exist unique vectors v ′,w ′ ∈ V1 with f (v ′) = v

and f (w ′) = w . Hence we can write

f −1(sv + tw) = f −1(sf (v ′) + tf (w ′)) = f −1 (f (sv ′ + tw ′))

= (f −1 ◦ f )(sv ′ + tw ′) = sv ′ + tw ′,

where we use the linearity of f . Since we also have v ′ = f −1(v) and w ′ = f −1(w), we
obtain

f −1(sv + tw) = sf −1(v) + tf −1(w),

thus showing that f −1 : V2 → V1 is linear. □

We also have:

Proposition 3.17 Let A ∈ Mm,n(K) and fA : Kn → Km the associated linear map.
Then fA is bijective if and only if there exists a matrixB ∈ Mn,m(K) satisfyingBA = 1n
and AB = 1m. In this case, the matrix B is unique and will be denoted by A−1. We
refer to A−1 as the inverse of A and call A invertible.

In order to prove Proposition 3.17Proposition 3.17 we need the following lemma:

Lemma 3.18 A mapping g : Km → Kn is linear if and only if there exists a matrix
B ∈ Mn,m(K) so that g = fB.

Proof Let B ∈ Mn,m(K), then fB is linear by Remark 2.23Remark 2.23. Conversely, let g : Km → Kn

be linear. Let {e⃗1, ... , e⃗m} denote the standard basis of Km. Write

g(e⃗i ) =

B1i

...
Bni

 for i = 1, ... ,m

and consider the matrix

B =

B11 · · · B1m

...
. . .

...
Bn1 · · · Bnm

 ∈ Mn,m(K).

For i = 1, ... ,m we obtain

(3.7) fB(e⃗i ) = Be⃗i = g(e⃗i ).

Any vector v⃗ = (vi )1⩽i⩽m ∈ Km can be written as

v⃗ = v1e⃗1 + · · ·+ vme⃗m

for (unique) scalars vi , i = 1, ... ,m. Hence using the linearity of g and fB, we compute
g(v⃗)− fB(v⃗) = g(v1e⃗1 + · · ·+ vme⃗m)− fB(v1e⃗1 + · · ·+ vme⃗m)

= v1 (g(e⃗1)− fB(e⃗1)) + · · ·+ vm (g(e⃗m)− fB(e⃗m)) = 0Kn ,

where the last equality uses (3.73.7). Since the vector v⃗ is arbitrary, it follows that g = fB, as
claimed. □

Proof of Proposition 3.17Proposition 3.17 First, notice that the mapping f1n : Kn → Kn associated to
the unit matrix is the identity mapping on Kn, that is, for all n ∈ N, we have f1n = IdKn .

Let A ∈ Mm,n(K) and suppose that fA : Kn → Km is bijective with inverse function
(fA)

−1 : Km → Kn. By Proposition 3.16Proposition 3.16, the mapping (fA)
−1 is linear and hence of

32



3.2 — Linear maps

the form (fA)
−1 = fB for some matrix B ∈ Mn,m(K) by the previous Lemma 3.18Lemma 3.18. Us-

ing Theorem 2.21Theorem 2.21, we obtain

(fA)
−1 ◦ fA = IdKn = fB ◦ fA = fBA = f1n

hence Proposition 2.20Proposition 2.20 implies that BA = 1n. Likewise we have

fA ◦ (fA)−1 = IdKm = fA ◦ fB = fAB = f1m

so that AB = 1m.

Conversely, let A ∈ Mm,n(K) and suppose the matrix B ∈ Mn,m(K) satisfies AB = 1m
and BA = 1n. Then, as before, we have

fAB = f1m = IdKm = fA ◦ fB and fBA = f1n = IdKn = fB ◦ fA
showing that fA : Kn → Km is bijective with inverse function fB : Km → Kn.

Finally, to verify the uniqueness of B, we assume that there exists B′ ∈ Mn,m(K) with
AB′ = 1m and B′A = 1n. Then

B′ = B′1m = B′AB = (B′A)B = 1nB = B,

showing that B′ = B, hence B is unique. □

Exercises

Exercise 3.19 Let f : V → W be a linear map, k ⩾ 2 a natural number and
s1, ... , sk ∈ K and v1, ... , vk ∈ V . Then f : V → W satisfies

f (s1v1 + · · ·+ skvk) = s1f (v1) + · · ·+ sk f (vk)

or written with the sum symbol

f

(
k∑

i=1

sivi

)
=

k∑
i=1

si f (vi ).

This identity is used frequently in Linear Algebra, so make sure you understand it.

Exercise 3.20 Let a, b, c , d ∈ K and

A =

(
a b

c d

)
∈ M2,2(K).

Show thatA has an inverseA−1 if and only if ad−bc ̸= 0. For ad−bc ̸= 0, compute
the inverse A−1.
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3.3 Vector subspaces and isomorphisms WEEK 4

3.3.1 Vector subspaces

A vector subspace of a vector space is a subset that is itself a vector space, more precisely:

Definition 3.21 (Vector subspace) Let V be a K-vector space. A subset U ⊂ V is
called a vector subspace of V if U is non-empty and if

(3.8) s1 ·V v1 +V s2 ·V v2 ∈ U for all s1, s2 ∈ K and all v1, v2 ∈ U.

Video SubspacesSubspaces

Remark 3.22
(i) Observe that sinceU is non-empty, it contains an element, say u. Since 0 ·V u =

0V ∈ U it follows that the zero vector 0V lies in U . A vector subspace U is
itself a vector space when we take 0U = 0V and borrow vector addition and
scalar multiplication from V . Indeed, all of the properties in Definition 3.1Definition 3.1 of
+V and ·V hold for all elements of V and all scalars, hence also for all elements
of U ⊂ V and all scalars. We only need to verify that we cannot fall out of
U by vector addition and scalar multiplication, but this is precisely what the
condition (3.83.8) states.

(ii) A vector subspace is also called a linear subspace or simply a subspace.

The prototypical example of a vector subspace are lines and planes through the origin in
R3:

Example 3.23 (Lines through the origin) Let w⃗ ̸= 0R3 , then the line

U = {sw⃗ | s ∈ R} ⊂ R3

is a vector subspace. Indeed, taking s = 0 it follows that 0R3 ∈ U so that U is
non-empty. Let u⃗1, u⃗2 be vectors in U so that u⃗1 = t1w⃗ and u⃗2 = t2w⃗ for scalars
t1, t2 ∈ R. Let s1, s2 ∈ R, then

s1u⃗1 + s2u⃗2 = s1t1w⃗ + s2t2w⃗ = (s1t1 + s2t2) w⃗ ∈ U

so that U ⊂ R3 is a subspace.

Example 3.24 (Zero vector space) Let V be a K-vector space and U = {0V } the
zero vector space arising from 0V . Then, by Definition 3.21Definition 3.21 and the properties of
Definition 3.1Definition 3.1, it follows that U is a vector subspace of V .

Example 3.25 (Periodic functions) Taking I = R and K = R in Example 3.5Example 3.5, we see
that the functions f : R → R form an R-vector space V = F(R,R). Consider the
subset

U = {f ∈ F(R,R) | f is periodic with period 2π}
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consisting of 2π-periodic functions, that is, an element f ∈ U satisfies f (x + 2π) =

f (x) for all x ∈ R. Notice that U is not empty, as cos : R → R and sin : R → R are
elements of U . Suppose f1, f2 ∈ U and s1, s2 ∈ R. Then, we have for all x ∈ R

(s1f1 + s2f2)(x + 2π) = s1f1(x + 2π) + s2f2(x + 2π) = s1f1(x) + s2f2(x)

= (s1f1 + s2f2)(x)

showing that s1f1 + s2f2 is periodic with period 2π. By Definition 3.21Definition 3.21, it follows that
U is a vector subspace of F(R,R).

Recall, if X ,W are sets, Y ⊂ X , Z ⊂ W subsets and f : X → W a mapping, then the
image of Y under f is the set

f (Y) = {w ∈ W | there exists an element y ∈ Y with f (y) = w}

consisting of all the elements in W which are hit by an element of Y under the mapping
f . In the special case where Y is all of X , that is, Y = X , it is also customary to write
Im(f ) instead of f (X ) and simply speak of the image of f . Similarly, the preimage of Z
under f is the set

f −1(Z) = {x ∈ X | f (x) ∈ Z}

consisting of all the elements in X which are mapped onto elements of Z under f . Notice
that f is not assumed to be bijective, hence the inverse mapping f −1 : W → X does
not need to exist (and in fact the definition of the preimage does not involve the inverse
mapping). Nonetheless the notation f −1(Z) is customary.

It is natural to ask how the image and preimage of subspaces look like under a linear
map:

Proposition 3.26 Let V ,W be K-vector spaces, U ⊂ V and Z ⊂ W be vector
subspaces and f : V → W a linear map. Then the image f (U) is a vector subspace
of W and the preimage f −1(Z ) is a vector subspace of V .

Proof Since U is a vector subspace, we have 0V ∈ U . By Lemma 3.15Lemma 3.15, f (0V ) = 0W ,
hence 0W ∈ f (U). For all w1,w2 ∈ f (U) there exist u1, u2 ∈ U with f (u1) = w1 and
f (u2) = w2. Hence for all s1, s2 ∈ K we obtain

s1w1 + s2w2 = s1f (u1) + s2f (u2) = f (s1u1 + s2u2),

where we use the linearity of f . Since U is a subspace, s1u1 + s2u2 is an element of U
as well. It follows that s1w1 + s2w2 ∈ f (U) and hence applying Definition 3.21Definition 3.21 again,
we conclude that f (U) is a subspace of W . The second claim is left to the reader as an
exercise. □

Vector subspaces are stable under intersection in the following sense:

Proposition 3.27 Let V be a K-vector space, n ⩾ 2 a natural number and U1, ... ,Un

vector subspaces of V . Then the intersection

U ′ =
n⋂

j=1

Uj = {v ∈ V | v ∈ Uj for all j = 1, ... , n}

is a vector subspace of V as well.
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Proof Since Uj is a vector subspace, 0V ∈ Uj for all j = 1, ... , n. Therefore, 0V ∈ U ′,
hence U ′ is not empty. Let u1, u2 ∈ U ′ and s1, s2 ∈ K. By assumption, u1, u2 ∈ Uj for all
j = 1, ... , n. SinceUj is a vector subspace for all j = 1, ... , n it follows that s1u1+s2u2 ∈ Uj

for all j = 1, ... , n and hence s1u1 + s2u2 ∈ U ′. By Definition 3.21Definition 3.21, it follows that U ′ is a
vector subspace of V . □

Remark 3.28 Notice that the union of subspaces need not be a subspace. Let
V = R2, {e⃗1, e⃗2} its standard basis and

U1 = {se⃗1 | s ∈ R} and U2 = {se⃗2 | s ∈ R} .

Then e⃗1 ∈ U1 ∪ U2 and e⃗2 ∈ U1 ∪ U2, but e⃗1 + e⃗2 /∈ U1 ∪ U2.

The kernel of a linear map f : V → W consists of those vectors in V that are mapped
onto the zero vector of W :

Definition 3.29 (Kernel) The kernel of a linear map f : V → W is the preimage of
{0W } under f , that is,

Ker(f ) = {v ∈ V | f (v) = 0W } = f −1({0W }).

Example 3.30 The kernel of the linear map d
dx : Pn(R) → Pn−1(R) consists of the

constant polynomials satisfying f (x) = c for all x ∈ R and where c ∈ R is some
constant.

We can characterise the injectivity of a linear map f : V → W in terms of its kernel:

Lemma 3.31 A linear map f : V → W is injective if and only if Ker(f ) = {0V }.

Proof Let f : V → W be injective. Suppose f (v) = 0W . Since f (0V ) = 0W by
Lemma 3.15Lemma 3.15, we have f (v) = f (0V ), hence v = 0V by the injectivity assumption. It
follows that Ker(f ) = {0V }. Conversely, suppose Ker(f ) = {0V } and let v1, v2 ∈ V be
such that f (v1) = f (v2). Then by the linearity we have f (v1)− f (v2) = 0W = f (v1 − v2).
Hence v1 − v2 is in the kernel of f so that v1 − v2 = 0V or v1 = v2. □

An immediate consequence of Proposition 3.26Proposition 3.26 is:

Corollary 3.32 Let f : V → W be a linear map, then its image Im(f ) is a vector
subspace of W and its kernel Ker(f ) is a vector subspace of V .

3.3.2 Isomorphisms

Definition 3.33 (Vector space isomorphism) A bijective linear map f : V → W is
called a (vector space) isomorphism. If an isomorphism f : V → W exists, then the
K-vector spaces V and W are called isomorphic.
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By the definition of surjectivity, a map f : V → W is surjective if and only if Im(f ) = W .
Combining this with Lemma 3.31Lemma 3.31 gives:

Proposition 3.34 A linear map f : V → W is an isomorphism if and only ifKer(f ) =
{0V } and Im(f ) = W .

3.4 Generating sets

Definition 3.35 (Linear combination) Let V be a K-vector space, k ∈ N and
{v1, ... , vk} a set of vectors from V . A linear combination of the vectors {v1, ... , vk}
is a vector of the form

w = s1v1 + · · ·+ skvk =
k∑

i=1

sivi

for some s1, ... , sk ∈ K.

Example 3.36 For n ∈ N with n ⩾ 2 consider V = Pn(R) and the polynomials
p1, p2, p3 ∈ Pn(R) defined by the rules p1(x) = 1, p2(x) = x , p3(x) = x2 for all
x ∈ R. A linear combination of {p1, p2, p3} is a polynomial of the form p(x) =

ax2 + bx + c where a, b, c ∈ R.

Definition 3.37 (Subspace generated by a set) LetV be aK-vector space andS ⊂ V

be a non-empty subset. The subspace generated by S is the set span(S) whose
elements are linear combinations of finitely many vectors in S. The set span(S) is
called the span of S. Formally, we have

span(S) =

{
v ∈ V

∣∣∣ v =
k∑

i=1

sivi , k ∈ N, s1, ... , sk ∈ K, v1, ... , vk ∈ S

}
.

Remark 3.38 The notation ⟨S⟩ for the span of S is also in use.

Proposition 3.39 Let V be a K-vector space and S ⊂ V be a non-empty subset.
Then span(S) is a vector subspace of V .

Proof Since S is non-empty it contains some element, say u. Since u itself is a linear
combination of {u}, it follows that span(S) is non-empty. Let k ∈ N and v1 = t1w1 +

· · · + tkwk for t1, ... tk ∈ K and w1, ... ,wk ∈ S be a linear combination of vectors in S.
Furthermore, let j ∈ N and v2 = t̂1ŵ1 + · · · + t̂j ŵj for t̂1, ... , t̂j and ŵ1, ... , ŵj ∈ S be
another linear combination of vectors in S . By Definition 3.21Definition 3.21, it suffices to show that for
all s1, s2 ∈ K the vector s1v1 + s2v2 is a linear combination of vectors in S . Since

s1v1 + s2v2 = s1(t1w1 + · · ·+ tkwk) + s2(t̂1ŵ1 + · · ·+ t̂j ŵj)

= s1t1w1 + · · ·+ s1tkwk + s2t̂1ŵ1 + · · ·+ s2t̂j ŵj
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is a linear combination of the vectors {w1, ... ,wk , ŵ1, ... , ŵj} in S , the claim follows. □

Remark 3.40 For a subset S ⊂ V , we may alternatively define span(S) to be the
smallest vector subspace of V that contains S. This has the advantage of S being
allowed to be empty, in which case span(∅) = {0V }, that is, the empty set is a
generating set for the zero vector space.

Definition 3.41 Let V be a K-vector space. A subset S ⊂ V is called a generating
set if span(S) = V . The vector space V is called finite dimensional if V admits a
generating set with finitely many elements (also called a finite set). A vector space
that is not finite dimensional will be call infinite dimensional.

Example 3.42 Thinking of a fieldK as aK-vector space, the setS = {1K} consisting
of the identity element of multiplication is a generating set for V = K. Indeed, for
every x ∈ K we have x = x ·V 1K.

Example 3.43 The standard basis S = {e⃗1, ... , e⃗n} is a generating set for Kn, since
for all x⃗ = (xi )1⩽i⩽n ∈ Kn, we can write x⃗ = x1e⃗1 + · · ·+ xne⃗n so that x⃗ is a linear
combination of elements of S.

Example 3.44 Let Ek,l ∈ Mm,n(K) for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n denote the m-by-n
matrix satisfying Ek,l = (δkiδlj)1⩽i⩽m,1⩽j⩽n. For example, for m = 2 and n = 3 we
have

E1,1 =

(
1 0 0

0 0 0

)
, E1,2 =

(
0 1 0

0 0 0

)
, E1,3 =

(
0 0 1

0 0 0

)
and

E2,1 =

(
0 0 0

1 0 0

)
, E2,2 =

(
0 0 0

0 1 0

)
, E2,3 =

(
0 0 0

0 0 1

)
.

Then S = {Ek,l}1⩽k⩽m,1⩽l⩽n is a generating set for Mm,n(K), since a matrix A ∈
Mm,n(K) can be written as

A =
m∑

k=1

n∑
l=1

AklEk,l

so that A is a linear combination of the elements of S.

Example 3.45 The vector space P(R) of polynomials is infinite dimensional. In
order to see this, consider a finite set of polynomials {p1, ... , pn}, n ∈ N and let di
denote the degree of the polynomial pi for i = 1, ... , n. We set D = max{d1, ... , dn}.
Since a linear combination of the polynomials {p1, ... , pn} has degree at mostD , any
polynomial q whose degree is strictly larger than D will satisfy q /∈ span{p1, ... , pn}.
It follows that P(R) cannot be generated by a finite set of polynomials.
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Lemma 3.46 Let f : V → W be linear and S ⊂ V a generating set. If f is surjective,
then f (S) is a generating set for W . Furthermore, if f is bijective, then V is finite
dimensional if and only if W is finite dimensional.

Proof Let w ∈ W . Since f is surjective there exists v ∈ V such that f (v) = w . Since
span(S) = V , there exists k ∈ N, as well as elements v1, ... , vk ∈ S and scalars s1, ... , sk
such that v =

∑k
i=1 sivi and hencew =

∑k
i=1 si f (vi ), where we use the linearity of f . We

conclude that w ∈ span(f (S)) and since w is arbitrary, it follows that W = span(f (S)).

For the second claim suppose V is finite dimensional, hence we have a finite set S
with span(S) = V . The set f (S) is finite as well and satisfies span(f (S)) = W by the
previous argument, hence W is finite dimensional as well. Conversely suppose W is
finite dimensional with generating set T ⊂ W . Since f is bijective there exists an inverse
mapping f −1 : W → V which is surjective, hence V = span(f −1(T )) so that V is finite
dimensional as well. □

3.5 Linear independence and bases

A set of vectors where no vector can be expressed as a linear combination of the other
vectors is called linearly independent. More precisely:

Definition 3.47 (Linear independence) Let S ⊂ V be a non-empty finite subset so
that S = {v1, ... , vk} for distinct vectors vi ∈ V , i = 1, ... , k . We say S is linearly
independent if

s1v1 + · · ·+ skvk = 0V ⇐⇒ s1 = · · · = sk = 0,

where s1, ... , sk ∈ K. If S is not linearly independent, then S is called linearly
dependent. Furthermore, we call a subset S ⊂ V linearly independent if every finite
subset of S is linearly independent. We will call distinct vectors v1, ... , vk linearly
independent/dependent if the set {v1, ... , vk} is linearly independent/dependent.

Remark 3.48 Instead of distinct, many authors write pairwise distinct, which means
that all pairs of vectors vi , vj with i ̸= j satisfy vi ̸= vj . Of course, this simply means
that the list v1, ... , vk of vectors is not allowed to contain a vector more than once.

Notice that if the vectors v1, ... , vk ∈ V are linearly dependent, then there exist scalars
s1, ... , sk , not all zero, so that

∑k
i=1 sivi = 0V . After possibly changing the numbering of

the vectors and scalars, we can assume that s1 ̸= 0. Therefore, we can write

v1 = −
k∑

i=2

(
si
s1

)
vi ,

so that v1 is a linear combination of the vectors v2, ... , vk .

Also, observe that a subset T of a linearly independent setS is itself linearly independent.
(Why?)
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Example 3.49 We consider the polynomials p1, p2, p3 ∈ P(R) defined by the rules
p1(x) = 1, p2(x) = x , p3(x) = x2 for all x ∈ R. Then {p1, p2, p3} is linearly inde-
pendent. In order to see this, consider the condition

(3.9) s1p1 + s2p2 + s3p3 = 0P(R) = o

where o : R → R denotes the zero polynomial. Since (3.93.9) means that

s1p1(x) + s2p2(x) + s3p3(x) = o(x),

for all x ∈ R, we can evaluate this condition for any choice of real number x . Taking
x = 0 gives

s1p1(0) + s2p2(0) + s3p3(0) = o(0) = 0 = s1.

Taking x = 1 and x = −1 gives
0 = s2p2(1) + s3p3(1) = s2 + s3,

0 = s2p2(−1) + s3p3(−1) = −s2 + s3,

so that s2 = s3 = 0 as well. It follows that {p1, p2, p3} is linearly independent.

Remark 3.50 By convention, the empty set is linearly independent.

Definition 3.51 (Basis) A subset S ⊂ V which is a generating set of V and also
linearly independent is called a basis of V .

Video BasisBasis

Example 3.52 Thinking of a field K as a K-vector space, the set {1K} is linearly
independent, since 1K ̸= 0K. Example 3.42Example 3.42 implies that {1K} is a basis of K.

Example 3.53 Clearly, the standard basis {e⃗1, ... , e⃗n} of Kn is linearly independent
since

s1e⃗1 + · · ·+ sne⃗n =

s1
...
sn

 = 0Kn =

0
...
0

 ⇐⇒ s1 = · · · = sn = 0.

It follows together with Example 3.43Example 3.43 that the standard basis of Kn is indeed a basis
in the sense of Definition 3.51Definition 3.51.

Example 3.54 The matrices Ek,l ∈ Mm,n(K) for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n are
linearly independent. Suppose we have scalars skl ∈ K such that

m∑
k=1

n∑
l=1

sklEk,l = 0m,n =

 s11 · · · s1n
...

. . .
...

sm1 · · · smn

 =

0 · · · 0
...

. . .
...

0 · · · 0


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so skl = 0 for all 1 ⩽ k ⩽ m and all 1 ⩽ l ⩽ n. It follows together with Example 3.44Example 3.44
that {Ek,l}1⩽k⩽m,1⩽l⩽n is a basis of Mm,n(K). We refer to {Ek,l}1⩽k⩽m,1⩽l⩽n as the
standard basis of Mm,n(K).

Example 3.55 Combining Remark 3.40Remark 3.40 and Remark 3.50Remark 3.50 we conclude that the
empty set is a basis for the zero vector space {0}.

Lemma 3.56 Let f : V → W be an injective linear map. Suppose S ⊂ V is linearly
independent, then f (S) ⊂ W is also linearly independent.

Proof Let {w1, ... ,wk} ⊂ f (S) be a finite subset for some k ∈ N some and distinct
vectors wi ∈ W , where 1 ⩽ i ⩽ k . Then there exist vectors v1, ... , vk with f (vi ) = wi

for 1 ⩽ i ⩽ k . Suppose there exist scalars s1, ... , sk such that s1w1 + · · ·+ skwk = 0W .
Using the linearity of f , this implies

0W = s1w1 + · · ·+ skwk = s1f (v1) + · · ·+ sk f (vk) = f (s1v1 + · · ·+ skvk).

Since f is injective we haveKer(f ) = {0V }by Lemma 3.31Lemma 3.31. Since s1v1+· · ·+skvk ∈ Ker f

it follows that s1v1+· · ·+skvk = 0V , hence s1 = · · · = sk = 0by the linear independence
of S. It follows that f (S) is linearly independent as well. □

Exercises

Exercise 3.57 Let U ⊂ V be a vector subspace and k ∈ N with k ⩾ 2. Show that
for u1, ... , uk ∈ U and s1, ... , sk ∈ K, we have s1u1 + · · ·+ skuk ∈ U .

Exercise 3.58 (Planes through the origin) Let w⃗1, w⃗2 ̸= 0R3 and w⃗1 ̸= sw⃗2 for all
s ∈ R. Show that the plane

U = {s1w⃗1 + s2w⃗2 | s1, s2 ∈ R}

is a vector subspace of R3.

Exercise 3.59 (Polynomials) Let n ∈ N ∪ {0} and Pn(R) denote the subset of P(R)
consisting of polynomials of degree at most n. Show that Pn(R) is a subspace of
P(R) for all n ∈ N ∪ {0}.

Exercise 3.60 Show that the K-vector space Kn of column vectors with n entries is
isomorphic to the K-vector space Kn of row vectors with n entries.
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Exercise 3.61 Show that the R-vector spaces Pn(R) and Rn+1 are isomorphic for
all n ∈ N ∪ {0}.

Exercise 3.62 Show that for a non-empty subset S of a K-vector space V , the
set span(S) as defined in Definition 3.37Definition 3.37 is the same as the set span(S) as defined
in Remark 3.40Remark 3.40. In particular, Proposition 3.39Proposition 3.39 remains true when removing the
assumption that S is non-empty.

Exercise 3.63 Show that a subset {v} consisting of a single vector v ∈ V is linearly
independent if and only if v ̸= 0V .
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3.6 The dimension WEEK 5

3.6.1 Defining the dimension

Intuitively, we might define the dimension of a finite dimensional vector space V to be
the number of elements of any basis of V , so that a line is 1-dimensional, a plane is 2-
dimensional and so on. Of course, this definition only makes sense if we know that there
always exists a basis of V and that the number of elements in the basis is independent of
the chosen basis. Perhaps surprisingly, these facts take quite a bit of work to prove.

Theorem 3.64 Let V be a K-vector space.
(i) Any subset S ⊂ V generating V admits a subset T ⊂ S that is a basis of V .

(ii) Any subset S ⊂ V that is linearly independent in V is contained in a subset
T ⊂ V that is a basis of V .

(iii) If S1,S2 are bases of V , then there exists a bijective map f : S1 → S2.
(iv) If V is finite dimensional, then any basis of V is a finite set and the number of

elements in the basis is independent of the choice of the basis.

Corollary 3.65 Every K-vector space V admits at least one basis.

Proof Since V is a generating set for V , we can apply (i) from Theorem 3.64Theorem 3.64 to S = V to
obtain a basis of V . □

Remark 3.66 Let X be a set with finitely many elements. We write Card(X ) – for
cardinality – for the number of elements of X .

Definition 3.67 The dimension of a finite dimensional K-vector space V , denoted
by dim(V ) or dimK(V ), is the number of elements of any basis of V .

Example 3.68
(i) The zero vector space {0} has the empty set as a basis and hence is 0-

dimensional.
(ii) A field K – thought of as a K-vector space – has {1K} as a basis and hence is

1-dimensional.
(iii) The vector space Kn has {e⃗1, ... , e⃗n} as a basis and hence is n-dimensional.
(iv) The vector space Mm,n(K) has Ek,l for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n as a basis,

hence it is mn-dimensional.

We will only prove Theorem 3.64Theorem 3.64 for finite dimensional vector spaces. This will be done
with the help of three lemmas.

Lemma 3.69 Let V be a K-vector space, S ⊂ V linearly independent and v0 ∈ V .
Suppose v0 /∈ span(S), then S ∪ {v0} is linearly independent.

43



CHAPTER 3 — VECTOR SPACES AND LINEAR MAPS

Proof Let T be a finite subset of S ∪ {v0}. If v0 /∈ T , then T is linearly independent, as
S is linearly independent. So suppose v0 ∈ T . There exist distinct elements v1, ... , vn of
S so that T = {v0, v1, ... , vn}. Suppose s0v0 + s1v1 + · · ·+ snvn = 0V for some scalars
s0, s1, ... , sn ∈ K. If s0 ̸= 0, then we can write

v0 = −
n∑

i=1

si
s0
vi ,

contradicting the assumption that v0 /∈ span(S). Hence we must have s0 = 0. Since
s0 = 0 it follows that s1v1 + · · · + snvn = 0V so that s1 = · · · = sn = 0 by the linear
independence of S. We conclude that S ∪ {v0} is linearly independent. □

Lemma 3.70 LetV be aK-vector space andS ⊂ V a generating set. If v0 ∈ span(S\
{v0}), then S \ {v0} is a generating set.

Proof Since v0 ∈ span(S \ {v0}), there exist vectors v1, ... , vn ∈ S with vi ̸= v0 and
scalars s1, ... , sn so that v0 = s1v1 + · · ·+ snvn. Suppose v ∈ V . Since S is a generating
set, there exist vectors w1, ... ,wk ∈ S and scalars t1, ... , tk so that v = t1w1 + · · · +
tkwk . If {w1, ... ,wk} does not contain v0, then v ∈ span(S \ {v0}), so assume that
v0 ∈ {w1, ... ,wk}. After possibly relabelling the elements of {w1, ... ,wk} we can assume
that v0 = w1. Hence we have

v = t1 (s1v1 + · · ·+ snvn) + t2w2 + · · ·+ tkwk

with v0 ̸= vi for 1 ⩽ i ⩽ n and v0 ̸= wj for 2 ⩽ j ⩽ k . It follows that v ∈ span(S \ {v0}),
as claimed. □

Lemma 3.71 Let V be a finite dimensional K-vector space and S ⊂ V a finite set
with n elements which generates V . If T ⊂ V has more than n elements, then T is
linearly dependent.

Proof We show that if T has exactly n + 1 elements, then it is linearly dependent. In the
other cases, T contains a subset with exactly n + 1 elements and if this subset is linearly
dependent, then so is T .

We prove the claim by induction on n ⩾ 0. Let A(n) be the following statement: “For any
K-vector space V , if there exists a generating subset S ⊂ V with n elements, then all
subsets of V with n + 1 elements are linearly dependent.”

We first show that A(0) is true. A subset with zero elements is the empty set ∅. Hence
V = span(∅) = {0V } is the zero vector space. The only subset of {V } with 1 element is
{0V }. Since s0V = 0V for all s ∈ K , the set {0V } is linearly dependent, thus showing
that A(0) is correct.

Suppose n ⩾ 1 and that A(n− 1) is true. We want to argue that A(n) is true as well. Sup-
pose V is generated by the set S = {v1, ... , vn} with n elements. Let T = {w1, ... ,wn+1}
be a subset with n + 1 elements. We need to show that T is linearly dependent. Since S
is generating, we have scalars sij ∈ K with 1 ⩽ i ⩽ n + 1 and 1 ⩽ j ⩽ n so that

(3.10) wi =
n∑

j=1

sijvj

for all 1 ⩽ i ⩽ n + 1. We now consider two cases:
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Case 1. If s11 = · · · = sn+1,1 = 0, then (3.103.10) gives for all 1 ⩽ i ⩽ n + 1

wi =
n∑

j=2

sijvj .

Notice that the summation now starts at j = 2. This implies that T ⊂ W , where
W = span{v2, ... , vn}. We can now applyA(n−1) to the vector spaceW , the generating
set S1 = {v2, ... , vn} and the subset with n elements being T1 = {w1, ... ,wn}. It follows
that T1 is linearly dependent and hence so is T , as it contains T1.

Case 2. Suppose there exists i so that si1 ̸= 0. Then, after possibly relabelling the vectors,
we can assume that s11 ̸= 0. For 2 ⩽ i ⩽ n + 1 we thus obtain from (3.103.10)

wi −
si1
s11

w1 = wi −
si1
s11

 n∑
j=1

s1jvj

 =
n∑

j=1

sijvj −
si1
s11

 n∑
j=1

s1jvj


=

n∑
j=1

(
sij −

si1
s11

s1j

)
vj

=

(
si1 −

si1
s11

s11

)
︸ ︷︷ ︸

=0

v1 +
n∑

j=2

(
sij −

si1
s11

s1j

)
vj

=
n∑

j=2

(
sij −

si1
s11

s1j

)
vj .

Hence, setting

(3.11) ŵi = wi −
si1
s11

w1

for 2 ⩽ i ⩽ n + 1 and ŝij = sij − si1
s11
s1j for 2 ⩽ i ⩽ n + 1 and 2 ⩽ j ⩽ n, we obtain the

relations

ŵi =
n∑

j=2

ŝijvj

for all 2 ⩽ i ⩽ n+1. Therefore, the set T̂ = {ŵ2, ... , ŵn+1} with n elements is contained
in W which is generated by n − 1 elements. Applying A(n − 1), we conclude that T̂ is
linearly dependent. It follows that we have scalars t2, ... , tn+1 not all zero so that

t2ŵ2 + · · ·+ tn+1ŵn+1 = 0V .

Using (3.113.11), we get
n+1∑
i=2

ti

(
wi −

si1
s11

w1

)
= −

(
n+1∑
i=2

ti
si1
s11

)
w1 + t2w2 + · · ·+ tn+1wn+1 = 0V .

Since not all scalars t2, ... , tn+1 are zero, it follows that w1, ... ,wn+1 are linearly depend-
ent and hence so is T . □

Proof of Theorem 3.64Theorem 3.64 We restrict to the case where V is finite dimensional. Hence
there exists an integer n ⩾ 0 so that V has a generating set S0 with n elements.

(i) LetS ⊂ V be a subset generatingV . We consider the setX consisting of those integers
d ⩾ 0 for which there exists a linearly independent subset T ⊂ S with d elements. Since
∅ ⊂ S, we have 0 ∈ X , so X is non-empty. Furthermore, X is a finite set, as it cannot
contain any integer greater than n by Lemma 3.71Lemma 3.71. Let m ∈ X be the largest integer and
T ⊂ S a set with m elements. We want to argue that T is a basis of V . Suppose T is not
a basis of V . Then there exists an element v0 ∈ S so that v0 /∈ span(T ), since if no such
element exists, we have S ⊂ span(T ) and hence V = span(S) ⊂ span(T ) contradicting
the assumption that T is not a basis of V . Applying Lemma 3.69Lemma 3.69, we conclude that
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T̂ = {v0} ∪ T ⊂ S is linearly independent. Since T̂ has m + 1 elements, we have
m + 1 ∈ X , contradicting the fact that m is the largest integer in X . It follows that T
must be a basis of V .

(ii) Let S ⊂ V be a subset that is linearly independent in V . Let X̂ denote the set
consisting of those integers d ⩾ 0 for which there exists a subset T ⊂ V with d elements,
which contains S and which is a generating set of V . Notice that S ∪ S0 is such a set,
hence X̂ is not empty. Let m denote the smallest element of X̂ and T be a generating
subset of V containing S and with m elements. We want to argue that T is basis for V .
By assumption, T generates V , hence we need to check that T is linearly independent in
V . Suppose T is linearly dependent and write T = {v1, ... , vm} for distinct elements of
V . Suppose S = {v1, ... , vk} for some k ⩽ m. This holds true since S ⊂ T . Since T is
linearly dependent we have scalars s1, ... , sm so that

s1v1 + · · ·+ smvm = 0V .

There must exist a scalar si with i > k such that si ̸= 0. Otherwise S would be linearly
dependent. After possibly relabelling the vectors, we can assume that sk+1 ̸= 0 so that

(3.12) vk+1 = − 1

sk+1
(s1v1 + · · ·+ skvk + sk+2vk+2 + · · ·+ smvm) .

Let T̂ = {v1, ... , vk , vk+2, ... , vm}. Then S ⊂ T̂ and (3.123.12) shows that vk+1 ∈ span(T̂ ).
Lemma 3.70Lemma 3.70 shows that T̂ generatesV , containsS and hasm−1 elements, contradicting
the minimality of m.

(iii) Suppose S1 is a basis of V with n1 elements and S2 is a basis of V with n2 elements.
Since S2 is linearly independent and S1 generates V , Lemma 3.71Lemma 3.71 implies that n2 ⩽ n1.
Likewise, we conclude that n2 ⩾ n1. It follows that n1 = n2 and hence there exists a
bijective mapping fromS1 toS2 as these are finite sets with the same number of elements.

(iv) is an immediate consequence of (iii). □

3.6.2 Properties of the dimension

Lemma 3.72 Isomorphic finite dimensional vector spaces have the same dimension.

Proof Let V ,W be finite dimensional K-vector spaces and f : V → W an isomorphism.
LetS ⊂ V be a basis ofV , then f (S) ⊂ W is a basis ofW , by combining Lemma 3.46Lemma 3.46 and
Lemma 3.56Lemma 3.56. Since S and f (S) have the same number of elements, we have dim(V ) =

dim(W ). □

Lemma 3.73 A subspace of a finite dimensional K-vector space is finite dimensional
as well.

Proof Let V be a finite dimensional K-vector space and U ⊂ V a subspace. Let S =

{v1, ... , vn} be a basis of V . For 1 ⩽ i ⩽ n, we define Ui = U ∩ span{v1, ... , vi}. By
construction, each Ui is a subspace and U1 ⊂ U2 ⊂ · · · ⊂ Un = U , since S is a basis of
V .

We will show inductively that all Ui are finite dimensional. Notice that U1 is a subspace
of span{v1}. The only subspaces of span{v1} are {0V } and {tv1 | t ∈ R}, both are finite
dimensional, hence U1 is finite dimensional.
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Assume i ⩾ 2. We will show next that ifUi−1 is finite dimensional, then so isUi . LetTi−1 be
a basis of Ui−1. If Ui = Ui−1, then Ui is finite dimensional as well, so assume there exists
a non-zero vector w ∈ Ui \ Ui−1. Since S is a basis of V and since w ∈ span{v1, ... , vi},
there exist scalars s1, ... , si so thatw = s1v1+ · · ·+sivi . By assumption,w /∈ Ui−1, hence
si ̸= 0. Any vector v ∈ Ui can be written as v = t1v1 + · · ·+ tivi for scalars t1, ... , ti . We
now compute

v − ti
si
w =

i∑
k=1

tkvk −
ti
si

(
i∑

k=1

skvk

)
=

i∑
k=1

(
tk −

ti
si
sk

)
vk

=
i−1∑
k=1

(
tk −

ti
si
sk

)
vk

so that v − (ti/si )w can be written as a linear combination of the vectors v1, ... , vi−1,
hence is an element of Ui−1. Recall that Ti−1 is a basis of Ui−1, hence v − (ti/si )w is
a linear combination of elements of Ti−1. It follows that any vector v ∈ Ui is a linear
combination of elements ofTi−1∪{w}, that is, Ti−1∪{w} generatesUi . SinceTi−1∪{w}
contains finitely many vectors, it follows that Ui is finite dimensional. □

Proposition 3.74 Let V be a finite dimensional K-vector space. Then for any sub-
space U ⊂ V

0 ⩽ dim(U) ⩽ dim(V ).

Furthermore dim(U) = 0 if and only if U = {0V } and dim(U) = dim(V ) if and only
if V = U .

Proof By Lemma 3.73Lemma 3.73,U is finite dimensional and hence by Corollary 3.65Corollary 3.65 admits a basis
S. By Theorem 3.64Theorem 3.64 (ii), there is a basis T of V which contains S. Therefore

0 ⩽ dim(U) = Card(S) ⩽ Card(T ) = dim(V ).

Suppose dim(V ) = dim(U), then Card(S) = Card(T ) and hence S = T since every ele-
ment of S is an element of T and S and T have the same number of elements. Therefore,
we get U = span(S) = span(T ) = V . Since dimU = 0 if and only if the empty set is a
basis for U we have dimU = 0 if and only if U = {0V }. □

Definition 3.75 (Rank of a linear map and matrix) Let V ,W be K-vector spaces
with W finite dimensional. The rank of a linear map f : V → W is defined as

rank(f ) = dim Im(f ).

If A ∈ Mm,n(K) is a matrix, then we define

rank(A) = rank(fA).

The nullity of a linear map f : V → W is the dimension of its kernel, nullity(f ) =

dimKer(f ). The following important theorem establishes a relation between the nullity
and the rank of a linear map. It states something that is intuitively not surprising, namely
that the dimension of the image of a linear map f : V → W is the dimension of the
vector space V minus the dimension of the subspace of vectors that we “lose”, that is,
those that are mapped onto the zero vector of W . More precisely:
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Theorem 3.76 (Rank–nullity theorem) Let V ,W be finite dimensional K-vector
spaces and f : V → W a linear map. Then we have

dim(V ) = dimKer(f ) + dim Im(f ) = nullity(f ) + rank(f ).

Proof Let d = dimKer(f ) and n = dimV , so that d ⩽ n by Proposition 3.74Proposition 3.74. Let
{v1, ... , vd} be a basis of S = Ker(f ). By Theorem 3.64Theorem 3.64 (ii) we can find linearly independ-
ent vectors Ŝ = {vd+1, ... , vn} so that T = S ∪ Ŝ is a basis of V . Now U = span(Ŝ) is a
subspace of V of dimension n − d . We consider the linear map

g : U → Im(f ), v 7→ f (v).

We want to show that g is an isomorphism, since then dim Im(f ) = dim(U) = n − d , so
that

dim Im(f ) = n − d = dim(V )− dimKer(f ),

as claimed.

We first show that g is injective. Assume g(v) = 0W . Since v ∈ U , we can write v =

sd+1vd+1 + · · · + snvn for scalars sd+1, ... , sn. Since g(v) = 0W we have v ∈ Ker(f ),
hence we can also write v = s1v1 + · · ·+ sdvd for scalars s1, ... , sd , subtracting the two
expressions for v , we get

0V = s1v1 + · · ·+ sdvd − sd+1vd+1 − · · · − snvn.

Since {v1, ... , vn} is a basis, it follows that all the coefficients si vanish, where 1 ⩽ i ⩽ n.
Therefore we have v = 0V and g is injective.

Second, we show that g is surjective. Suppose w ∈ Im(f ) so that w = f (v) for some
vector v ∈ V . We write v =

∑n
i=1 sivi for scalars s1, ... , sn. Using the linearity of f , we

compute

w = f (v) = f

(
n∑

i=1

sivi

)
= f
( n∑

i=d+1

sivi︸ ︷︷ ︸
=v̂

)
= f (v̂)

where v̂ ∈ U . We thus have an element v̂ with g(v̂) = w . Since w was arbitrary, we
conclude that g is surjective. □

Corollary 3.77 Let V ,W be finite dimensional K-vector spaces with dim(V ) =

dim(W ) and f : V → W a linear map. Then the following statements are equivalent:
(i) f is injective;

(ii) f is surjective;
(iii) f is bijective.

Proof (i)⇒ (ii) By Lemma 3.31Lemma 3.31, the map f is injective if and only ifKer(f ) = {0V } so that
dimKer(f ) = 0 by Example 3.68Example 3.68 (i). Theorem 3.76Theorem 3.76 implies that dim Im(f ) = dim(V ) =

dim(W ) and hence Proposition 3.74Proposition 3.74 implies that Im(f ) = W , that is, f is surjective.

(ii) ⇒ (iii) Since f is surjective Im(f ) = W and hence dim Im(f ) = dim(W ) = dim(V ).
Theorem 3.76Theorem 3.76 implies that dimKer(f ) = 0 so that Ker(f ) = {0V } by Proposition 3.74Proposition 3.74.
Applying Lemma 3.31Lemma 3.31 again shows that f is injective and hence bijective.

(iii) ⇒ (i) Since f is bijective, it is also injective. □
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Corollary 3.78 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then rank(f ) ⩽ min{dim(V ), dim(W )} and

rank(f ) = dim(V ) ⇐⇒ f is injective,
rank(f ) = dim(W ) ⇐⇒ f is surjective.

Proof For the first claim it is sufficient to show that rank(f ) ⩽ dim(V ) and rank(f ) ⩽
dim(W ). By definition, rank(f ) = dim Im(f ) and since Im(f ) ⊂ W , we have rank(f ) =

dim Im(f ) ⩽ dim(W ) with equality if and only if f is surjective, by Proposition 3.74Proposition 3.74.

Theorem 3.76Theorem 3.76 implies that rank(f ) = dim Im(f ) = dim(V )−dimKer(f ) ⩽ dim(V ) with
equality if and only if dimKer(f ) = 0, that is, when f is injective (as we have just seen in
the proof of the previous corollary). □

Corollary 3.79 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then we have

(i) If dim(V ) < dim(W ), then f is not surjective;
(ii) If dim(V ) > dim(W ), then f is not injective. In particular, there exist non-zero

vectors v ∈ V with f (v) = 0W .

Proof (i) Suppose dim(V ) < dim(W ), then by Theorem 3.76Theorem 3.76

rank(f ) = dim(V )− dimKer(f ) ⩽ dim(V ) < dim(W )

and the claim follows from Corollary 3.78Corollary 3.78.

(ii) Suppose dim(V ) > dim(W ), then

rank(f ) ⩽ dim(W ) < dim(V )

and the claim follows from Corollary 3.78Corollary 3.78. □

Proposition 3.80 Let V ,W be finite dimensional K-vector spaces. Then there exists
an isomorphism Θ : V → W if and only if dim(V ) = dim(W ).

Proof ⇒ This was already proved in Lemma 3.72Lemma 3.72.

⇐ Let dim(V ) = dim(W ) = n ∈ N. Choose a basis T = {w1, ... ,wn} of W and consider
the linear map

Θ : Kn → W , x⃗ 7→ x1w1 + · · ·+ xnwn,

where x⃗ = (xi )1⩽i⩽n Notice thatΘ is injective. Indeed, ifΘ(x⃗) = x1w1+· · ·+xnwn = 0W ,
then x1 = · · · = xn = 0, since {w1, ... ,wn} are linearly independent. We thus conclude
KerΘ = {0V } and hence Lemma 3.31Lemma 3.31 implies that Θ is injective and therefore bijective
by Corollary 3.77Corollary 3.77. The map Θ is linear and bijective, thus an isomorphism. Likewise, for a
choice of basis S = {v1, ... , vn} of V , we obtain an isomorphism Φ : Kn → V . Since the
composition of bijective maps is again bijective, the map Θ ◦ Φ−1 : V → W is bijective
and since by Proposition 3.16Proposition 3.16 the composition of linear maps is again linear, the map
Θ ◦ Φ−1 : V → W is an isomorphism. □
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Corollary 3.81 Suppose A ∈ Mm,n(K) is invertible with inverse A−1 ∈ Mn,m(K).
Then n = m, hence A is a square matrix.

Proof Consider fA : Kn → Km. By Proposition 3.17Proposition 3.17, fA is bijective and hence an iso-
morphism. Proposition 3.80Proposition 3.80 implies that n = m. □
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3.7 Matrix representation of linear maps WEEK 6

Notice that Proposition 3.80Proposition 3.80 implies that every finite dimensional K-vector space V is
isomorphic to Kn, where n = dim(V ). Choosing an isomorphism from V to Kn allows to
uniquely describe each vector of V in terms of n scalars, its coordinates.

Definition 3.82 (Linear coordinate system) Let V be a K-vector space of dimension
n ∈ N. A linear coordinate system is an injective linear mapφ : V → Kn. The entries
of the vector φ(v) ∈ Kn are called the coordinates of the vector v ∈ V with respect
to the coordinate system φ.

We only request that φ is injective, but the mapping φ is automatically bijective by
Corollary 3.77Corollary 3.77.

Example 3.83 (Standard coordinates) On the vector space Kn we have a linear
coordinate system defined by the identity mapping, that is, we define φ(v⃗) = v⃗ for
all v⃗ ∈ Kn. We call this coordinate system the standard coordinate system of Kn.

Example 3.84 (Non-linear coordinates) In Linear Algebra we only consider linear
coordinate systems, but in other areas of mathematics non-linear coordinate systems
are also used. An example are the so-called polar coordinates

ρ : R2 \ {0R2} → (0,∞)× (−π,π] ⊂ R2, x⃗ 7→
(
r

ϕ

)
=

(√
(x1)2 + (x2)2

arg(x⃗)

)
,

where arg(x⃗) = arccos(x1/r) for x2 ⩾ 0 and arg(x⃗) = − arccos(x1/r) for x2 < 0.
Notice that the polar coordinates are only defined on R2 \ {0R2}. For further details
we refer to the Analysis module.

A convenient way to visualise a linear coordinate system φ : R2 → R2 is to consider the
preimage φ−1(C) of the standard coordinate grid

(3.13) C = {se⃗1 + ke⃗2|s ∈ R, k ∈ Z} ∪ {ke⃗1 + se⃗2|s ∈ R, k ∈ Z}

under φ. The first set in the union (3.133.13) of sets are the horizontal coordinate lines and
the second set the vertical coordinate lines.

Example 3.85 (see Figure 3.1Figure 3.1) The vector v⃗ =

(
2

1

)
has coordinates

(
2

1

)
with

respect to the standard coordinate system of R2. The same vector has coordinates

φ(v⃗) =

(
4

−1

)
with respect to the coordinate system φ

((
v1
v2

))
=

(
v1 + 2v2
−v1 + v2

)
.

While Kn is equipped with the standard coordinate system, in an abstract vector space V

there is no preferred linear coordinate system and a choice of linear coordinate system
amounts to choosing a so-called ordered basis of V .
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FIGURE 3.1. The coordinates of a vector with respect to different co-
ordinate systems.

Definition 3.86 (Ordered basis) Let V be a finite dimensional K-vector space. An
(ordered) n-tuple b = (v1, ... , vn) of vectors from V is called an ordered basis of V if
the set {v1, ... , vn} is a basis of V .

That there is a bijective correspondence between ordered bases of V and linear coordin-
ate systems on V is a consequence of the following very important lemma which states
in particular that two linear maps f , g : V → W are the same if and only if they agree on
a basis of V .

Lemma 3.87 Let V ,W be finite dimensional K-vector spaces.
(i) Suppose f , g : V → W are linear maps and b = (v1, ... , vn) is an ordered basis

of V . Then f = g if and only if f (vi ) = g(vi ) for all 1 ⩽ i ⩽ n.
(ii) If dimV = dimW and b = (v1, ... , vn) is an ordered basis of V and c =

(w1, ... ,wn) an ordered basis of W , then there exists a unique isomorphism
f : V → W such that f (vi ) = wi for all 1 ⩽ i ⩽ n.

Proof (i) ⇒ If f = g then f (vi ) = g(vi ) for all 1 ⩽ i ⩽ n. ⇐ Let v ∈ V . Since b is
an ordered basis of V there exist unique scalars s1, ... , sn ∈ K such that v =

∑n
i=1 sivi .

Using the linearity of f and g , we compute

f (v) = f

(
n∑

i=1

sivi

)
=

n∑
i=1

si f (vi ) =
n∑

i=1

sig(vi ) = g

(
n∑

i=1

sivi

)
= g(v)

so that f = g .

(ii) Let v ∈ V . Since {v1, ... , vn} is a basis of V there exist unique scalars s1, ... , sn such
that v =

∑n
i=1 sivi . We define f (v) =

∑n
i=1 siwi , so that in particular f (vi ) = wi for

1 ⩽ i ⩽ n. Since {w1, ... ,wn} are linearly independent we have f (v) = 0W if and only if
s1 = · · · = sn = 0, that is v = 0V . Lemma 3.31Lemma 3.31 implies that f is injective and hence an
isomorphism by Corollary 3.77Corollary 3.77. The uniqueness of f follows from (i). □

Remark 3.88 Notice that Lemma 3.87Lemma 3.87 is wrong for maps that are not linear. Con-
sider

f : R2 → R,
(
x1
x2

)
7→ x1x2
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and

g : R2 → R
(
x1
x2

)
7→ (x1 − 1)(x2 − 1).

Then f (e⃗1) = g(e⃗1) and f (e⃗2) = g(e⃗2), but f ̸= g .

Given an ordered basis b = (v1, ... , vn) of V , the previous lemma implies that there is a
unique linear coordinate system β : V → Kn such that

(3.14) β(vi ) = e⃗i

for 1 ⩽ i ⩽ n, where {e⃗1, ... , e⃗n} denotes the standard basis of Kn. Conversely, if
β : V → Kn is a linear coordinate system, we obtain an ordered basis of V

b = (β−1(e⃗1), ... ,β
−1(e⃗n))

and these assignments are inverse to each other. Notice that for all v ∈ V we have

β(v) =

s1
...
sn

 ⇐⇒ v = s1v1 + · · ·+ snvn.

Remark 3.89 (Notation) We will denote an ordered basis by an upright bold Roman
letter, such asb, c,d or e. We will denote the corresponding linear coordinate system
by the corresponding bold Greek letter β,γ,δ or ε, respectively.

Example 3.90 Let V = K3 and e = (e⃗1, e⃗2, e⃗3) denote the ordered standard basis.
Then for all x⃗ = (xi )1⩽i⩽3 ∈ R3 we have

ε(x⃗) = x⃗ .

where ε denotes the linear coordinate system corresponding to e. Notice that ε
is the standard coordinate system on Kn. Considering instead the ordered basis
b = (v⃗1, v⃗2, v⃗3) = (e⃗1 + e⃗3, e⃗3, e⃗2 − e⃗1), we obtain

β(x⃗) =

 x1 + x2
x3 − x1 − x2

x2


since

x⃗ =

x1
x2
x3

 = (x1 + x2)

1

0

1


︸ ︷︷ ︸
=v⃗1

+(x3 − x1 − x2)

0

0

1


︸ ︷︷ ︸
=v⃗2

+x2

−1

1

0


︸ ︷︷ ︸

=v⃗3

.

Fixing linear coordinate systems – or equivalently ordered bases – on finite dimensional
vector spaces V ,W allows to describe each linear map g : V → W in terms of a matrix:

Definition 3.91 (Matrix representation of a linear map — VideoVideo) Let V ,W be finite
dimensional K-vector spaces, b an ordered basis of V and c an ordered basis of W .
The matrix representation of a linear map g : V → W with respect to the ordered
bases b and c is the unique matrix M(g ,b, c) ∈ Mm,n(K) such that

fM(g ,b,c) = γ ◦ g ◦ β−1,
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where β and γ denote the linear coordinate systems corresponding to b and c,
respectively.

The role of the different mappings can be summarised in terms of the following diagram:

V
g−−−−→ W

β−1

x yγ

Kn
fM(g ,b,c)−−−−→ Km

In practise, we can compute the matrix representation of a linear map as follows:

Proposition 3.92 Let V ,W be finite dimensional K-vector spaces, b = (v1, ... , vn)

an ordered basis of V , c = (w1, ... ,wm) an ordered basis of W and g : V → W a
linear map. Then there exist unique scalars Aij ∈ K, where 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

such that

(3.15) g(vj) =
m∑
i=1

Aijwi , 1 ⩽ j ⩽ n.

Furthermore, the matrix A = (Aij)1⩽i⩽m,1⩽j⩽n satisfies

fA = γ ◦ g ◦ β−1

and hence is the matrix representation of g with respect to the ordered bases b and c.

Remark 3.93 Notice that we sum over the first index of Aij in (3.153.15).

Proof of Proposition 3.92Proposition 3.92 For all 1 ⩽ j ⩽ n the vector g(vj) is an element of W and
hence a linear combination of the vectors c = (w1, ... ,wm), as c is an ordered basis of W .
We thus have scalars Aij ∈ K with 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n such that g(vj) =

∑m
i=1 Aijwi .

If Âij ∈ K with 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n also satisfy g(vj) =
∑m

i=1 Âijwi , then subtracting
the two equations gives

g(vj)− g(vj) = 0W =
m∑
i=1

(Aij − Âij)wi

so that 0 = Aij − Âij for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, since the vectors (w1, ... ,wm) are linearly
independent. It follows that the scalars Aij are unique.

We want to show that fA ◦ β = γ ◦ g . Using Lemma 3.87Lemma 3.87 it is sufficient to show that
(fA ◦ β)(vj) = (γ ◦ g)(vj) for 1 ⩽ j ⩽ n. Let {e⃗1, ... , e⃗n} denote the standard basis of
Kn so that β(vj) = e⃗j and {d⃗1, ... , d⃗m} the standard basis of Km so that γ(wi ) = d⃗i . We
compute

(fA ◦ β)(vj) = fA(e⃗j) = Ae⃗j =
m∑
i=1

Aij d⃗i =
m∑
i=1

Aijγ(wi ) = γ

(
m∑
i=1

Aijwi

)
= γ(g(vj)) = (γ ◦ g)(vj)

where we have used the linearity of γ and (3.153.15). □

This all translates to a simple recipe for calculating the matrix representation of a linear
map, which we now illustrate in some examples.
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Example 3.94 Let V = P2(R) and W = P1(R) and g = d
dx . We consider the

ordered basis b = (v1, v2, v3) = ((1/2)(3x2 − 1), x , 1) of V and c = (w1,w2) =

(x , 1) of W .
(i) Compute the image under g of the elements vi of the ordered basis b.

g

(
1

2
(3x2 − 1)

)
=

d

dx

(
1

2
(3x2 − 1)

)
= 3x

g (x) =
d

dx
(x) = 1

g (1) =
d

dx
(1) = 0.

(ii) Write the image vectors as linear combinations of the elements of the ordered
basis c.

(3.16)

3x = 3 · w1 + 0 · w2

1 = 0 · w1 + 1 · w2

0 = 0 · w1 + 0 · w2

(iii) Taking the transpose of the matrix of coefficients appearing in (3.163.16) gives the
matrix representation

M

(
d

dx
,b, c

)
=

(
3 0 0

0 1 0

)
.

of the linear map g = d
dx with respect to the bases b, c.

Example 3.95 Let e = (e⃗1, ... , e⃗n) and d = (d⃗1, ... , d⃗m) denote the ordered stand-
ard basis of Kn and Km, respectively. Then for A ∈ Mm,n(K), we have

A = M(fA, e,d),

that is, the matrix representation of the mapping fA : Kn → Km with respect to the
standard bases is simply the matrix A. Indeed, we have

fA(e⃗j) = Ae⃗j =

A1j

...
Amj

 =
m∑
i=1

Aij d⃗i .

Example 3.96 Let e = (e⃗1, e⃗2) denote the ordered standard basis of R2. Consider
the matrix

A =

(
5 1

1 5

)
= M(fA, e, e).

We want to compute Mat(fA,b,b), where b = (v⃗1, v⃗2) = (e⃗1 + e⃗2, e⃗2 − e⃗1) is not
the standard basis of R2. We obtain

fA(v⃗1) = Av⃗1 =

(
5 1

1 5

)(
1

1

)
=

(
6

6

)
= 6 · v⃗1 + 0 · v⃗2

fA(v⃗2) = Av⃗2 =

(
5 1

1 5

)(
−1

1

)
=

(
−4

4

)
= 0 · v⃗1 + 4 · v⃗2

Therefore, we have

M(fA,b,b) =

(
6 0

0 4

)
.
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Proposition 3.97 Let V ,W be finite dimensional K-vector spaces, b an ordered
basis of V with corresponding linear coordinate system β, c an ordered basis of W
with corresponding linear coordinate system γ and g : V → W a linear map. Then
for all v ∈ V we have

γ(g(v)) = M(g ,b, c)β(v).

Proof By definition we have for all x⃗ ∈ Kn and A ∈ Mm,n(K)

Ax⃗ = fA(x⃗).

Combining this with Definition 3.91Definition 3.91, we obtain for all v ∈ V

M(g ,b, c)β(v) = fM(g ,b,c)(β(v)) = (γ ◦ g ◦ β−1)(β(v)) = γ(g(v)),

as claimed. □

Remark 3.98 Explicitly, Proposition 3.97Proposition 3.97 states the following. Let A = M(g ,b, c)

and let v ∈ V . Since b is an ordered basis of V , there exist unique scalars si ∈ K,
1 ⩽ i ⩽ n such that

v = s1v1 + · · ·+ snvn.

Then we have
g(v) = t1w1 + · · ·+ tmwm,

where  t1
...
tm

 = A

s1
...
sn

 .

Example 3.99 (Example 3.94Example 3.94 continued) With respect to the ordered basis b =(
1
2 (3x

2 − 1), x , 1
)

, the polynomial a2x2 + a1x + a0 ∈ V = P2(R) is represented by
the vector

β(a2x
2 + a1x + a0) =

 2
3a2
a1

a2
3 + a0


Indeed

a2x
2 + a1x + a0 =

2

3
a2

(
1

2
(3x2 − 1)

)
+ a1x +

(a2
3

+ a0
)
1.

Computing M( d
dx ,b, c)β(a2x

2 + a1x + a0) gives(
3 0 0

0 1 0

) 2
3a2
a1

a2
3 + a0

 =

(
2a2
a1

)
and this vector represents the polynomial 2a2 · x + a1 · 1 = d

dx (a2x
2 + a1x + a0)

with respect to the basis c = (x , 1) of P1(R).

As a corollary to Proposition 3.92Proposition 3.92 we obtain:

Corollary 3.100 Let V1,V2,V3 be finite dimensional K-vector spaces and bi an
ordered basis of Vi for i = 1, 2, 3. Let g1 : V1 → V2 and g2 : V2 → V3 be linear maps.
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Then
M(g2 ◦ g1,b1,b3) = M(g2,b2,b3)M(g1,b1,b2).

Proof Let us write C = M(g2 ◦ g1,b1,b3) and A1 = M(g1,b1,b2) as well as A2 =

M(g2,b2,b3). Using Proposition 2.20Proposition 2.20 and Theorem 2.21Theorem 2.21 it suffices to show that fC =

fA2A1 = fA2 ◦ fA1 . Now Proposition 3.92Proposition 3.92 gives

fA2 ◦ fA1 = β3 ◦ g2 ◦ β
−1
2 ◦ β2 ◦ g1 ◦ β

−1
1 = β3 ◦ g2 ◦ g1 ◦ β

−1
1 = fC.

□

Proposition 3.101 Let V ,W be finite dimensional K-vector spaces, b an ordered
basis of V and c an ordered basis of W . A linear map g : V → W is bijective if and
only if M(g ,b, c) is invertible. Moreover, in the case where g is bijective we have

M(g−1, c,b) = (M(g ,b, c))−1.

Proof Let n = dim(V ) and m = dim(W ).

⇒ Let g : V → W be bijective so that g is an isomorphism and hence n = dim(V ) =

dim(W ) = m by Proposition 3.80Proposition 3.80. Then Corollary 3.100Corollary 3.100 gives

M(g−1, c,b)M(g ,b, c) = M(g−1 ◦ g ,b,b) = M(IdV ,b,b) = 1n

and
M(g ,b, c)M(g−1, c,b) = M(g ◦ g−1, c, c) = M(IdW , c, c) = 1n

so that M(g ,b, c) is invertible with inverse M(g−1, c,b).

⇐ Conversely suppose A = M(g ,b, c) is invertible with inverse A−1. It follows that n =

m by Corollary 3.81Corollary 3.81. We consider h = β−1 ◦ fA−1 ◦γ : W → V and since fA = γ ◦g ◦β−1

by Proposition 3.92Proposition 3.92, we have

g ◦ h = γ−1 ◦ fA ◦ β ◦ β−1 ◦ fA−1 ◦ γ = γ−1 ◦ fAA−1 ◦ γ = IdW .

Likewise, we have

h ◦ g = β−1 ◦ fA−1 ◦ γ ◦ γ−1 ◦ fA ◦ β = β−1 ◦ fA−1A ◦ β = IdV ,

showing that g admits an inverse mapping h : W → V and hence g is bijective. □

Recall that a mapping f : X → Y between sets X ,Y is said to admit a left inverse if there
exists a mapping g : Y → X such that g ◦ f = IdX . Likewise, a right inverse is a mapping
h : Y → X such that f ◦ h = IdY .

We now have:

Proposition 3.102 Let n ∈ N and A ∈ Mn,n(K) a square matrix. Then the following
statements are equivalent:

(i) The matrix A admits a left inverse, that is, a matrix B ∈ Mn,n(K) such that
BA = 1n;

(ii) The matrix A admits a right inverse, that is, a matrix B ∈ Mn,n(K) such that
AB = 1n;

(iii) The matrix A is invertible.
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Proof By the definition of the invertability of a matrix, (iii) implies both (i) and (ii).

(i) ⇒ (iii) Since BA = 1n we have fB ◦ fA = f1n = IdKn by Theorem 2.21Theorem 2.21 and hence fB
is a left inverse for fA. Therefore, by the above exercise, fA is injective. Corollary 3.77Corollary 3.77
implies that fA is also bijective. Denoting the ordered standard basis of Kn by e, we have
M(fA, e, e) = A and hence Proposition 3.101Proposition 3.101 implies that A is invertible.

(ii) ⇒ (iii) is completely analogous to (i) ⇒ (iii). □

3.7.1 Change of basis

It is natural to ask how the choice of bases affects the matrix representation of a linear
map.

Definition 3.103 (Change of basis matrix) Let V be a finite dimensional K-vector
space and b,b′ be ordered bases of V with corresponding linear coordinate systems
β,β′. The change of basis matrix from b to b′ is the matrix C ∈ Mn,n(K) satisfying

fC = β′ ◦ β−1

We will write C(b,b′) for the change of basis matrix from b to b′.

Remark 3.104 Notice that by definition

C(b,b′) = M(IdV ,b,b
′).

Since the identity map IdV : V → V is bijective with inverse (IdV )
−1 = IdV ,

Proposition 3.101Proposition 3.101 implies that the change of basis matrix C(b,b′) is invertible with
inverse

C(b,b′)−1 = C(b′,b).

Example 3.105 Let V = R2 and e = (e⃗1, e⃗2) be the ordered standard basis and
b = (v⃗1, v⃗2) = (e⃗1 + e⃗2, e⃗2 − e⃗1) another ordered basis. According to the recipe
mentioned in Example 3.94Example 3.94, if we want to compute C(e,b) we simply need to write
each vector of e as a linear combination of the elements of b. The transpose of the
resulting coefficient matrix is then C(e,b). We obtain

e⃗1 =
1

2
v⃗1 −

1

2
v⃗2,

e⃗2 =
1

2
v⃗1 +

1

2
v⃗2,

so that

C(e,b) =

(
1
2

1
2

− 1
2

1
2

)
.

Reversing the role of e and b gives C(b, e)
v⃗1 = 1e⃗1 + 1e⃗2,

v⃗2 = −1e⃗1 + 1e⃗2,

so that

C(b, e) =

(
1 −1

1 1

)
.
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Notice that indeed we have

C(e,b)C(b, e) =

(
1
2

1
2

− 1
2

1
2

)(
1 −1

1 1

)
=

(
1 0

0 1

)
so that C(e,b)−1 = C(b, e).

Theorem 3.106 Let V ,W be finite dimensional K-vector spaces and b,b′ ordered
bases of V and c, c′ ordered bases of W . Let g : V → W be a linear map. Then we
have

M(g ,b′, c′) = C(c, c′)M(g ,b, c)C(b′,b)

In particular, for a linear map g : V → V we have

M(g ,b′,b′) = CM(g ,b,b)C−1,

where we write C = C(b,b′).

Proof We write A = M(g ,b, c) and B = M(g ,b′, c′) and C = C(b,b′) and D =

C(c, c′). By Remark 3.104Remark 3.104 we have C−1 = C(b′,b), hence applying Proposition 2.20Proposition 2.20 and
Theorem 2.21Theorem 2.21 and Corollary 2.22Corollary 2.22, we need to show that

fB = fD ◦ fA ◦ fC−1 .

By Definition 3.91Definition 3.91 we have
fA = γ ◦ g ◦ β−1,

fB = γ′ ◦ g ◦ (β′)−1

and by Definition 3.103Definition 3.103 we have

fC−1 = β ◦ (β′)−1,

fD = γ′ ◦ γ−1.

Hence we obtain

fD ◦ fA ◦ fC−1 = γ′ ◦ γ−1 ◦ γ ◦ g ◦ β−1 ◦ β ◦ (β′)−1 = γ′ ◦ g ◦ (β′)−1 = fB,

as claimed. The second statement follows again by applying Remark 3.104Remark 3.104. □

Example 3.107 (Example 3.96Example 3.96 and Example 3.105Example 3.105 continued) Let e = (e⃗1, e⃗2) de-
note the ordered standard basis of R2 and

A =

(
5 1

1 5

)
= M(fA, e, e).

Let b = (e⃗1 + e⃗2, e⃗2 − e⃗1). We computed that

M(fA,b,b) =

(
6 0

0 4

)
as well as

C(e,b) =

(
1
2

1
2

− 1
2

1
2

)
and C(b, e) =

(
1 −1

1 1

)
.

According to Theorem 3.106Theorem 3.106 we must have

M(fA,b,b) = C(e,b)M(fA, e, e)C(b, e)

and indeed (
6 0

0 4

)
=

(
1
2

1
2

− 1
2

1
2

)(
5 1

1 5

)(
1 −1

1 1

)
.
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Finally, we observe that every invertible matrix can be realised as a change of basis
matrix:

Lemma 3.108 Let V be a finite dimensional K-vector space, b = (v1, ... , vn) an
ordered basis of V and C ∈ Mn,n(K) an invertible n × n-matrix. Define v ′

j =∑n
i=1 Cijvi for 1 ⩽ i ⩽ n. Then b′ = (v ′

1, ... , v
′
n) is an ordered basis of V and

C(b′,b) = C.

Proof It is sufficient to prove that the vectors {v ′
1, ... , v

′
n} are linearly independent. In-

deed, if they are linearly independent, then they span a subspace U of dimension n and
Proposition 3.74Proposition 3.74 implies that U = V , so that b′ is an ordered basis of V . Suppose we
have scalars s1, ... , sn such that

0V =
n∑

j=1

sjv
′
j =

n∑
j=1

n∑
i=1

sjCijvi =
n∑

i=1

( n∑
j=1

Cijsj
)
vi .

Since {v1, ... , vn} is a basis ofV we must have
∑n

j=1 Cijsj = 0 for all i = 1, ... , n. In matrix
notation this is equivalent to the conditon Cs⃗ = 0Kn , where s⃗ = (si )1⩽i⩽n. Since C is
invertible, we can multiply this last equation from the left with C−1 to obtain C−1Cs⃗ =

C−10Kn which is equivalent to s⃗ = 0Kn . It follows that b′ is an ordered basis of V . By
definition we have C(b′,b) = C. □

Exercises

Exercise 3.109 Let IdV : V → V denote the identity mapping of the finite dimen-
sional K-vector space V and let b = (v1, ... , vn) be any ordered basis of V . Show
that M(IdV ,b,b) = 1n.

Exercise 3.110 Show that f : X → Y admits a left inverse if and only if f is injective
and that f : X → Y admits a right inverse if and only if f is surjective.

Exercise 3.111 Let V be a finite dimensional K-vector space and b,b′ be ordered
bases of V . Show that for all v ∈ V we have

β′(v) = C(b,b′)β(v).
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CHAPTER 4

Applications of Gaussian elimination

4.1 Gaussian elimination WEEK 7

In the Algorithmics module M01 you learned how to use Gaussian elimination to solve a
system of equations of the form

(4.1) Ax⃗ = b⃗

for some given matrixA ∈ Mm,n(K), vector b⃗ ∈ Km and unknown x⃗ ∈ Kn. Many concrete
problems in Linear Algebra lead to systems of the form (4.14.1). A few sample problems that
can be solved with Gaussian elimination are discussed below.

Solving equation of the type (4.14.1) hinges on the elementary observation that a vector
x⃗ ∈ Kn solves Ax⃗ = b⃗ if and only if it solves BAx⃗ = Bb⃗, where B ∈ Mm,m(K) is any
invertible m-by-m matrix.

In the Gaussian elimination algorithm, the matrix B is chosen among three types of
matrices:

Definition 4.1 (Elementary matrices — VideoVideo) Let m ∈ N. The elementary matrices
of size m are the square matrices

Lk,l(s) = 1m + sEk,l ,

Dk(s) = 1m + (s − 1)Ek,k ,

Pk,l = 1m − Ek,k − El ,l + Ek,l + El ,k ,

where 1 ⩽ k , l ⩽ m with k ̸= l , Ek,l ∈ Mm,m(K) and s ∈ K with s ̸= 0.

Example 4.2 For m = 4 we have for instance

L2,3(s) =


1 0 0 0

0 1 s 0

0 0 1 0

0 0 0 1

 , D4(s) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 s


and

P2,4 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

As an exercise in matrix multiplication, we compute the effect of left multiplication with
elementary matrices.
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For A = (Aij)1⩽i ,j⩽m ∈ Mm,n(K), we obtain

[Lk,l(s)A]ij =
m∑
r=1

(δir + sδikδlr )Arj = Aij + sδikAlj =

{
Aij + sAlj i = k

Aij i ̸= k
,

where we use that [1m]ir = δir and [Ek,l ]ir = δikδlr . Therefore, multiplying the matrix A
with Lk,l(s) from the left, adds s times the l -th row of A to the k-th row of A and leaves A
unchanged otherwise.

Likewise, we obtain

[Dk(s)A]ij =
m∑
r=1

(δir + (s − 1)δikδkr )Arj =

{
sAij i = k

Aij i ̸= k
.

Therefore, multiplying the matrix A with Dk(s) from the left, multiplies the k-th row of A
with s and leaves A unchanged otherwise.

Finally,

[Pk,lA]ij =
m∑
r=1

(δir − δikδkr − δilδlr + δikδlr + δilδrk)Arj

= Aij − δikAkj − δilAlj + δikAlj + δilAkj

= Aij + δik (Alj − Akj) + δil (Akj − Alj) =


Alj i = k

Akj i = l

Aij i ̸= k , i ̸= l

.

Therefore, multiplying the matrix A with Pk,l from the left, swaps the k-th row of A with
the l -th row of A and leaves A unchanged otherwise.

These calculations immediately imply:

Proposition 4.3 The elementary matrices are invertible with

Lk,l(s)
−1 = Lk,l(−s) and Dk(s)

−1 = Dk(1/s) and (Pk,l)
−1 = Pk,l .

The sceptical reader may also verify this fact by direct computation with the help of the
following lemma:

Lemma 4.4 Let m ∈ N. For 1 ⩽ k , l , p, q ⩽ m, we have

Ek,lEp,q =

{
Ek,q p = l

0m,m p ̸= l

Proof By definition, we have

Ek,lEp,q =

(
m∑
r=1

δikδlrδrpδqj

)
1⩽i ,j⩽m

= δlp (δikδqj)1⩽i ,j⩽m =

{
Ek,q p = l

0m,m p ̸= l
.

□

For each row in a matrix, if the row does not consist of zeros only, then the leftmost
nonzero entry is called the leading coefficient of that row.

Definition 4.5 (Row echelon form) A matrix A ∈ Mm,n(K) is said to be in row
echelon form (REF) if
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• all rows consisting of only zeros are at the bottom;
• the leading coefficient of a nonzero row is always strictly to the right of the leading

coefficient of the row above it.
The matrix A is said to be in reduced row echelon form (rREF) if furthermore
• all of the leading coefficients are equal to 1;
• in every column containing a leading coefficient, all of the other entries in that

column are zero.

Gaussian elimination from the Algorithmics module M01 implies the following statement:

Theorem 4.6 (Gauss–Jordan elimination) Let A ∈ Mm,n(K) then there exists
N ∈ N and an N-tuple of elementary matrices (B1, ... ,BN) such that the matrix
BNBN−1 · · ·B2B1A is in reduced row echelon form.

Proof Applying Gaussian elimination implies the existence of N̂ ∈ N and elementary
matrices B1, ... ,BN̂ so that BN̂BN̂−1 · · ·B2B1A is REF. After possibly further multiplying
this matrix from the left with elementary matrices of the type Dk(s), we can assume that
all leading coefficients are 1. By choosing suitable left multiplications with matrices of
the type Lk,l(s), we find a natural number N ⩾ N̂ and elementary matrices (B1, ... ,BN)

so that BNBN−1 · · ·B2B1A is in reduced row echelon form. □

4.2 Applications

4.2.1 Compute the inverse of a matrix

An algorithm using Gaussian elimination for computing the inverse of an invertible matrix
relies on the following fact:

Proposition 4.7 Let A ∈ Mn,n(K) be a square matrix. Then the following statements
are equivalent:

(i) A is invertible;
(ii) the row vectors of A are linearly independent;

(iii) the column vectors of A are linearly independent.

Proof Part of an exercise sheet. □

Suppose the matrix A ∈ Mn,n(K) is invertible. Applying Gauss–Jordan elimination to
A, we cannot encounter a zero row, since the occurrence of a zero row corresponds to a
non-trivial linear combination of row vectors which gives the zero vector. This is excluded
by the above proposition. Having no zero row vectors, the Gauss–Jordan elimination
applied to A must give the identity matrix 1n. Thus we can find a sequence of elementary
matrices B1, ... ,BN , N ∈ N, so that

1n = BNBN−1 · · ·B2B1A.

In other words, BNBN−1 · · ·B2B1 is the inverse of A. This gives the following recipe for
computing the inverse of A:
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We write the matrix A and 1n next to each other, say A on the left and 1n on the right. We
then perform Gauss–Jordan elimination on A. At each step, we also perform the Gauss–
Jordan elimination step to the matrix on the right. Once Gauss–Jordan elimination
terminates, we thus obtain BNBN−1 · · ·B2B1A on the left and BNBN−1 · · ·B2B11n on
the right. But since BNBN−1 · · ·B2B11n = BNBN−1 · · ·B2B1 (notice the absence of 1n
after the equality sign), the right hand side is the inverse of A.

Example 4.8 (Inverse of a matrix — VideoVideo) We want to compute the inverse of

A =

(
1 −2

−3 4

)
.

Write (
1 −2

−3 4

∣∣∣∣ 1 0

0 1

)
.

Adding 3-times the first row to the second row gives(
1 −2

0 −2

∣∣∣∣ 1 0

3 1

)
.

Dividing the second row by −2 gives(
1 −2

0 1

∣∣∣∣ 1 0

− 3
2 − 1

2

)
.

Finally, adding the second row twice to the first row gives(
1 0

0 1

∣∣∣∣ −2 −1

− 3
2 − 1

2

)
,

so that

A−1 =

(
−2 −1

− 3
2 − 1

2

)
.

4.2.2 Compute a basis of a subspace

Gaussian elimination can also be used to compute a basis for a vector subspace U of
a finite dimensional K-vector space V . We assume that U = span{v1, ... , vk} for some
vectors vi ∈ V , 1 ⩽ i ⩽ k . We assume that dimU ⩾ 1 so that not all vectors are the zero
vector.

We first consider the special case where V is the space Kn of row vectors of length n and
with entries in K. Recall that we denote the row vectors by small Greek letters. We write
Km

n for the m-fold Cartesian product (Kn)
m of Kn. Clearly, we have a bijective mapping

Ω : Km
n → Mm,n(K), (ν⃗1, ... , ν⃗m) 7→

 ν⃗1
...
ν⃗m



which simply writes the row vectors (ν⃗1, ... , ν⃗m) into a matrix with the k-th row vector
from the m-tuple of row vectors becoming the k-th row of the matrix.

Example 4.9

Ω
((
1 2 3

)
,
(
4 5 6

))
=

(
1 2 3

4 5 6

)
.
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We have
Lk,l(s)Ω(ν⃗1, ... , ν⃗m) = Ω (ν⃗1, ... , ν⃗k−1, ν⃗k + s ν⃗l , ν⃗k+1, ... , ν⃗m) ,

Dk(s)Ω(ν⃗1, ... , ν⃗m) = Ω (ν⃗1, ... , ν⃗k−1, s ν⃗k , ν⃗k+1, ... , ν⃗m) ,

Pk,lΩ(ν⃗1, ... , ν⃗m) = Ω (ν⃗1, ... , ν⃗k−1, ν⃗l , ν⃗k+1, ... , ν⃗l−1, ν⃗k , ν⃗l+1, ... , ν⃗m) .

Notice that all these operations do not change the span of the vectors ν⃗1, ... , ν⃗m. More pre-
cisely, if (ν⃗1, ... , ν⃗m) is an n-tuple of row vectors and if Ω (ω⃗1, ... , ω⃗m) = BΩ(ν⃗1, ... , ν⃗m)

for some elementary matrix B, then

span{ν⃗1, ... , ν⃗m} = span{ω⃗1, ... , ω⃗m}.

Applying Gaussian elimination to the matrix Ω(ν⃗1, ... , ν⃗m) gives a list of elementary
matrices B1, ... ,BN such that

BNBN−1 · · ·B2B1Ω(ν⃗1, ... , ν⃗m) = Ω(ω⃗1, ... , ω⃗r , 0Kn , ... , 0Kn)

where 1 ⩽ r ⩽ m and 0Kn denotes the zero vector in Kn. By construction, the matrix
A = Ω(ω⃗1, ... , ω⃗r , 0Kn , ... , 0Kn) is REF. Since the leading coefficient of ω⃗i is always strictly
to the right of the leading coefficient of ω⃗i−1, it follows that the vectors ω⃗1, ... , ω⃗r are
linearly independent. Therefore, a basis of span{ν⃗1, ... , ν⃗m} is given by {ω⃗1, ... , ω⃗r}.

The general case can be treated with the help of the following facts:

Proposition 4.10 Let V ,W be finite dimensional K-vector spaces and Φ : V → W

an isomorphism. Then S ⊂ V is a basis of V if and only if Φ(S) is a basis of W .

Proof ⇒ Since S is a basis, the set S is linearly independent and since Φ is injective, so
is Φ(S) by Lemma 3.56Lemma 3.56. Since S is a basis, S is a generating set and since Φ is surjective,
the subset Φ(S) ⊂ W is a generating set for W by Lemma 3.46Lemma 3.46.

⇐ We apply the above implication to Φ−1 : W → V and the basis Φ(S) ⊂ W . □

Corollary 4.11 Let V̂ , Ŵ be finite dimensional K-vector spaces, Θ : V̂ → Ŵ an
isomorphism and U ⊂ V̂ a vector subspace. Then S ⊂ U is a basis of U if and only if
Θ(S) is a basis of Θ(U).

Proof Apply Proposition 4.10Proposition 4.10 to the vector space V = U , the vector space W = Θ(U)

and the isomorphism Φ = Θ|U : V → W . □

We now describe a recipe to treat the general case of a subset U = span{v1, ... , vm} of a
finite dimensional K-vector space V :

(i) Fix an isomorphism Φ : V → Kn and write ν⃗i = Φ(vi ) for 1 ⩽ i ⩽ m.
(ii) Apply Gaussian elimination to the matrixΩ(ν⃗1, ... , ν⃗m) to obtain a set of new vectors

(ω⃗1, ... , ω⃗r , 0Kn , ... , 0Kn) for some r ∈ N.
(iii) Apply the inverse isomorphism Φ−1 to the obtained list of vectors. This gives the

desired basis {Φ−1(ω⃗1), ... , Φ
−1(ω⃗r )} of U .

Example 4.12 (Basis of a subspace — VideoVideo) Let V = P3(R) so that dim(V ) = 4

and

U = span{x3 + 2x2 − x , 4x3 + 8x2 − 4x − 3, x2 + 3x + 4, 2x3 + 5x + x + 4}.
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We want to compute a basis of U . We choose the isomorphism Φ : V → R4 defined
by

Φ(a3x
3 + a2x

2 + a1x + a0) =
(
a3 a2 a1 a0

)
.

We thus have ν⃗1 =
(
1 2 −1 0

)
, ν⃗2 =

(
4 8 −4 −3

)
, ν⃗3 =

(
0 1 3 4

)
and ν⃗4 =

(
2 5 1 4

)
.

Applying Gaussian elimination to the matrix

Ω(ν⃗1, ν⃗2, ν⃗3, ν⃗4) =


1 2 −1 0

4 8 −4 −3

0 1 3 4

2 5 1 4


yields 

1 0 −7 0

0 1 3 0

0 0 0 1

0 0 0 0

 .

Here we applied Gauss-Jordan elimination, but Gaussian elimination is good
enough. This gives the vectors ω⃗1 =

(
1 0 −7 0

)
, ω⃗2 =

(
0 1 3 0

)
,

ω⃗3 =
(
0 0 0 1

)
.

Our basis of U is thus

{Φ−1(ω⃗1), Φ
−1(ω⃗2), Φ

−1(ω⃗3)} =
{
x3 − 7x , x2 + 3x , 1

}
,

where we use that

Φ−1
((
a3 a2 a1 a0

))
= a3x

3 + a2x
2 + a1x + a0.

4.2.3 Compute the image and rank of a linear map

Let V ,W be finite dimensional K-vector spaces and f : V → W a linear map. By
computing the image of a linear map f , we mean computing a basis of Im(f ).

In order to compute a basis for Im(f ) we use the following lemma:

Lemma 4.13 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. If {v1, ... , vn} is a basis of V , then

Im(f ) = span{f (v1), ... , f (vn)}.

Proof Let w ∈ Im(f ) so that w = f (v) for some v ∈ V . We have scalars si for 1 ⩽ i ⩽ n

so that v =
∑n

i=1 sivi . We obtain

w = f (v) = f

(
n∑

i=1

sivi

)
=

n∑
i=1

si f (vi )

so that w is a linear combination of the vectors {f (v1), ... , f (vn)}. On the other hand, a
linear combination of the vectors f (vi ) ∈ Im(f ) lies in the image of f as well, since Im(f )

is a vector subspace. Hence we have Im(f ) = span{f (v1), ... , f (vn)}, as claimed. □

Knowing that Im(f ) = span{f (v1), ... , f (vn)} we can apply the recipe from Section 4.2.2Section 4.2.2
to U = span{f (v1), ... , f (vn)}. By definition, the number of basis vectors for Im(f ) is the
rank of f .
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Example 4.14 Let

A =


1 −2 0 4

3 1 1 0

−1 −5 −1 8

3 8 2 −12


Compute a basis for the image of fA : R4 → R4 and the rank of fA. By Lemma 4.13Lemma 4.13
we have

U = Im(fA) = span{Ae⃗1,Ae⃗2,Ae⃗3,Ae⃗4} = span{a⃗1, a⃗2, a⃗3, a⃗4},

where {e⃗i}1⩽i⩽4 denotes the standard basis ofR4 and {a⃗i}1⩽i⩽4 the column vectors
of A. Comparing with the general setup described above, we are in the case where
V = R4 and vi = Ae⃗i for i = 1, 2, 3, 4.

(i) For the isomorphism Φ : V = R4 → R4 we usually choose the transpose (but
any other isomorphism would work too). We thus have ν⃗1 =

(
1 3 −1 3

)
,

ν⃗2 =
(
−2 1 −5 8

)
, ν⃗3 =

(
0 1 −1 2

)
and ν⃗4 =

(
4 0 8 −12

)
.

(ii) Applying Gaussian elimination to the matrix

Ω(ν⃗1, ν⃗2, ν⃗3, ν⃗4) = AT =


1 3 −1 3

−2 1 −5 8

0 1 −1 2

4 0 8 −12


yields 

1 0 2 −3

0 1 −1 2

0 0 0 0

0 0 0 0

 .

Here again, we applied Gauss-Jordan elimination, but Gaussian elimina-
tion is good enough. This gives the vectors ω⃗1 =

(
1 0 2 −3

)
, ω⃗2 =(

0 1 −1 2
)

.
(iii) Our basis of Im(f ) is thus

{Φ−1(ω⃗1), Φ
−1(ω⃗2)} =




1

0

2

−3

 ,


0

1

−1

2


 ,

where we use that the transpose is its own inverse. We also conclude that
rank(fA) = 2.

Remark 4.15 In the special case where we want to compute a basis for the image
of fA for some matrix A, the recipe thus reduces to the following steps. Take the
transpose of A, perform Gauss elimination, take the transpose again, write down
the nonzero column vectors. This gives the desired basis.

4.2.4 Compute the kernel and nullity of a linear map

In order to find a recipe for computing the kernel and nullity of a linear map, we first start
with a related problem. Let A ∈ Mn,m(K) be an n ×m-matrix and

U =
{
ξ⃗ ∈ Kn | ξ⃗A = 0Km

}
,
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where ξ⃗A is defined via matrix multiplication of the row vector ξ⃗ ∈ Kn = M1,n(K) and
the matrix A ∈ Mn,m(K). Notice that 0Kn ∈ U and if ξ⃗1, ξ⃗2 ∈ U , then s1ξ⃗1 + s2ξ⃗2 ∈ U for
all s1, s2 ∈ K. By Definition 3.21Definition 3.21, it follows that U is a vector subspace of Kn. We want to
compute a basis for U . Applying Gauss elimination to the matrix A, we obtain r ∈ N and
elementary matrices B1, ... ,BN so that

BN · · ·B1A = Ω(ω⃗1, ... , ω⃗r , 0Km , ... , 0Km)

for some linearly independent row vectors (ω⃗1, ... , ω⃗r ) ∈ Km. Since the matrix BN · · ·B1

is invertible, we also obtain a basis {ξ⃗1, ... , ξ⃗n} of Kn so that

BN · · ·B1 = Ω(ξ⃗1, ... , ξ⃗n).

We now claim that S = {ξ⃗r+1, ... , ξ⃗n} is a basis of U . The set S is linearly independent,
hence we only need to show that span(S) = U . Since we have

Ω(ξ⃗1, ... , ξ⃗n)A = Ω(ω⃗1, ... , ω⃗r , 0Km , ... , 0Km) ,

the definition of matrix multiplication implies that ξ⃗iA = ω⃗i for 1 ⩽ i ⩽ r and ξ⃗iA = 0Km

for r + 1 ⩽ i ⩽ n. Any vector in U can be written as ν⃗ =
∑n

i=1 si ξ⃗i . The condition
ν⃗A = 0Km then implies that s1 = · · · = sr = 0, hence S is generating.

We can use this observation to compute the kernel and nullity of a linear map Kn → Km

because of the following lemma whose proof is left as an exercise.

Lemma 4.16 Let C ∈ Mm,n(K) and fC : Kn → Km be the associated linear map.
Then x⃗ ∈ Ker(fC) if and only if x⃗TCT = 0Km .

We simply apply the above procedure to the matrix A = CT and compute the vectors
{ξ⃗r+1, ... , ξ⃗n}. The basis of Ker(fC) is then given by {ξ⃗Tr+1, ... , ξ⃗

T
n }.

The nullity of fC is given by the number of basis vectors of Ker(fC).

Example 4.17 (Kernel of a linear map — VideoVideo) Let

C =

 1 0 1 7

−2 −3 1 2

7 9 −2 1


In order to compute Ker(fC) we apply Gaussian elimination to CT whilst keeping
track of the relevant elementary matrices as in the algorithm for computing the
inverse of a matrix. That is, we consider

1 −2 7

0 −3 9

1 1 −2

7 2 1

∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Gauss–Jordan elimination (again, Gaussian elimination is enough) gives
1 0 1

0 1 −3

0 0 0

0 0 0

∣∣∣∣∣∣∣∣
0 0 − 2

5
1
5

0 0 7
5 − 1

5

1 0 16
5 − 3

5

0 1 21
5 − 3

5

 .

The vectors ξ⃗3 =
(
1 0 16

5 − 3
5

)
and ξ⃗4 =

(
0 1 21

5 − 3
5

)
thus span the sub-

space of vectors ξ satisfying ξCT = 0K3 . A basis S for the kernel of fC is thus given
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by

S =




1

0
16
5

− 3
5

 ,


0

1
21
5

− 3
5




and fC satisfies nullity(fC) = 2.

Remark 4.18 Section 4.2.3Section 4.2.3 and Section 4.2.4Section 4.2.4 can be combined to compute Ker(fA)

and Im(fA) for A ∈ Mm,n(K) by a single application of Gaussian elimination.

Remark 4.19 In order to compute the kernel of a linear map g : V → W between
finite dimensional vector spaces, we can fix an ordered basis b of V and an ordered
basis c of W , compute C = M(g ,b, c), apply the above procedure to the matrix C
in order to obtain a basis S of Ker(fC). The desired basis of Ker(g) is then given by
β−1(S). While this algorithm can always be carried out, it is computationally quite
involved. In many cases it is therefore advisable to compute Ker(g) by some other
technique.
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CHAPTER 5

The determinant

5.1 Axiomatic characterisation WEEK 8

Surprisingly, whether or not a square matrix A ∈ Mn,n(K) admits an inverse is captured
by a single scalar, called the determinant of A and denoted by detA or det(A). That is,
the matrix A admits an inverse if and only if detA is nonzero. In practice, however, it is
often quicker to use Gauss–Jordan elimination to decide whether the matrix admits an
inverse. The determinant is nevertheless a useful tool in linear algebra.

The determinant is an object of multilinear algebra, which – for ℓ ∈ N – considers map-
pings from the ℓ-fold Cartesian product of a K-vector space into another K-vector space.
Such a mapping f is required to be linear in each variable. This simply means that if
we freeze all variables of f , except for the k-th variable, 1 ⩽ k ⩽ ℓ, then the resulting
mapping gk of one variable is required to be linear. More precisely:

Definition 5.1 (Multilinear map — VideoVideo) Let V ,W be K-vector spaces and ℓ ∈ N.
A mapping f : V ℓ → W is called ℓ-multilinear (or simply multilinear) if the mapping
gk : V → W , v 7→ f (v1, ... , vk−1, v , vk+1, ... , vℓ) is linear for all 1 ⩽ k ⩽ ℓ and for
all ℓ-tuples (v1, ... , vℓ) ∈ V ℓ.

We only need an (ℓ− 1)-tuple of vectors to define the map gk , but the above definition is
more convenient to write down.

Two types of multilinear maps are of particular interest:

Definition 5.2 (Symmetric and alternating multilinear maps) Let V ,W be K-vector
spaces and f : V ℓ → W an ℓ-multilinear map.
• The map f is called symmetric if exchanging two arguments does not change the

value of f . That is, we have

f (v1, ... , vℓ) = f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all (v1, ... , vℓ) ∈ V ℓ.
• The map f is called alternating if f (v1, ... , vℓ) = 0W whenever at least two argu-

ments agree, that is, there exist i ̸= j with vi = vj . Alternating ℓ-multilinear maps
are also called W -valued ℓ-forms or simply ℓ-forms when W = K.

1-multilinear maps are simply linear maps. 2-multilinear maps are called bilinear and
3-multilinear maps are called trilinear. Most likely, you are already familiar with two
examples of bilinear maps:
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Example 5.3 (Bilinear maps)
(i) The first one is the scalar product of two vectors in R3 (or more generally Rn).

So V = R3 and W = R. Recall that the scalar product is the mapping

V 2 = R3 × R3 → R, (x⃗ , y⃗) 7→ x⃗ · y⃗ = x1y1 + x2y2 + x3y3,

where we write x⃗ = (xi )1⩽i⩽3 and y⃗ = (yi )1⩽i⩽3. Notice that for all s1, s2 ∈ R
and all x⃗1, x⃗2, y⃗ ∈ R3 we have

(s1x⃗1 + s2x⃗2) · y⃗ = s1(x⃗1 · y⃗) + s2(x⃗2 · y⃗),

so that the scalar product is linear in the first variable. Furthermore, the scalar
product is symmetric, x⃗ · y⃗ = y⃗ · x⃗ . It follows that the scalar product is also
linear in the second variable, hence it is bilinear or 2-multilinear.

(ii) The second one is the cross product of two vectors in R3. Here V = R3 and
W = R3. Recall that the cross product is the mapping

V 2 = R3 × R3 → R3, (x⃗ , y⃗) 7→ x⃗ × y⃗ =

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 .

Notice that for all s1, s2 ∈ R and all x⃗1, x⃗2, y⃗ ∈ R3 we have

(s1x⃗1 + s2x⃗2)× y⃗ = s1(x⃗1 × y⃗) + s2(x⃗2 × y⃗),

so that the cross product is linear in the first variable. Likewise, we can check
that the cross product is also linear in the second variable, hence it is bilinear
or 2-multilinear. Observe that the cross product is alternating.

Example 5.4 (Multilinear map) Let V = K and consider f : V ℓ → K, (x1, ... , xℓ) 7→
x1x2 · · · xℓ. Then f is ℓ-multilinear and symmetric.

Example 5.5 Let A ∈ Mn,n(R) be a symmetric matrix, AT = A. Notice that we
obtain a symmetric bilinear map

f : Rn × Rn → R, (x , y) 7→ x⃗TAy⃗ ,

where on the right hand side all products are defined by matrix multiplication.

The Example 5.5Example 5.5 gives us a wealth of symmetric bilinear maps on Rn. As we will see
shortly, the situation is quite different if we consider alternating n-multilinear maps on
Kn (notice that we have the same number n of arguments as the dimension of Kn).

Let {ε⃗1, ... , ε⃗n} denote the standard basis of Kn so that Ω(ε⃗1, ... , ε⃗n) = 1n.

Theorem 5.6 Let n ∈ N. Then there exists a unique alternating n-multilinear map
fn : (Kn)

n → K satisfying fn(ε⃗1, ... , ε⃗n) = 1.

Recall that we have bijective mappingΩ : (Kn)
n → Mn,n(K)which forms an n×n-matrix

from n row vectors of length n. For the choice V = Kn, the notion of n-multilinearity
thus also makes sense for a mapping f : Mn,n(K) → K which takes an n× n matrix as an
input. Here the multilinearity means the the mapping is linear in each row of the matrix.
Since Ω(ε⃗1, ... , ε⃗n) = 1n, we may phrase the above theorem equivalently as:
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Theorem 5.7 (Existence and uniqueness of the determinant) Let n ∈ N. Then
there exists a unique alternating n-multilinear map fn : Mn,n(K) → K satisfying
fn(1n) = 1.

Definition 5.8 (Determinant — VideoVideo) The mapping fn : Mn,n(K) → K provided
by Theorem 5.7Theorem 5.7 is called the determinant and denoted by det. For A ∈ Mn,n(K) we
say det(A) is the determinant of the matrix A.

Remark 5.9 (Abuse of notation) It would be more precise to write detn since the
determinant is a family of mappings, one mapping detn : Mn,n(K) → K for each
n ∈ N. It is however common to simply write det.

Example 5.10 For n = 1 the condition that a 1-multilinear (i.e. linear) map f1 :

M1,1(K) → K is alternating is vacuous. So the Theorem 5.7Theorem 5.7 states that there is a
unique linear map f1 : M1,1(K) → K that satisfies f1((1)) = 1. Of course, this is just
the map defined by the rule f1((a)) = a, where (a) ∈ M1,1(K) is any 1-by-1 matrix.

Example 5.11 For n = 2 and a, b, c , d ∈ K we consider the mapping f2 :

M2,2(K) → K defined by the rule

(5.1) f2

((
a b

c d

))
= ad − cb.

We claim that f2 is bilinear in the rows and alternating. The condition that f2 is
alternating simplifies to f (A) = 0 whenever the two rows of A ∈ M2,2(K) agree.
Clearly, f2 is alternating, since

f2

((
a b

a b

))
= ab − ab = 0.

Furthermore, f2 needs to be linear in each row. The additivity condition applied to
the first row gives that we must have

f2

((
a1 + a2 b1 + b2

c d

))
= f2

((
a1 b1
c d

))
+ f2

((
a2 b2
c d

))
for all a1, a2, b1, b2, c , d ∈ K. Using the definition (5.15.1), we obtain

f2

((
a1 + a2 b1 + b2

c d

))
= (a1 + a2)d − c(b1 + b2)

= a1d − cb1 + a2d − cb2

= f2

((
a1 b1
c d

))
+ f2

((
a2 b2
c d

))
,

so that f2 is indeed additive in the first row. The 1-homogeneity condition applied to
the first row gives that we must have

f2

((
sa sb

c d

))
= sf2

((
a b

c d

))
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for all a, b, c , d ∈ K and s ∈ K. Indeed, using the definition (5.15.1), we obtain

f2

((
sa sb

c d

))
= sad − csb = s(ad − cb) = sf2

((
a b

c d

))
,

so that f2 is also 1-homogeneous in the first row. We conclude that f2 is linear in the
first row. Likewise, the reader is invited to check that f2 is also linear in the second
row. Furthermore, we can easily compute that f2(12) = 1. The mapping f2 thus
satisfies all the properties of Theorem 5.7Theorem 5.7, hence by the uniqueness statement we
must have f2 = det and we obtain the formula

(5.2) det

((
a b

c d

))
= ad − cb

for all a, b, c , d ∈ K.

5.2 Uniqueness of the determinant

So far we have only shown that the determinant exists for n = 1 and n = 2. However, we
need to show the existence and uniqueness part of Theorem 5.7Theorem 5.7 in general. We first show
the uniqueness part. We start by deducing some consequences from the alternating
property:

Lemma 5.12 Let V ,W be K-vector spaces and ℓ ∈ N. An alternating ℓ-multilinear
map f : V ℓ → W satisfies:

(i) interchanging two arguments of f leads to a minus sign. That is, for 1 ⩽ i , j ⩽ ℓ

and i ̸= j we obtain

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all (v1, ... , vℓ) ∈ V ℓ;
(ii) if the vectors (v1, ... , vℓ) ∈ V ℓ are linearly dependent, then f (v1, ... , vℓ) = 0W ;

(iii) for all 1 ⩽ i ⩽ ℓ, for all ℓ-tuples of vectors (v1, ... , vℓ) ∈ V ℓ and scalars
s1, ... , sℓ ∈ K, we have

f (v1, ... , vi−1, vi + w , vi+1, ... , vℓ) = f (v1, ... , vℓ)

where w =
∑ℓ

j=1,j ̸=i sjvj . That is, adding a linear combination of vectors to
some argument of f does not change the output, provided the linear combination
consists of the remaining arguments.

Proof (i) Since f is alternating, we have for all (v1, ... , vℓ) ∈ V ℓ

f (v1, ... , vi−1, vi + vj , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ) = 0W .

Using the linearity in the i -th argument, this gives

0W = f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ).

Using the linearity in the j-th argument, we obtain

0W = f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vj , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vj , vj+1, ... , vℓ).
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The first summand has a double occurrence of vi and hence vanishes by the alternating
property. Likewise, the fourth summand has a double occurrence ofvj and hence vanishes
as well. Since the second summand equals f (v1, ... , vℓ), we thus obtain

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

as claimed.

(ii) Suppose {v1, ... , vℓ} are linearly dependent so that we have scalars sj ∈ K not all
zero, 1 ⩽ j ⩽ ℓ, so that s1v1 + · · ·+ sℓvℓ = 0V . Suppose si ̸= 0 for some index 1 ⩽ i ⩽ ℓ.
Then

vi = −
ℓ∑

j=1,j ̸=i

(
sj
si

)
vj

and hence by the linearity in the i -th argument, we obtain

f

v1, ... , vi−1,−
ℓ∑

j=1,j ̸=i

(
sj
si

)
vj , vi+1, ... , vℓ


= −

ℓ∑
j=1,j ̸=i

(
sj
si

)
f (v1, ... , vi−1, vj , vi+1, ... , vℓ) = 0W ,

where we use that for each 1 ⩽ j ⩽ ℓ with j ̸= i , the expression

f (v1, ... , vi−1, vj , vi+1, ... , vℓ)

has a double occurrence of vj and thus vanishes by the alternating property.

(iii) Let (v1, ... , vℓ) ∈ V ℓ and (s1, ... , sℓ) ∈ Kℓ. Then, using the linearity in the i -th
argument, we compute

f (v1, ... , vi−1, vi +
ℓ∑

j=1,j ̸=i

sjvj , vi+1, ... , vℓ)

= f (v1, ... , vℓ) +
ℓ∑

j=1,j ̸=i

sj f (v1, ... , vi−1vj , vi+1, ... , vℓ) = f (v1, ... , vℓ),

where the last equality follows exactly as in the proof of (ii). □

The alternating property of an n-multilinear map fn : Mn,n(K) → K together with the
condition fn(1n) = 1 uniquely determines the value of fn on the elementary matrices:

Lemma 5.13 Let n ∈ N and fn : Mn,n(K) → K an alternating n-multilinear map
satisfying fn(1n) = 1. Then for all 1 ⩽ k , l ⩽ n with k ̸= l and all s ∈ K, we have

(5.3) fn(Dk(s)) = s, fn(Lk,l(s)) = 1, fn(Pk,l) = −1.

Moreover, for A ∈ Mn,n(K) and an elementary matrix B of size n, we have

(5.4) fn(BA) = fn(B)fn(A).

Proof Recall that Dk(s) applied to a square matrix A multiplies the k-th row of A with
s and leaves A unchanged otherwise. We write A ∈ Mn,n(K) as A = Ω(α⃗1, ... , α⃗n) for
α⃗i ∈ Kn, 1 ⩽ i ⩽ n. Hence we obtain

Dk(s)A = Ω(α⃗1, ... , α⃗k−1, sα⃗k , α⃗k+1, ... , α⃗n).

The linearity of f in the k-th row thus gives fn(Dk(s)A) = sfn(A). In particular, the choice
A = 1n together with fn(1n) = 1 implies that fn(Dk(s)) = fn(Dk(s)1n) = sfn(1n) = s .
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Therefore, we have
fn(Dk(s)A) = fn(Dk(s))fn(A).

Likewise we obtain

Lk,l(s)A = Ω(α⃗1, ... , α⃗k−1, α⃗k + sα⃗l , α⃗k+1, ... , α⃗n)

and we can apply property (iii) of Lemma 5.12Lemma 5.12 for the choice w = sα⃗l to conclude that
fn(Lk,l(s)A) = fn(A). In particular, the choice A = 1n together with fn(1n) = 1 implies
fn(Lk,l(s)) = fn(Lk,l(s)1n) = fn(1n) = 1.

Therefore, we have
fn(Lk,l(s)A) = fn(Lk,l(s))fn(A).

Finally, we have

Pk,lA = Ω(α⃗1, ... , α⃗k−1, α⃗l , α⃗k+1, ... , α⃗l−1, α⃗k , α⃗l+1, ... , α⃗n)

so that property (ii) of Lemma 5.12Lemma 5.12 immediately gives that

fn(Pk,lA) = −fn(A).

In particular, the choice A = 1n together with fn(1n) = 1 implies fn(Pk,l) = fn(Pk,l1n) =

−fn(1n) = −1.

Therefore, we have fn(Pk,lA) = fn(Pk,l)fn(A), as claimed. □

We now obtain the uniqueness part of Theorem 5.7Theorem 5.7.

Proposition 5.14 Let n ∈ N and fn, f̂n : Mn,n(K) → K be alternating n-multilinear
maps satisfying fn(1n) = f̂n(1n) = 1. Then fn = f̂n.

Proof We need to show that for all A ∈ Mn,n(K), we have fn(A) = f̂n(A). Suppose
first that A is not invertible. Then, by Proposition 4.7Proposition 4.7, the row vectors of A are linearly
dependent and hence property (ii) of Lemma 5.12Lemma 5.12 implies that fn(A) = f̂n(A) = 0.

Now suppose that A is invertible. Using Gauss–Jordan elimination, we obtain N ∈ N and
a sequence of elementary matrices B1, ... ,BN so that BN · · ·B1 = A. We obtain

fn(A) = fn(BN · · ·B1) = fn(BN)fn(BN−1 · · ·B1) = f̂n(BN)fn(BN−1 · · ·B1),

where the second equality uses (5.45.4) and the third equality uses that (5.35.3) implies that
f̂n(B) = fn(B) for all elementary matrices B. Proceeding in this fashion we get

fn(A) = f̂n(BN)f̂n(BN−1) · · · f̂n(B1) = f̂n(BN)f̂n(BN−1) · · · f̂n(B2B1) = · · ·

= f̂n(BNBN−1 · · ·B1) = f̂n(A).

□

5.3 Existence of the determinant

It turns out that we can define the determinant recursively in terms of the determinants
of certain submatrices. Determinants of submatrices are called minors. To this end we
first define:

76



5.3 — Existence of the determinant

Definition 5.15 Let n ∈ N. For a square matrix A ∈ Mn,n(K) and 1 ⩽ k, l ⩽ n we
denote by A(k,l) the (n− 1)× (n− 1) submatrix obtained by removing the k-th row
and l -th column from A.

Example 5.16

A =

(
a b

c d

)
, A(1,1) = (d), A(2,1) = (b).

A =


1 −2 0 4

3 1 1 0

−1 −5 −1 8

3 8 2 −12

 , A(3,2) =

1 0 4

3 1 0

3 2 −12

 .

We use induction to prove the existence of the determinant:

Lemma 5.17 Let n ∈ N with n ⩾ 2 and fn−1 : Mn−1,n−1(K) → K an alternating
(n − 1)-multilinear mapping satisfying fn−1(1n−1) = 1. Then, for any fixed integer l
with 1 ⩽ l ⩽ n, the mapping

fn : Mn,n(K) → K, A 7→
n∑

k=1

(−1)l+k [A]kl fn−1

(
A(k,l)

)
is alternating, n-multilinear and satisfies fn(1n) = 1.

Proof of Theorem 5.6Theorem 5.6 For n = 1 we have seen that f1 : M1,1(K) → K, (a) 7→ a is
1-multilinear, alternating and satisfies f1(11) = 1. Hence Lemma 5.17Lemma 5.17 implies that for
all n ∈ N there exists an n-multilinear and alternating map fn : Mn,n(K) → K satisfying
fn(1n) = 1. By Proposition 5.14Proposition 5.14 there is only one such mapping for each n ∈ N. □

Proof of Lemma 5.17Lemma 5.17 We take some arbitrary, but then fixed integer l with 1 ⩽ l ⩽ n.

Step 1. We first show that fn(1n) = 1. Since [1n]kl = δkl , we obtain

fn(1n) =
n∑

k=1

(−1)l+k [1n]kl fn−1

(
1(k,l)n

)
= (−1)2l fn−1

(
1(l ,l)n

)
= fn−1 (1n−1) = 1,

where we use that 1(l ,l)n = 1n−1 and fn−1(1n−1) = 1.

Step 2. We show that fn is multilinear. Let A ∈ Mn,n(K) and write A = (Akj)1⩽k,j⩽n. We
first show that fn is 1-homogeneous in each row. Say we multiply the i -th row of A with s

so that we obtain a new matrix Â = (Âkj)1⩽k,j⩽n with

Âkj =

{
Akj , k ̸= i ,

sAkj , k = i .

We need to show that fn(Â) = sfn(A). We compute

fn(Â) =
n∑

k=1

(−1)l+k Âkl fn−1(Â
(k,l))

= (−1)l+i sAil fn−1(Â
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(Â
(k,l)).
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Now notice that Â(i ,l) = A(i ,l), since A and Â only differ in the i -th row, but this is
the row that is removed. Since fn−1 is 1-homogeneous in each row, we obtain that
fn−1(Â(k,l)) = sfn−1(A(k,l)) whenever k ̸= i . Thus we have

fn(Â) = s(−1)l+iAil fn−1(A
(i ,l)) + s

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(A
(k,l))

= s
n∑

k=1

(−1)l+kAkl fn−1

(
A(k,l)

)
= sfn(A).

We now show that fn is additive in each row. Say the matrix B = (Bkj)1⩽k,j⩽n is identical
to the matrix A, except for the i -th row, so that

Bkj =

{
Akj k ̸= i

Bj k = i

for some scalars Bj with 1 ⩽ j ⩽ n. We need to show that fn(C) = fn(A) + fn(B), where
C = (Ckj)1⩽k,j⩽n with

Ckj =

{
Akj k ̸= i

Aij + Bj k = i

We compute

fn(C) = (−1)l+i (Ail + Bl)fn−1(C
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(C
(k,l)).

As before, since A,B,C only differ in the i -th row, we have A(i ,l) = B(i ,l) = C(i ,l). Using
that fn−1 is linear in each row, we thus obtain

fn(C) = (−1)l+iBl fn−1(B
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(B
(k,l))

+ (−1)l+iAil fn−1(A
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(A
(k,l)) = fn(A) + fn(B).

Step 3. We show that fn is alternating. Suppose we have 1 ⩽ i , j ⩽ n with j > i and so
that the i -th and j-th row of the matrix A = (Aij)1⩽i ,j⩽n are the same. Therefore, unless
k = i or k = j , the submatrix A(k,l) also contains two identical rows and since fn−1 is
alternating, all summands vanish except the one for k = i and k = j , this gives

fn(A) = (−1)i+lAil fn−1(A
(i ,l)) + (−1)j+lAjl fn−1(A

(j ,l))

= Ail(−1)l
(
(−1)i fn−1(A

(i ,l)) + (−1)j fn−1(A
(j ,l))

)
where the second equality sign follows because we have Ail = Ajl for all 1 ⩽ l ⩽ n (the
i -th and j-th row agree). The mapping fn−1 is alternating, hence by the first property of
the Lemma 5.12Lemma 5.12, swapping rows in the matrix A(j ,l) leads to a minus sign in fn−1(A(j ,l)).
Moving the i -th row of A(j ,l) down by j − i − 1 rows (which corresponds to swapping
j − i − 1 times), we obtain A(i ,l), hence

fn−1(A
(j ,l)) = (−1)j−i−1fn−1(A

(i ,l)).

This gives

fn(A) = Ail(−1)l
(
(−1)i fn−1(A

(i ,l)) + (−1)2j−i−1fn−1(A
(i ,l))

)
= 0.

□
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Remark 5.18 (Laplace expansion — VideoVideo) As a by-product of the proof of
Lemma 5.17Lemma 5.17 we obtain the formula

(5.5) det(A) =
n∑

k=1

(−1)l+k [A]kl det
(
A(k,l)

)
,

known as the Laplace expansion of the determinant. The uniqueness state-
ment of Theorem 5.7Theorem 5.7 thus guarantees that for every n × n matrix A, the scalar∑n

k=1(−1)l+k [A]kl det
(
A(k,l)

)
is independent of the choice of l ∈ N, 1 ⩽ l ⩽ n. In

practice, when computing the determinant, it is thus advisable to choose l such that
the corresponding column contains the maximal amount of zeros.

Example 5.19 For n = 2 and choosing l = 1, we obtain

det

((
a b

c d

))
= a det

(
A(1,1)

)
− c det

(
A(2,1)

)
= ad − cb,

in agreement with (5.15.1). For A = (Aij)1⩽i ,j⩽3 ∈ M3,3(K) and choosing l = 3 we
obtain

det

A11 A12 A13

A21 A22 A23

A31 A32 A33

 = A13 det

((
A21 A22

A31 A32

))

− A23 det

((
A11 A12

A31 A32

))
+ A33 det

((
A11 A12

A21 A22

))

so that
detA = A13(A21A32 − A31A22)− A23(A11A32 − A31A12)

+ A33(A11A22 − A21A12)

= A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31.

Exercises

Exercise 5.20 (Trilinear map) Let V = R3 and W = R. Show that the map

f : V 3 → W , (x⃗ , y⃗ , z⃗) 7→ (x⃗ × y⃗) · z⃗

is alternating and trilinear.
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5.4 Properties of the determinant WEEK 9

Proposition 5.21 (Product rule) For matrices A,B ∈ Mn,n(K) we have

det(AB) = det(A) det(B).

Proof We first consider the case where A is not invertible, then det(A) = 0 (see the
proof of Proposition 5.14Proposition 5.14). If A is not invertible, then neither is AB. Indeed, if AB were
invertible, then there exists a matrixC such that (AB)C = 1n. But since, by Corollary 2.22Corollary 2.22,
the matrix product is associative, this also gives A(BC) = 1n, so that BC is the inverse
of A, a contradiction. Hence if A is not invertible, we must also have det(AB) = 0, which
verifies that det(AB) = 0 = det(A) det(B) for A not invertible.

If A is invertible, we can write it as a product of elementary matrices and applying the
second part of Lemma 5.13Lemma 5.13, we conclude that det(AB) = det(A) det(B). □

Corollary 5.22 A matrixA ∈ Mn,n(K) is invertible if and only ifdet(A) ̸= 0. Moreover,
in the case where A is invertible, we have

det
(
A−1

)
=

1

detA
.

Proof We have already seen that ifA is not invertible, then det(A) = 0. This is equivalent
to saying that if det(A) ̸= 0, then A is invertible. It thus remains to show that if A is
invertible, then det(A) ̸= 0. Suppose A is invertible, then applying Proposition 5.21Proposition 5.21
gives

det(1n) = det
(
AA−1

)
= det(A) det

(
A−1

)
= 1

so that det(A) ̸= 0 and det
(
A−1

)
= 1/ det(A). □

Remark 5.23 (Product symbol) Recall that for scalars x1, ... , xn ∈ K, we write
n∏

i=1

xi = x1x2 · · · xn.

Proposition 5.24 Let n ∈ N andA = (Aij)1⩽i ,j⩽n ∈ Mn,n(K) be an upper triangular
matrix so that Aij = 0 for i > j . Then

(5.6) det(A) =
n∏

i=1

Aii = A11A22 · · ·Ann.

Proof We use induction. For n = 1 the condition Aij = 0 for i > j is vacuous and (5.65.6) is
trivially satisfied, thus the statement is anchored.

Inductive step: Assume n ∈ N and n ⩾ 2. We want to show that if (5.65.6) holds for upper
triangular (n − 1)× (n − 1)-matrices, then also for upper triangular n × n-matrices. Let
A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K) be an upper triangular matrix. Choosing l = 1 in the formula
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for det(A), we obtain

det(A) =
n∑

k=1

(−1)k+1Ak1 det
(
A(k,1)

)
= A11 det

(
A(1,1)

)
+

n∑
k=2

Ak1 det
(
A(k,1)

)
= A11 det

(
A(1,1)

)
,

where the last equality uses that Ak1 = 0 for k > 1. We have A(1,1) = (Aij)2⩽i ,j⩽n and
since A is an upper triangular matrix, it follows that A(1,1) is an (n − 1)× (n − 1) upper
triangular matrix as well. Hence by the induction hypothesis, we obtain

det(A(1,1)) =
n∏

i=2

Aii .

We conclude that det(A) =
∏n

i=1 Aii , as claimed. □

5.5 Permutations

A rearrangement of the natural numbers from 1 up to n is called a permutation:

Definition 5.25 (Permutation — VideoVideo) Let n ∈ N and Xn = {1, 2, 3, ... , n}. A
permutation is a bijective mapping σ : Xn → Xn. The set of all permutations of Xn

is denoted by Sn.

Remark 5.26 If τ ,σ : Xn → Xn are permutations, it is customary to write τσ or τ ·σ
instead of τ ◦ σ. Furthermore, the identity mapping IdXn is often simply denoted by
1. A convenient way to describe a permutation σ ∈ Sn is in terms of a 2× n matrix(

i

σ(i)

)
1⩽i⩽n

.

which we denote by σ. For instance, for n = 4, the matrix

σ =

(
1 2 3 4

2 3 1 4

)
corresponds to the permutation σ satisfying σ(1) = 2,σ(2) = 3,σ(3) = 1,σ(4) =

4.

Permutations which only swap two natural numbers and leave all remaining numbers
unchanged are known as transpositions:

Definition 5.27 (Transposition) Let n ∈ N and 1 ⩽ k, l ⩽ n with k ̸= l . The
transposition τk,l ∈ Sn is the permutation satisfying

τk,l(k) = l , τk,l(l) = k , τk,l(i) = i if i /∈ {k, l}.

Every permutation σ ∈ Sn defines a linear map g : Kn → Kn satisfying g(e⃗i ) = e⃗σ(i),
where {e⃗1, ... , e⃗n}denotes the standard basis ofKn. Since g is linear, there exists a unique
matrix Pσ ∈ Mn,n(K) so that g = fPσ

. Observe that the column vectors of the matrix Pσ

are given by e⃗σ(1), e⃗σ(2), ... , e⃗σ(n).
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Definition 5.28 (Permutation matrix) We callPσ ∈ Mn,n(K) the permutation matrix
associated to σ ∈ Sn.

Example 5.29 Let n = 4. For instance, we have

σ =

(
1 2 3 4

2 3 1 4

)
Pσ =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


and

τ 2,4 =

(
1 2 3 4

1 4 3 2

)
Pτ2,4 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

Remark 5.30 Notice that Pτk,l = Pk,l , where Pk,l belongs to the elementary
matrices of size n, c.f. Definition 4.1Definition 4.1.

Assigning to a permutation its permutation matrix turns composition of permutations
into matrix multiplication:

Proposition 5.31 Let n ∈ N. Then P1 = 1n and for all σ,π ∈ Sn we have

Pπ·σ = PπPσ.

In particular, for all σ ∈ Sn, the permutation matrix Pσ is invertible with (Pσ)
−1 =

Pσ−1 .

Example 5.32 Considering n = 3. For

σ =

(
1 2 3

3 1 2

)
and π =

(
1 2 3

1 3 2

)
we have π ·σ =

(
1 2 3

2 1 3

)
,

as well as

Pσ =

0 1 0

0 0 1

1 0 0

 , Pπ =

1 0 0

0 0 1

0 1 0

 and Pπ·σ =

0 1 0

1 0 0

0 0 1

 .

Thus we obtain

Pπ·σ =

0 1 0

1 0 0

0 0 1

 =

1 0 0

0 0 1

0 1 0

0 1 0

0 0 1

1 0 0

 = PπPσ,

as claimed by Proposition 5.31Proposition 5.31.

Proof of Proposition 5.31Proposition 5.31 The matrix P1 has column vectors given by e⃗1, ... , e⃗n, hence
P1 = 1n.
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Using Proposition 2.20Proposition 2.20 and Theorem 2.21Theorem 2.21 it is sufficient to show that for all π,σ ∈ Sn we
have fPπ·σ = fPπ ◦ fPσ . For all 1 ⩽ i ⩽ n, we obtain

fPπ (fPσ (e⃗i )) = fPπ

(
e⃗σ(i)

)
= e⃗π(σ(i)) = e⃗(π·σ)(i) = fPπ·σ (e⃗i ).

The two maps thus agree on the ordered basis e = (e⃗1, ... , e⃗n) of Kn, so that the second
claim follows by applying Lemma 3.87Lemma 3.87.

We have

Pσ·σ−1 = P1 = 1n = PσPσ−1

showing that Pσ is invertible with inverse (Pσ)
−1 = Pσ−1 . □

Definition 5.33 (Signature of a permutation) For σ ∈ Sn we call sgn(σ) = det(Pσ)

its signature.

Remark 5.34
• Combining Proposition 5.21Proposition 5.21 and Proposition 5.31Proposition 5.31, we conclude that

sgn(π · σ) = sgn(π) sgn(σ)

for all π,σ ∈ Sn.
• Since Pτk,l = Pk,l and detPk,l = −1 by Lemma 5.13Lemma 5.13, we conclude that

sgn(τk,l) = −1

for all transpositions τk,l ∈ Sn.

Similarly to elementary matrices being the building blocks of invertible matrices, trans-
positions are the building blocks of permutations:

Proposition 5.35 Let n ∈ N and σ ∈ Sn. Then there exists m ⩾ 0 and m transposi-
tions τk1,l1 , ... , τkm,lm ∈ Sn such that σ = τkm,lm · · · τk1,l1 , where we use the convention
that 0 transpositions corresponds to the identity permutation.

Example 5.36 Let n = 6 and σ the permutation defined by the matrix

σ =

(
1 2 3 4 5 6

3 5 2 4 6 1

)
.

To express it as a product of transposition, we write

3 5 2 4 6 1

3 2 5 4 6 1 τ2,3
1 2 5 4 6 3 τ1,6
1 2 5 4 3 6 τ5,6
1 2 3 4 5 6 τ3,5

so that σ = τ3,5τ5,6τ1,6τ2,3.

Proof of Proposition 5.35Proposition 5.35 We use induction. For n = 1 we have Xn = {1} and the only
permutation is the identity permutation 1, so the statement is trivially true and hence
anchored.
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Inductive step: Assume n ∈ N and n ⩾ 2. We want to show that if the claim holds for
Sn−1, then also for Sn. Let σ ∈ Sn and define k = σ(n). Then the permutation σ1 = τn,kσ

satisfies σ1(n) = τn,kσ(n) = τn,k(k) = n and hence does not permute n. Restricting σ1

to the first n − 1 elements, we obtain a permutation of {1, ... , n − 1}. By the induction
hypothesis, we thus have m̃ ∈ N and τk1,l1 , ... τkm̃ , τlm̃ ∈ Sn such that

σ1 = τkm̃,lm̃ · · · τk1,l1 = τn,kσ.

Since τ 2n,k = 1, multiplying from the left with τn,k gives σ = τn,kτkm̃,lm̃ · · · τk1,l1 , the claim
follows with m = m̃ + 1. □

Combining Definition 5.33Definition 5.33, Remark 5.34Remark 5.34 and Proposition 5.35Proposition 5.35, we conclude:

Proposition 5.37 Let n ∈ N and σ ∈ Sn. Then sgn(σ) = ±1. If σ is a product of m
transpositions, then sgn(σ) = (−1)m.

Remark 5.38 Permutations with sgn(σ) = 1 are called even and permutations with
sgn(σ) = −1 are called odd, since they arise from the composition of an even or
odd number of transpositions, respectively.

5.6 The Leibniz formula

Besides the Laplace expansion, there is also a formula for the determinant which relies
on permutations. As a warm-up, we first consider the case n = 2. Using the linearity of
the determinant in the first row, we obtain

det

(
a b

c d

)
= det

(
a 0

c d

)
+ det

(
0 b

c d

)
,

where a, b, c , d ∈ K. Using the linearity of the determinant in the second row, we can
further decompose the two above summands

det

(
a b

c d

)
= det

(
a 0

c 0

)
+ det

(
a 0

0 d

)
︸ ︷︷ ︸

=det

a 0

c d



+det

(
0 b

c 0

)
+ det

(
0 b

0 d

)
︸ ︷︷ ︸

=det

0 b

c d



The first and fourth summand are always zero due to the occurrence of a zero column.
The second and third summand are possibly nonzero (it might still happen that they are
zero in the case where some of a, b, c , d are zero). In any case, we get

det

(
a b

c d

)
= det

(
a 0

0 d

)
+ det

(
0 b

c 0

)
.
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We can proceed analogously in general. Let A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K). We denote the
rows of A by {α⃗1, ... , α⃗n}. Using the linearity of det in the first row, we can write

detA = det


A11 0 0 · · · 0

α⃗2

...
α⃗n

+ det


0 A12 0 · · · 0

α⃗2

...
α⃗n

+ · · ·

· · ·+ det


0 0 0 · · · A1n

α⃗2

...
α⃗n

 .

We can now use the linearity in the second row and proceed in the same fashion with
each of the above summands. We continue this procedure until the n-th row. As a result,
we can write

(5.7) detA =
nn∑
k=1

detMk

where each of the matrices Mk has exactly one possibly nonzero entry in each row.
As above, some of the matrices Mk will have a zero column so that their determinant
vanishes. The matricesMk without a zero column must have exactly one possibly nonzero
entry in each row and each column. We can thus write the matrices Mk with possibly
nonzero determinant as

Mk =
n∑

i=1

Aσ(i)iEσ(i),i

for some permutation σ ∈ Sn. Every permutation of {1, ... , n} occurs precisely once in
the expansion (5.75.7), hence we can write

detA =
∑
σ∈Sn

det

(
n∑

i=1

Aσ(i)iEσ(i),i

)
,

where the notation
∑

σ∈Sn
means that we sum over all possible permutations of{1, ... , n}.

We will next write the matrix
∑n

i=1 Aσ(i)iEσ(i),i differently. To this end notice that for all
σ ∈ Sn, the permutation matrix Pσ can be written as Pσ =

∑n
i=1 Eσ(i),i . Furthermore,

the diagonal matrix

Dσ =


Aσ(1)1

Aσ(2)2

. . .
Aσ(n)n


can be written as Dσ =

∑n
j=1 Aσ(j)jEj ,j . Therefore, using Lemma 4.4Lemma 4.4, we obtain

PσDσ =
n∑

i=1

Eσ(i),i

n∑
j=1

Aσ(j)jEj ,j =
n∑

i=1

n∑
j=1

Aσ(j)jEσ(i),iEj ,j =
n∑

i=1

Aσ(i)iEσ(i),i ,

We thus have the formula

detA =
∑
σ∈Sn

det (PσDσ) =
∑
σ∈Sn

sgn(σ) det(Dσ),

where we use the product rule Proposition 5.21Proposition 5.21 and the definition of the signature of a
permutation. By Proposition 5.24Proposition 5.24, the determinant of a diagonal matrix is the product of
its diagonal entries, hence we obtain

detA =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aσ(i)i .
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Finally, writing π = σ−1, we have

n∏
i=1

Aσ(i)i =
n∏

j=1

Ajπ(j).

We have thus shown:

Proposition 5.39 (Leibniz formula for the determinant) Let n ∈ N and A =

(Aij)1,⩽i ,j⩽n ∈ Mn,n(K). Then we have

(5.8) det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aσ(i)i =
∑
π∈Sn

sgn(π)
n∏

j=1

Ajπ(j).

Example 5.40 For n = 3 we have six permutations

σ1 =

(
1 2 3

1 2 3

)
, σ2 =

(
1 2 3

1 3 2

)
, σ3 =

(
1 2 3

2 1 3

)
σ4 =

(
1 2 3

2 3 1

)
, σ5 =

(
1 2 3

3 1 2

)
, σ6 =

(
1 2 3

3 2 1

)
.

For A = (Aij)1⩽i ,j⩽3 ∈ M3,3(K), the Leibniz formula gives

det(A) = sgn(σ1)A11A22A33 + sgn(σ2)A11A23A32 + sgn(σ3)A12A21A33

+ sgn(σ4)A12A23A31 + sgn(σ5)A13A21A32 + sgn(σ6)A13A22A31,

so that in agreement with Example 5.19Example 5.19, we obtain

detA = A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31.

Remark 5.41 Exercise 5.49Exercise 5.49 has two important consequences. Since the transpose
turns the rows of a matrix into columns and vice versa, we conclude:
• the determinant is also multilinear and alternating, when thought of as a map
(Kn)n → K, that is, when taking n columns vectors as an input. In particular, the
determinant is also linear in each column;

• the Laplace expansion is also valid if we expand with respect to a row, that is, for
A ∈ Mn,n(K) and 1 ⩽ l ⩽ n, we have

det(A) =
n∑

k=1

(−1)k+l [A]lk det
(
A(l ,k)

)
.

Example 5.42 (♡ – not examinable) For n ∈ N and a vector x⃗ = (xi )1⩽i⩽n ∈ Kn we
can form a matrix Vx⃗ = (Vij)1⩽i ,j⩽n ∈ Mn,n(K) with Vij = x j−1

i , that is,

Vx⃗ =


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)

2 · · · (xn)
n−1

 .
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Such matrices are known as Vandermonde matrices and the determinant of a Van-
dermonde matrix is known as a Vandermonde determinant, they satisfy

det(Vx⃗) =
∏

1⩽i<j⩽n

(xj − xi ).

Sketch of a proof We can define a function f : Kn → K, x⃗ 7→ det(Vx⃗). By the Leibniz
formula, the function f is a polynomial in the variables xi with integer coefficients. If we
freeze all variables of f except the ℓ-th variable, then we obtain a function gℓ : K → K
of one variable xℓ. For 1 ⩽ i ⩽ n with i ̸= ℓ we have gℓ(xi ) = 0, since we compute the
determinant of a matrix with two identical rows, the ℓ-th row and the i -th row. Factoring
the zeros, we can thus write gℓ(xℓ) = qℓ(xℓ)

∏
1⩽i⩽n,i ̸=ℓ(xℓ − xi ) for some polynomial qℓ.

We can repeat this argument for all ℓ and hence can write det(Vx⃗) = q(x⃗)
∏

1⩽i<j⩽n(xj −
xi ) for some polynomial q(x⃗). The Leibniz formula implies that the sum of the exponents
of all the factors xi in det(Vx⃗) must be 1

2n(n − 1). The same holds true for
∏

1⩽i<j⩽n.
It follows that q must be a constant. Using the Leibniz formula again, we see that the
summand of det(Vx⃗) corresponding to the identity permutation is the product of the
diagonal entries of Vx⃗ , that is, x2(x3)2 · · · (xn)n−1. Taking the first term in all factors of∏

1⩽i<j⩽n(xj − xi ), we also obtain x2(x3)
2 · · · (xn)n−1, hence det(Vx⃗) =

∏
1⩽i<j⩽n(xj −

xi ), as claimed. □

5.7 Cramer’s rule

The determinant can be used to give a formula for the solution of a linear system of
equations of the form Ax⃗ = b⃗ for an invertible matrix A ∈ Mn,n(K), b⃗ ∈ Kn and
unknowns x⃗ ∈ Kn. This formula is often referred to as Cramer’s rule. In order to derive it
we start with definitions:

Definition 5.43 (Adjugate matrix — VideoVideo) Let n ∈ N and A ∈ Mn,n(K) be a square
matrix. The adjugate matrix of A is the n × n-matrix Adj(A) whose entries are given
by (notice the reverse order of i and j on the right hand side)

[Adj(A)]ij = (−1)i+j det
(
A(j ,i)

)
, 1 ⩽ i , j ⩽ n.

Example 5.44

Adj

((
a b

c d

))
=

(
d −b

−c a

)
, Adj

1 1 2

0 2 1

1 0 2

 =

 4 −2 −3

1 0 −1

−2 1 2



The determinant and the adjugate matrix provide a formula for the inverse of a matrix:

Theorem 5.45 Let n ∈ N and A ∈ Mn,n(K). Then we have

Adj(A)A = AAdj(A) = det(A)1n.

In particular, if A is invertible then

A−1 =
1

detA
Adj(A).
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Proof Let A = (Aij)1⩽i ,j⩽n. For 1 ⩽ i ⩽ n we obtain for the i -th diagonal entry

[Adj(A)A]ii =
n∑

k=1

(−1)i+k det
(
A(k,i)

)
Aki = det(A),

where we use the Laplace expansion (5.55.5) of the determinant. The diagonal entries of
Adj(A)A are thus all equal to detA. For 1 ⩽ i , j ⩽ n with i ̸= j we have

[Adj(A)A]ij =
n∑

k=1

(−1)i+k
(
detA(k,i)

)
Akj .

We would like to interpret this last expression as a Laplace expansion. We consider a
new matrix Â = (Âij)1⩽i ,j⩽n which is identical to A, except that the i -th column of A is
replaced with the j-th column of A, that is, for 1 ⩽ k ⩽ n, we have

(5.9) Âkl =

{
Akj , l = i ,

Akl , l ̸= i .

Then, for all 1 ⩽ k ⩽ n we have Â(k,i) = A(k,i), since the only column in which A and Â

are different is removed in A(k,i). Using (5.95.9), the Laplace expansion of Â with respect to
the i -th column gives

det Â =
n∑

k=1

(−1)(i+k)Âki det
(
Â(k,i)

)
=

n∑
k=1

(−1)i+k
(
detA(k,i)

)
Akj

= [Adj(A)A]ij

The matrix Â has a double occurrence of the i -th column, hence its column vectors are
linearly dependent. Therefore Â is not invertible by Proposition 4.7Proposition 4.7 and so det Â =

[Adj(A)A]ij = 0 by Corollary 5.22Corollary 5.22. The off-diagonal entries of Adj(A)A are thus all zero
and we conclude Adj(A)A = det(A)1n. Using the row version of the Laplace expansion
we can conclude analogously that AAdj(A) = det(A)1n.

Finally, ifA is invertible, thendetA ̸= 0by Corollary 5.22Corollary 5.22, so thatA−1 = Adj(A)/ det(A),
as claimed. □

As a corollary we obtain:

Corollary 5.46 Let n ∈ N and A ∈ Mn,n(K) be an invertible upper triangular matrix.
Then A−1 is also an upper triangular matrix.

Remark 5.47 Taking the transpose also implies: Let A ∈ Mn,n(K) be an invertible
lower triangular matrix. Then A−1 is also a lower triangular matrix.

Proof of Corollary 5.46Corollary 5.46 Write A = (Aij)1⩽i ,j⩽n. Using Theorem 5.45Theorem 5.45 it suffices to show
that Adj(A) is an upper triangular matrix. If A is an upper triangular matrix, then Aij = 0

for all i > j . By definition we have

[Adj(A)]ij = (−1)i+j det
(
A(j ,i)

)
, 1 ⩽ i , j ⩽ n.

Notice that for i > j every element below the diagonal of A(j ,i) is also below the diagonal
of A and hence must be zero. It follows that A(j ,i) is an upper triangular matrix as well.
Proposition 5.24Proposition 5.24 implies that the determinant of A(j ,i) is the product of its diagonal
entries. Since A(j ,i) arises from the upper triangular matrix A by removing a row and a
column, at least one of the diagonal entries of A(j ,i) must be zero and thus detA(j ,i) = 0

for i > j . We conclude that A−1 is an upper triangular matrix as well. □
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5.7 — Cramer’s rule

We now use Theorem 5.45Theorem 5.45 to obtain a formula for the solution of the linear systemAx⃗ = b⃗

for an invertible matrix A. Multiplying from the left with A−1, we get

x⃗ = A−1b⃗ =
1

detA
Adj(A)b⃗.

Writing x⃗ = (xi )1⩽i⩽n, multiplication with detA gives for 1 ⩽ i ⩽ n

xi detA =
n∑

k=1

[Adj(A)]ikbk =
n∑

k=1

(−1)i+k det
(
A(k,i)

)
bk .

We can again interpret the right hand side as a Laplace expansion of the matrix Âi ob-
tained by replacing the i -th column of A with b⃗ and leaving A unchanged otherwise.
Hence, we have for all 1 ⩽ i ⩽ n

xi =
det Âi

detA
.

This formula is known as Cramer’s rule. While this is a neat formula, it is rarely used in
computing solutions to linear systems of equations due to the complexity of computing
determinants.

Example 5.48 (Cramer’s rule) We consider the system Ax⃗ = b⃗ for

A =

2 1 1

1 2 1

1 1 2

 and b⃗ =

−2

2

4

 .

Here we obtain

Â1 =

−2 1 1

2 2 1

4 1 2

 , Â2 =

2 −2 1

1 2 1

1 4 2

 , Â3 =

2 1 −2

1 2 2

1 1 4

 .

We compute detA = 4, det Â1 = −12, det Â2 = 4 and det Â3 = 12 so that Cramer’s
rule gives indeed the correct solution

x⃗ =
1

4

−12

4

12

 =

−3

1

3

 .

Exercises

Exercise 5.49 Use the Leibniz formula to show that

det(A) = det(AT )

for all A ∈ Mn,n(K).
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CHAPTER 6

Endomorphisms

6.1 Sums, direct sums and complements WEEK 10

In this chapter we study linear mappings from a vector space to itself.

Definition 6.1 (Endomorphism — VideoVideo) A linear map g : V → V from a K-vector
space V to itself is called an endomorphism. An endomorphism that is also an
isomorphism is called an automorphism.

Before we develop the theory of endomorphisms, we introduce some notions for sub-
spaces.

Definition 6.2 (Sum of subspaces — VideoVideo) Let V be a K-vector space, n ∈ N and
U1, ... ,Un be vector subspaces of V . The set

n∑
i=1

Ui = U1 + U2 + · · ·+ Un = {v ∈ V |v = u1 + u2 + · · ·+ un for ui ∈ Ui}

is called the sum of the subspaces Ui .

Recall that by Proposition 3.27Proposition 3.27, the intersection of two subspaces is again a subspace,
whereas the union of two subspaces fails to be a subspace in general. However, subspaces
do behave nicely with regards to sums:

Proposition 6.3 The sum of the subspaces Ui ⊂ V , i = 1 ... , n is again a vector
subspace.

Proof The sum
∑n

i=1 Ui is non-empty, since it contains the zero vector 0V . Let v and
v ′ ∈

∑n
i=1 Ui so that

v = v1 + v2 + · · ·+ vn and v ′ = v ′
1 + v ′

2 + · · ·+ v ′
n

for vectors vi , v ′
i ∈ Ui , i = 1, ... , n. Each Ui is a vector subspace of V . Therefore, for all

scalars s, t ∈ K, the vector svi + tv ′
i is an element of Ui , i = 1, ... , n. Thus

sv + tv ′ = sv1 + tv ′
1 + · · ·+ svn + tv ′

n

is an element of U1+ · · ·+Un. By Definition 3.21Definition 3.21, it follows that U1+ · · ·+Un is a vector
subspace of V . □

Remark 6.4 Notice thatU1+· · ·+Un is the smallest vector subspace ofV containing
all vector subspaces Ui , i = 1, ... , n.
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If each vector in the sum is in a unique way the sum of vectors from the subspaces we say
the subspaces are in direct sum:

Definition 6.5 (Direct sum of subspaces) Let V be a K-vector space, n ∈ N and
U1, ... ,Un be vector subspaces ofV . The subspacesU1, ... ,Un are said to be in direct
sum if each vector w ∈ W = U1 + · · ·+ Un is in a unique way the sum of vectors
vi ∈ Ui for 1 ⩽ i ⩽ n. That is, if w = v1 + v2 + · · · + vn = v ′

1 + v ′
2 + · · · + v ′

n for
vectors vi , v ′

i ∈ Ui , then vi = v ′
i for all 1 ⩽ i ⩽ n. We write

n⊕
i=1

Ui

in case the subspaces U1, ... ,Un are in direct sum.

Example 6.6 Let n ∈ N and V = Kn as well as Ui = span{e⃗i}, where {e⃗1, ... , e⃗n}
denotes the standard basis of Kn. Then Kn =

⊕n
i=1 Ui .

Remark 6.7
• Two subspacesU1,U2 ofV are in direct sum if and only ifU1∩U2 = {0V }. Indeed,

suppose U1 ∩ U2 = {0V } and consider w = v1 + v2 = v ′
1 + v ′

2 with vi , v
′
i ∈ Ui

for i = 1, 2. We then have v1 − v ′
1 = v ′

2 − v2 ∈ U2, since U2 is a subspace. Since
U1 is a subspace as well, we also have v1 − v ′

1 ∈ U1. Since v1 − v ′
1 lies both in U1

and U2, we must have v1 − v ′
1 = 0V = v ′

2 − v2. Conversely, suppose U1,U2 are in
direct sum and let w ∈ (U1 ∩ U2). We can write w = w + 0V = 0V + w , since
w ∈ U1 and w ∈ U2. Since U1,U2 are in direct sum, we must have w = 0V , hence
U1 ∩ U2 = {0V }.

• Observe that if the subspacesU1, ... ,Un are in direct sum and vi ∈ Ui with vi ̸= 0V
for 1 ⩽ i ⩽ n, then the vectors {v1, ... , vn} are linearly independent. Indeed, if
s1, ... , sn are scalars such that

s1v1 + s2v2 + · · ·+ snvn = 0V = 0V + 0V + · · ·+ 0V ,

then sivi = 0V for all 1 ⩽ i ⩽ n. By assumption vi ̸= 0V and hence si = 0 for all
1 ⩽ i ⩽ n.

Proposition 6.8 Let n ∈ N, V be a finite dimensional K-vector space and U1, ... ,Un

be subspaces of V . Let bi be an ordered basis of Ui for 1 ⩽ i ⩽ n. Then we have:
(i) The tuple of vectors obtained by listing all the vectors of the bases bi is a basis of

V if and only if V =
⊕n

i=1 Ui .
(ii) dim(U1 + · · ·+ Un) ⩽ dim(U1) + · · ·+ dim(Un) with equality if and only if the

subspaces U1, ... ,Un are in direct sum.

Proof Part of an exercise. □

Definition 6.9 (Complement to a subspace) Let V be a K-vector space and U ⊂ V

a subspace. A subspace U ′ of V such that V = U ⊕ U ′ is called a complement to U .
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Example 6.10 Notice that a complement need not be unique. Consider V = R2

and U = span{e⃗1}. Let v ∈ V . Then the subspace U ′ = span{v} is a complement
to U , provided e⃗1, v⃗ are linearly independent.

Corollary 6.11 (Existence of a complement) Let U be a subspace of a finite dimen-
sional K-vector space V . Then there exists a subspace U ′ so that V = U ⊕ U ′.

Proof Suppose (v1, ... , vm) is an ordered basis of U . By Theorem 3.64Theorem 3.64, there exists a
basis {v1, ... , vm, vm+1, ... , vn} of V . Defining U ′ = span{vm+1, ... , vn}, Proposition 6.8Proposition 6.8
implies the claim. □

The dimension of a sum of two subspaces equals the sum of the dimensions of the
subspaces minus the dimension of the intersection:

Proposition 6.12 LetV be a finite dimensionalK-vector space andU1,U2 subspaces
of V . Then we have

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).

Proof Let r = dim(U1 ∩ U2) and let {u1, ... , ur} be a basis of U1 ∩ U2. These vectors
are linearly independent and elements of U1, hence by Theorem 3.64Theorem 3.64, there exist vectors
v1, ... , vm−r so that S1 = {u1, ... , ur , v1, ... , vm−r} is a basis of U1. Likewise there exist
vectors w1, ... ,wn−r such that S2 = {u1, ... , ur ,w1, ... ,wn−r} is a basis of U2. Here m =

dimU1 and n = dimU2.

Now consider the set S = {u1, ... , ur , v1, ... , vm−r ,w1, ... ,wn−r} consisting of r +m −
r + n − r = n +m − r vectors. If this set is a basis of U1 + U2, then the claim follows,
since then dim(U1 + U2) = n +m − r = dim(U1) + dim(U2)− dim(U1 ∩ U2).

We first show that S generates U1 + U2. Let y ∈ U1 + U2 so that y = x1 + x2 for vectors
x1 ∈ U1 and x2 ∈ U2. Since S1 is a basis of U1, we can write x1 as a linear combination of
elements of S1. Likewise we can write x2 as a linear combination of elements of S2. It
follows that S generates U1 + U2.

We need to show that S is linearly independent. So suppose we have scalars s1, ... , sr ,
t1, ... , tm−r , and r1, ... , rn−r , so that

s1u1 + · · ·+ srur︸ ︷︷ ︸
=u

+ t1v1 + · · ·+ tm−rvm−r︸ ︷︷ ︸
=v

+ r1w1 + · · ·+ rn−rwn−r︸ ︷︷ ︸
=w

= 0V .

Equivalently, w = −u− v so that w ∈ U1. Since w is a linear combination of elements of
S2, we also have w ∈ U2. Therefore, w ∈ U1 ∩ U2 and there exist scalars ŝ1, ... , ŝr such
that

w = ŝ1u1 + · · ·+ ŝrur︸ ︷︷ ︸
=û

This is equivalent to w − û = 0V , or written out

r1w1 + · · ·+ rn−rwn−r − ŝ1u1 − · · ·+ ŝrur = 0V .

Since the vectors {u1, ... , ur ,w1, ... ,wn−r} are linearly independent, we conclude that
r1 = · · · = rn−r = ŝ1 = · · · = ŝr = 0. It follows that w = 0V and hence u + v = 0V .
Again, since {u1, ... , ur , v1, ... , vn−r} are linearly independent, we conclude that s1 =

· · · = sr = t1 = · · · = tm−r = 0 and we are done. □
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6.2 Invariants of endomorphisms

LetV be a finite dimensional vector space equipped with an ordered basisb and g : V →
V an endomorphism. Recall from Theorem 3.106Theorem 3.106 that if we consider another ordered
basis b′ of V , then

M(g ,b′,b′) = CM(g ,b,b)C−1,

where we write C = C(b,b′) for the change of basis matrix. This motivates the following
definition:

Definition 6.13 (Similar / conjugate matrices) Let n ∈ N and A,A′ ∈ Mn,n(K). The
matrices A and A′ are called similar or conjugate over K if there exists an invertible
matrix C ∈ Mn,n(K) such that

A′ = CAC−1.

Similarity of matrices over K is an equivalence relation:

Proposition 6.14 Let n ∈ N and A,B,X ∈ Mn,n(K). Then we have
(i) A is similar to itself;

(ii) A is similar to B then B is similar to A;
(iii) If A is similar to B and B is similar to X, then A is also similar to X.

Proof (i) We take C = 1n.

(ii) SupposeA is similar toB so thatB = CAC−1 for some invertible matrixC ∈ Mn,n(K).
Multiplying with C−1 from the left and C from the right, we get

C−1BC = C−1CAC−1C = A,

so that the similarity follows for the choice Ĉ = C−1.

(iii) We have B = CAC−1 and X = DBD−1 for invertible matrices C,D. Then we get

X = DCAC−1D−1,

so that the similarity follows for the choice Ĉ = DC. □

Remark 6.15
• Because of (ii) in particular, one can say that two matrices A and B are similar

without ambiguity.
• Theorem 3.106Theorem 3.106 shows that A and B are similar if and only if there exists an endo-

morphism g of Kn such that A and B represent g with respect to two ordered
bases of Kn.

One might wonder whether there exist functions f : Mn,n(K) → Kwhich are invariant un-
der conjugation, that is, f satisfies f (CAC−1) = f (A) for all A ∈ Mn,n(K) and all invert-
ible matrices C ∈ Mn,n(K). We have already seen an example of such a function, namely
the determinant. Indeed using the product rule Proposition 5.21Proposition 5.21 and Corollary 5.22Corollary 5.22, we
compute

(6.1)
det
(
CAC−1

)
= det(CA) det

(
C−1

)
= det(C) det(A) det

(
C−1

)
= det(A).
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Because of this fact, the following definition makes sense:

Definition 6.16 (Determinant of an endomorphism) Let V be a finite dimensional
K-vector space and g : V → V an endomorphism. We define

det(g) = det (M(g ,b,b))

where b is any ordered basis of V . By Theorem 3.106Theorem 3.106 and (6.16.1), the scalar det(g) is
independent of the chosen ordered basis.

Another example of a scalar that we can associate to an endomorphism is the so-called
trace. Like for the determinant, we first define the trace for matrices. Luckily, the trace is
a lot simpler to define:

Definition 6.17 (Trace of a matrix) Let n ∈ N and A ∈ Mn,n(K). The sum
∑n

i=1[A]ii
of its diagonal entries is called the trace of A and denoted by Tr(A) or TrA.

Example 6.18 For all n ∈ N we have Tr(1n) = n. For

A =

2 1 1

1 2 1

1 1 3


we have Tr(A) = 2 + 2 + 3 = 7.

The trace of a product of square matrices is independent of the order of multiplication:

Proposition 6.19 Let n ∈ N and A,B ∈ Mn,n(K). Then we have

Tr(AB) = Tr(BA).

Proof Let A = (Aij)1⩽i ,j⩽n and B = (Bij)1⩽i ,j⩽n. Then

[AB]ij =
n∑

k=1

AikBkj and [BA]kj =
n∑

i=1

BkiAij ,

so that

Tr(AB) =
n∑

i=1

n∑
k=1

AikBki =
n∑

k=1

n∑
i=1

BkiAik = Tr(BA).

□

Using the previous proposition, we obtain

(6.2) Tr
(
CAC−1

)
= Tr

(
AC−1C

)
= Tr(A).

As for the determinant, the following definition thus makes sense:

Definition 6.20 (Trace of an endomorphism) LetV be a finite dimensionalK-vector
space and g : V → V an endomorphism. We define

Tr(g) = Tr (M(g ,b,b))
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where b is any ordered basis of V . By Theorem 3.106Theorem 3.106 and (6.26.2), the scalar Tr(g) is
independent of the chosen ordered basis.

The trace and determinant of endomorphisms behave nicely with respect to composition
of maps:

Proposition 6.21 Let V be a finite dimensional K-vector space. Then, for all endo-
morphisms f , g : V → V we have

(i) Tr(f ◦ g) = Tr(g ◦ f );
(ii) det(f ◦ g) = det(f ) det(g).

Proof (i) Fix an ordered basis b of V . Then, using Corollary 3.100Corollary 3.100 and Proposition 6.19Proposition 6.19,
we obtain

Tr(f ◦ g) = Tr (M(f ◦ g ,b,b)) = Tr (M(f ,b,b)M(g ,b,b))

= Tr (M(g ,b,b)M(f ,b,b)) = Tr (M(g ◦ f ,b,b)) = Tr(g ◦ f ).

The proof of (ii) is analogous, but we use Proposition 5.21Proposition 5.21 instead of Proposition 6.19Proposition 6.19. □

We also have:

Proposition 6.22 Let V be a finite dimensional K-vector space and g : V → V an
endomorphism. Then the following statements are equivalent:

(i) g is injective;
(ii) g is surjective;

(iii) g is bijective;
(iv) det(g) ̸= 0.

Proof The equivalence of the first three statements follows from Corollary 3.77Corollary 3.77. We fix
an ordered basis b of V . Suppose g is bijective with inverse g−1 : V → V . Then we have

det(g ◦ g−1) = det(g) det
(
g−1

)
= det (IdV ) = det (M(IdV ,b,b)) = det (1dimV ) = 1.

It follows that det(g) ̸= 0 and moreover that

det
(
g−1

)
=

1

det g
.

Conversely, suppose that det g ̸= 0. Then detM(g ,b,b) ̸= 0 so that M(g ,b,b) is
invertible by Corollary 5.22Corollary 5.22 and Proposition 3.101Proposition 3.101 implies that g is bijective. □

Remark 6.23 Notice that Proposition 6.22Proposition 6.22 is wrong for infinite dimensional vector
spaces. Consider V = K∞, the K-vector space of sequences from Example 3.6Example 3.6. The
endomorphism g : V → V defined by (x1, x2, x3, ...) 7→ (0, x1, x2, x3, ...) is injective
but not surjective.
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6.3 Eigenvectors and eigenvalues WEEK 11

Mappings g that have the same domain and codomain allow for the notion of a fixed
point. Recall that an element x of a set X is called a fixed point of a mapping g : X → X
if g(x) = x , that is, x agrees with its image under g . In Linear Algebra, a generalisation of
the notion of a fixed point is that of an eigenvector. A vector v ∈ V is called an eigenvector
of the linear map g : V → V if v is merely scaled when applying g to v , that is, there
exists a scalar λ ∈ K – called eigenvalue – such that g(v) = λv . Clearly, the zero vector
0V will satisfy this condition for every choice of scalar λ. For this reason, eigenvectors
are usually required to be different from the zero vector. In this terminology, fixed points
v of g are simply eigenvectors with eigenvalue 1, since they satisfy g(v) = v = 1v .

It is natural to ask whether a linear map g : V → V always admits an eigenvector. In the
remaining part of this chapter we will answer this question and further develop our theory
of linear maps, specifically endomorphisms. We start with some precise definitions.

Definition 6.24 (Eigenvector, eigenspace, eigenvalue — VideoVideo) Let g : V → V be
an endomorphism of a K-vector space V .
• An eigenvector with eigenvalue λ ∈ K is a non-zero vector v ∈ V such that
g(v) = λv .

• If λ ∈ K is an eigenvalue of g , the λ-eigenspace Eigg (λ) is the subspace of vectors
v ∈ V satisfying g(v) = λv .

• The dimension of Eigg (λ) is called the geometric multiplicity of the eigenvalue λ.
• The set of all eigenvalues of g is called the spectrum of g .
• For A ∈ Mn,n(K) we speak of eigenvalues, eigenvectors, eigenspaces and spec-

trum to mean those of the endomorphism fA : Kn → Kn.

Remark 6.25 By definition, the zero vector 0V is not an eigenvector, it is however
an element of the eigenspace Eigg (λ) for every eigenvalue λ.

Example 6.26
(i) The scalar 0 is an eigenvalue of an endomorphism g : V → V if and only if

the kernel of g is different from {0V }. In the case where the kernel of f does
not only consist of the zero vector, we have Ker g = Eigg (0) and the geometric
multiplicity of 0 is the nullity of g .

(ii) The endomorphism fD : Kn → Kn associated to a diagonal matrix with distinct
diagonal entries

D =


λ1

λ2

. . .
λn


has spectrum {λ1, ... ,λn} and corresponding eigenspaces EigfD(λi ) =

span{e⃗i}.
(iii) Consider the R-vector space P(R) of polynomials and f = d

dx : P(R) →
P(R) the derivative by the variable x . The kernel of f consists of the constant
polynomials and hence 0 is an eigenvalue for f . For any non-zero scalar λ we
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cannot have polynomials p satisfying d
dx p = λp, as the left hand of this last

expression has a smaller degree than the right hand side.

Previously we defined the trace and determinant for an endomorphism g : V → V

by observing that the trace and determinant of the matrix representation of g are in-
dependent of the chosen basis of V . Similarly, we can consider eigenvalues of g and
eigenvalues of the matrix representation of g with respect to some ordered basis of V .
Perhaps unsurprisingly, the eigenvalues are the same:

Proposition 6.27 Let g : V → V be an endomorphism of a finite dimensional K-
vector space V . Let b be an ordered basis of V with corresponding linear coordinate
system β. Then v ∈ V is an eigenvector of g with eigenvalue λ ∈ K if and only if
β(v) ∈ Kn is an eigenvector with eigenvalue λ of M(g ,b,b). In particular, conjugate
matrices have the same eigenvalues.

Proof Write A = M(g ,b,b). Recall that by an eigenvector of A ∈ Mn,n(K), we mean an
eigenvector of fA : Kn → Kn. By Definition 3.91Definition 3.91, we have fA = β ◦ g ◦ β−1. Suppose
λ ∈ K is an eigenvalue of g so that g(v) = λv for some non-zero vector v ∈ V . Consider
the vector x⃗ = β(v) ∈ Kn which is non-zero, since β : V → Kn is an isomorphism. Then

fA(x⃗) = β(g(β−1(x⃗))) = β(g(v)) = β(λv) = λβ(v) = λx⃗ ,

so that x⃗ is an eigenvector of fA with eigenvalue λ.

Conversely, if λ is an eigenvalue of fA with non-zero eigenvector x⃗ , then it follows as
above that v = β−1(x⃗) ∈ V is an eigenvector of g with eigenvalue λ.

By Remark 6.15Remark 6.15, if the matrices A, B are similar, then they represent the same endo-
morphism g : Kn → Kn and hence have the same eigenvalues. □

The “nicest” endomorphisms are those for which there exists an ordered basis consisting
of eigenvectors:

Definition 6.28 (Diagonalisable endomorphism)
• An endomorphism g : V → V is called diagonalisable if there exists an ordered

basis b of V such that each element of b is an eigenvector of g .
• For n ∈ N, a matrix A ∈ Mn,n(K) is called diagonalisable over K if the endo-

morphism fA : Kn → Kn is diagonalisable.

Example 6.29
(i) We consider V = P(R) and the endomorphism g : V → V which replaces the

variable x with 2x . For instance, we have

g(x2 − 2x + 3) = (2x)2 − 2(2x) + 3 = 4x2 − 4x + 3.

Then g is diagonalisable. The vector space P(R) has an ordered basis b =

(1, x , x2, x3, ...). Clearly, for all k ∈ N ∪ {0} we have g(xk) = 2kxk , so that xk

is an eigenvector of g with eigenvalue 2k .
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(ii) For α ∈ (0,π) consider

Rα =

(
cosα − sinα

sinα cosα

)
.

Recall that the endomorphism fRα
: R2 → R2 rotates vectors counter-

clockwise around the origin 0R2 by the angle α. Since α ∈ (0,π), the endo-
morphism fRα

has no eigenvectors and hence is not diagonalisable.

Remark 6.30 Applying Proposition 6.27Proposition 6.27, we conclude that in the case of a finite
dimensional K-vector space V , an endomorphism g : V → V is diagonalisable if
and only if there exists an ordered basis b of V such that M(g ,b,b) is a diagonal
matrix. Moreover, A ∈ Mn,n(K) is diagonalisable if and only if A is similar over K to
a diagonal matrix.

Recall, if X ,Y are sets, f : X → Y a mapping and Z ⊂ X a subset of X , we can consider
the restriction of f to Z , usually denoted by f |Z , which is the mapping

f |Z : Z → Y, z 7→ f (z).

So we simply take the same mapping f , but apply it to the elements of the subset only.

Closely related to the notion of an eigenvector is that of a stable subspace. Let v ∈ V be
an eigenvector with eigenvalue λ of the endomorphism g : V → V . The 1-dimensional
subspace U = span{v} is stable under g , that is, g(U) ⊂ U . Indeed, since g(v) = λv

and since every vector u ∈ U can be written as u = tv for some scalar t ∈ K, we have
g(u) = g(tv) = tg(v) = tλv ∈ U . This motivates the following definition:

Definition 6.31 (Stable subspace) A subspace U ⊂ V is called stable or invariant
under the endomorphism g : V → V if g(U) ⊂ U , that is g(u) ∈ U for all vectors
u ∈ U . In this case, the restriction g |U of g to U is an endomorphism of U .

Remark 6.32 Notice that a finite dimensional subspace U ⊂ V is stable under g if
and only if g(vi ) ∈ U for 1 ⩽ i ⩽ m, where {v1, ... , vm} is a basis of U .

Example 6.33
(i) Every eigenspace of an endomorphism g : V → V is a stable subspace. By

definition g |Eigg (λ) : Eigg (λ) → Eigg (λ) is multiplication by the scalar λ ∈ K.
(ii) We consider V = R3 and

Rα =

cosα − sinα 0

sinα cosα 0

0 0 1


for α ∈ (0,π). The endomorphism fRα

: R3 → R3 is the rotation by the angle
α ∈ R around the axis spanned by e⃗3. Then the plane U = {x⃗ = (xi )1⩽i⩽3 ∈
R3|x3 = 0} is stable under f = fRα

. Here f |Π : Π → Π is the rotation in the
plane U around the origin with angle α.
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Moreover, the vector e⃗3 is an eigenvector with eigenvalue 1 so that

Eigf (1) = span{e⃗3}.

(iii) We consider again the R-vector space P(R) of polynomials and f = d
dx :

P(R) → P(R) the derivative by the variable x . For n ∈ N let Un denote the
subspace of polynomials of degree at most n. Since Un−1 ⊂ Un, the subspace
Un is stable under f .

Stable subspaces correspond to zero blocks in the matrix representation of linear maps.
More precisely:

Proposition 6.34 Let V be a K-vector space of dimension n ∈ N and g : V → V an
endomorphism. Furthermore, let U ⊂ V be a subspace of dimension 1 ⩽ m ⩽ n and
b an ordered basis of U and c = (b,b′) an ordered basis of V . Then U is stable under
g if and only if the matrix A = M(g , c, c) has the form

A =

(
Â ∗

0n−m,m ∗

)
for some matrix Â ∈ Mm,m(K). In the case where U is stable under g , we have
Â = M(g |U ,b,b) ∈ Mm,m(K).

Proof Write b = (v1, ... , vm) for vectors vi ∈ U and b′ = (w1, ... ,wn−m) for vectors
wi ∈ V .

⇒ Since U is stable under g , we have g(u) ∈ U for all vectors u ∈ U . Since b is a basis of
U , there exist scalars Âij ∈ K with 1 ⩽ i , j ⩽ m such that

g(vj) =
m∑
i=1

Âijvi

for all 1 ⩽ j ⩽ m. By Proposition 3.92Proposition 3.92, the matrix representation of g with respect to the
ordered basis c = (b,b′) of V thus takes the form

A =

(
Â ∗

0n−m,m ∗

)
where we write Â = (Âij)1⩽i ,j⩽m = M(g |U ,b,b).

⇐ Suppose

A =

(
Â ∗

0n−m,m ∗

)
= M(g , c, c)

is the matrix representation of g with respect to the ordered basis c of V . Write Â =

(Âij)1⩽i ,j⩽m Then, by Proposition 3.92Proposition 3.92, g(vj) =
∑m

i=1 Âijvi ∈ U for all 1 ⩽ j ⩽ m, hence
U is stable under g , by Remark 6.32Remark 6.32. □

From Proposition 6.34Proposition 6.34 we can conclude:

Remark 6.35 Suppose V is the direct sum of subspaces U1, U2, ... ,Um, all of which
are stable under the endomorphism g : V → V . If bi is an ordered basis of Ui for
i = 1, ... ,m. Then the matrix representation of g with respect to the ordered basis
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c = (b1, ... ,bm) takes the block form

A =


A1

A2

. . .
Am


where Ai = M(g |Ui ,bi ,bi ) for i = 1, ... ,m.

6.4 The characteristic polynomial

The eigenvalues of an endomorphism are the solutions of a polynomial equation:

Lemma 6.36 Let V be a finite dimensional K-vector space and g : V → V an
endomorphism. Then λ ∈ K is an eigenvalue of g if and only if

det (λIdV − g) = 0.

Moreover if λ is an eigenvalue of g , then Eigg (λ) = Ker(λIdV − g).

Proof Let v ∈ V . We may write v = IdV (v). Hence

g(v) = λv ⇐⇒ 0V = (λIdV − g)(v) ⇐⇒ v ∈ Ker(λIdV − g)

It follows that Eigg (λ) = Ker(λIdV − g). Moreover λ ∈ K is an eigenvalue of g if
and only if the kernel of λIdV − g is different from {0V } or if and only if λIdV − g is
not injective. Proposition 6.22Proposition 6.22 implies that λ ∈ K is an eigenvalue of g if and only if
det (λIdV − g) = 0. □

Definition 6.37 (Characteristic polynomial — VideoVideo) Let g : V → V be an endo-
morphism of a finite dimensional K-vector space V . The function

charg : K → K, x 7→ det (x IdV − g)

is called the characteristic polynomial of the endomorphism g .

In practice, in order to compute the characteristic polynomial of an endomorphism
g : V → V , we choose an ordered basis b of V and compute the matrix representation
A = M(g ,b,b) of g with respect to b. We then have

charg (x) = det (x1n − A) .

By the characteristic polynomial of a matrix A ∈ Mn,n(K), we mean the characteristic
polynomial of the endomorphism fA : Kn → Kn, that is, the function x 7→ det (x1n − A).

A zero of a polynomial f : K → K is a scalar λ ∈ K such that f (λ) = 0. The multiplicity
of a zero λ is the largest integer n ⩾ 1 such that there exists a polynomial f̂ : K → K so
that f (x) = (x − λ)n f̂ (x) for all x ∈ K. Zeros are also known as roots.

Example 6.38 The polynomial f (x) = x3 − x2 − 8x + 12 can be factorised as
f (x) = (x − 2)2(x + 3) and hence has zero 2 with multiplicity 2 and −3 with
multiplicity 1.
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Definition 6.39 (Algebraic multiplicity) Letλbe an eigenvalue of the endomorphism
g : V → V . The multiplicity of the zero λ of charg is called the algebraic multiplicity
of λ.

Example 6.40
(i) We consider

A =

(
1 5

5 1

)
.

Then

charA(x) = charfA(x) = det (x12 − A) = det

(
x − 1 −5

−5 x − 1

)
= (x − 1)2 − 25 = x2 − 2x − 24 = (x + 4)(x − 6).

Hence we have eigenvalues λ1 = 6 and λ2 = −4, both with algebraic multipli-
city 1. By definition we have

EigA(6) = EigfA(6) =
{
v⃗ ∈ K2|Av⃗ = 6v⃗

}
and we compute that

EigA(6) = span

{(
1

1

)}
Since dimEigA(6) = 1, the eigenvalue 6 has geometric multiplicity 1. Likewise
we compute

EigA(−4) = span

{(
−1

1

)}
so that the eigenvalue −4 has geometric multiplicity 1 as well. Notice that we
have an ordered basis of eigenvectors of A and hence A is diagonalisable.

(ii) We consider

A =

(
2 1

0 2

)
Then charA(x) = (x − 2)2 so that we have a single eigenvalue 2 with algebraic
multiplicity 2. We compute

EigA(2) = span

{(
1

0

)}
so that the eigenvalue 2 has geometric multiplicity 1. Notice that we cannot
find an ordered basis consisting of eigenvectors, hence A is not diagonalisable.

The determinant and trace of an endomorphism do appear as coefficients in its charac-
teristic polynomial:

Lemma 6.41 Let g : V → V be an endomorphism of a K-vector space V of dimen-
sion n. Then charg is a polynomial of degree n and

charg (x) = xn − Tr(g)xn−1 + · · ·+ (−1)n det(g).

Proof We fix an ordered basis b of V . Writing M(g ,b,b) = A = (Aij)1⩽i ,j⩽n and using
the Leibniz formula (5.85.8), we have

charg (x) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Biσ(i),
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where

Bij =

{
x − Aii , i = j ,

−Aij , i ̸= j .

Therefore, charg is a finite sum of products containing x at most n times, hence charg is
a polynomial in x of degree at most n. The identity permutation contributes the term∏n

i=1 Bii in the Leibniz formula, hence we obtain

charg (x) =
n∏

i=1

(x − Aii ) +
∑

σ∈Sn,σ ̸=1

sgn(σ)
n∏

i=1

Biσ(i)

We now use induction to show that
n∏

i=1

(x − Aii ) = xn − Tr(A)xn−1 + Cn−2x
n−2 + · · ·+ c1x + c0

for scalars Cn−2, ... , c0 ∈ K. For n = 1 we obtain x − A11, so that the statement is
anchored.

Inductive step: Suppose
n−1∏
i=1

(x − Aii ) = xn−1 −

(
n−1∑
i=1

Aii

)
xn−2 + Cn−2x

n−3 + · · ·+ c1x + c0,

for coefficients Cn−2, ... , c0, then
n∏

i=1

(x − Aii ) = (x − Ann)

[
xn−1 −

(
n−1∑
i=1

Aii

)
xn−2 + Cn−2x

n−3 + · · ·+ c1x + c0

]

= xn −

(
n∑

i=1

Aii

)
xn−1 + lower order terms in x ,

so the induction is complete.

We next argue that
∑

σ∈Sn,σ ̸=1 sgn(σ)
∏n

i=1 Biσ(i) has at most degree n − 2. Notice that
each factor Biσ(i) of

∏n
i=1 Biσ(i) for which i ̸= σ(i) does not contain x . So suppose that∑

σ∈Sn,σ ̸=1 sgn(σ)
∏n

i=1 Biσ(i) has degree bigger or equal than n− 1. Then we have n− 1

integers i with 1 ⩽ i ⩽ n such that i = σ(i). Let j denote the remaining integer. Since σ is
injective, it follows that for any i ̸= j we must have i = σ(i) ̸= σ(j). Therefore, σ(j) = j

and hence σ = 1, a contradiction.

In summary, we have shown that

charg (x) = xn − Tr(g)xn−1 + Cn−2x
n−1 + · · ·+ c1x + c0

for coefficients Cn−2, ... , c0 ∈ K. It remains to show that c0 = (−1)n det(g). We have
c0 = charg (0) = det(−g) = det(−A). Since the determinant is linear in each row of A,
this gives det(−A) = (−1)n det(A), as claimed. □

Remark 6.42 In particular, for n = 2 we have charg (x) = x2 − Tr(g)x + det(g).
Compare with Example 6.40Example 6.40.
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6.5 Properties of eigenvalues WEEK 12

We will argue next that an endomorphism g : V → V of a finite dimensional K-vector
space V has at most dim(V ) eigenvalues. We first need:

Theorem 6.43 (Little Bézout’s theorem) For a polynomial f ∈ P(K) of degree n ⩾ 1

and x0 ∈ K, there exists a polynomial g ∈ P(K) of degree n − 1 such that for all
x ∈ K we have f (x) = f (x0) + g(x)(x − x0).

Proof We will give an explicit expression for the polynomial g . If one is not interested in
such an expression, a proof using induction can also be given. Write f (x) =

∑n
k=0 akx

k

for coefficients (a0, ... , an) ∈ Kn+1. For 0 ⩽ j ⩽ n − 1 consider

(6.3) bj =

n−j−1∑
k=0

ak+j+1x
k
0

and the polynomial

g(x) =
n−1∑
j=0

bjx
j

of degree n − 1. We have

g(x)(x − x0) =
n−1∑
j=0

n−j−1∑
k=0

(
ak+j+1x

k
0 x

j+1
)
−

n−1∑
j=0

n−j−1∑
k=0

(
ak+j+1x

k+1
0 x j

)
=

n∑
j=1

n−j∑
k=0

(
ak+jx

k
0 x

j
)
−

n−1∑
j=0

n−j∑
k=1

(
ak+jx

k
0 x

j
)

= anx
n +

n−1∑
j=1

ajx
j + a0 − a0 −

n∑
k=1

akx
k
0 = f (x)− f (x0).

□

From this we conclude:

Proposition 6.44 Let f ∈ P(K) be a polynomial of degree n. Then f has at most n
(distinct) zeros or f is the zero polynomial.

Proof We use induction. The case n = 0 is clear, hence the statement is anchored.

Inductive step: Suppose f ∈ P(K) is a polynomial of degree n with n + 1 distinct zeros
λ1, ... ,λn+1. Since f (λn+1) = 0, Theorem 6.43Theorem 6.43 implies that

f (x) = (x − λn+1)g(x)

for some polynomial g of degree n − 1. For 1 ⩽ i ⩽ n, we thus have

0 = f (λi ) = (λi − λn+1)g(λi ).

Since λi ̸= λn+1 it follows that g(λi ) = 0. Therefore, g has n distinct zeros and must be
the zero polynomial by the induction hypothesis. It follows that f is the zero polynomial
as well. □

This gives:
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Corollary 6.45 Letg : V → V be an endomorphism of aK-vector space of dimension
n ∈ N. Then g has at most n (distinct) eigenvalues.

Proof By Lemma 6.36Lemma 6.36 and Lemma 6.41Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial. The characteristic polynomial of g has degree n. The claim follows
by applying Proposition 6.44Proposition 6.44. □

Proposition 6.46 (Linear independence of eigenvectors) Let V be a finite dimen-
sional K-vector space and g : V → V an endomorphism. Then the eigenspaces
Eigg (λ) of g are in direct sum. In particular, if v1, ... , vm are eigenvectors correspond-
ing to distinct eigenvalues of g , then {v1, ... , vm} are linearly independent.

Proof We use induction on the number m of distinct eigenvalues of g . Let {λ1, ... ,λm}
be distinct eigenvalues of g . For m = 1 the statement is trivially true, so the statement is
anchored.

Inductive step: Assume m − 1 eigenspaces are in direct sum. We want to show that then
m eigenspaces are also in direct sum. Let vi , v ′

i ∈ Eigg (λi ) be eigenvectors such that

(6.4) v1 + v2 + · · ·+ vm = v ′
1 + v ′

2 + · · ·+ vm̃.

Applying g to this last equation gives

(6.5) λ1v1 + λ2v2 + · · ·+ λmvm = λ1v
′
1 + λ2v

′
2 + · · ·+ λmvm̃.

Subtracting λm times (6.46.4) from (6.56.5) gives

(λ1 − λm)v1 + · · ·+ (λm−1 − λm)vm−1 = (λ1 − λm)v
′
1 + · · ·+ (λm−1 − λm)v

′
m−1.

Since m − 1 eigenspaces are in direct sum, this implies that (λi − λm)vi = (λi − λm)v
′
i

for 1 ⩽ i ⩽ m − 1. Since the eigenvalues are distinct, we have λi − λm ̸= 0 for all
1 ⩽ i ⩽ m − 1 and hence vi = v ′

i for all 1 ⩽ i ⩽ m − 1. Now (6.56.5) implies that vm = vm̃
as well and the inductive step is complete.

Since the eigenspaces are in direct sum, the linear independence of eigenvectors with
respect to distinct eigenvalues follows from Remark 6.7Remark 6.7. □

In the case where all the eigenvalues are distinct, we conclude that g is diagonalisable.

Proposition 6.47 Let g : V → V be an endomorphism of a finite dimensional K-
vector space V . Suppose the characteristic polynomial of g has dim(V ) distinct zeros
(that is, the algebraic multiplicity of each eigenvalue is 1), then g is diagonalisable.

Proof Let n = dim(V ). Let λ1, ... ,λn denote the distinct eigenvalues of g . Let 0V ̸=
vi ∈ Eigg (λi ) for i = 1, ... , n. Then, by Proposition 6.46Proposition 6.46, the eigenvectors are linearly
independent, it follows that (v1, ... , vn) is an ordered basis ofV consisting of eigenvectors,
hence g is diagonalisable. □

Remark 6.48 Proposition 6.47Proposition 6.47 gives a sufficient condition for an endomorphism
g : V → V to be diagonalisable, it is however not necessary. The identity endo-
morphism is diagonalisable, but its spectrum consists of the single eigenvalue 1

with algebraic multiplicity dim(V ).
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Every polynomial in P(C) of degree at least 1 has at least one zero. This fact is known as
the fundamental theorem of algebra. The name is well-established, but quite misleading,
as there is no purely algebraic proof. You will encounter a proof of this statement in the
module M07. As a consequence we obtain the following important existence theorem:

Theorem 6.49 (Existence of eigenvalues) Let g : V → V be an endomorphism of a
complex vector space V of dimension n ⩾ 1. Then g admits at least one eigenvalue.
Moreover, the sum of the algebraic multiplicities of the eigenvalues of g is equal to n.
In particular, if A ∈ Mn,n(C) is a matrix, then there is at least one eigenvalue of A.

Proof By Lemma 6.36Lemma 6.36 and Lemma 6.41Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial and this is an element of P(C). The first statement thus follows by
applying the fundamental theorem of algebra to the characteristic polynomial of g .

Applying Theorem 6.43Theorem 6.43 and the fundamental theorem of algebra repeatedly, we find
k ∈ N and multiplicities m1, ... ,mk ∈ N such that

charg (x) = (x − λ1)
m1(x − λ2)

m2 · · · (x − λk)
mk

where λ1, ... ,λk are zeros of charg . Since charg has degree n, it follows that
∑k

i=1 mi =

n. □

Example 6.50
• Recall that the discriminant of a quadratic polynomial x 7→ ax2+bx+c ∈ P(K) is
b2−4ac , provided a ̸= 0. If K = C and b2−4ac is non-zero, then the polynomial
ax2 + bx + c has two distinct zeros. The characteristic polynomial of a 2-by-2
matrix A satisfies charA(x) = x2 −Tr(A)x +det(A). Therefore, if A has complex
entries and satisfies (TrA)2 − 4 detA ̸= 0, then it is diagonalisable. If A has real
entries and satisfies (TrA)2 − 4 detA ⩾ 0, then it has a least one eigenvalue. If
(TrA)2 − 4 detA > 0 then it is diagonalisable.

• Recall that, by Proposition 5.24Proposition 5.24, an upper triangular matrix A = (Aij)1⩽i ,j⩽n

satisfies detA =
∏n

i=1 Aii . It follows that

charA(x) =
n∏

i=1

(x − Aii ) = (x − A11)(x − A22) · · · (x − Ann).

Consequently, an upper triangular matrix has spectrum {A11,A22, ... ,Ann} and is
diagonalisable if all its diagonal entries are distinct. Notice that by Example 6.40Example 6.40
(ii) not every upper triangular matrix is diagonalisable.

Example 6.51 (Fibonacci sequences) We revisit the Fibonacci sequences, now
equipped with the theory of endomorphisms. A Fibonacci sequence is a sequence
ξ : N ∪ {0} → K satisfying the recursive relation ξn+2 = ξn + ξn+1. Consider the
matrix

A =

(
ξ0 ξ1
ξ1 ξ2

)
.

Then, using induction, we can show that

An =

(
ξn−1 ξn
ξn ξn+1

)
for all n ∈ N. We would like to compute An for the initial conditions ξ0 = 0 and
ξ1 = 1. Suppose we can find an invertible matrix C so that A = CDC−1 for some
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diagonal matrix D. Then

An = CDC−1CDC−1 · · ·CDC−1 = CDnC−1

and we can easily compute An, as the n-th power of a diagonal matrix D is the
diagonal matrix whose diagonal entries are given by the n-th powers of diagonal
entries of D. We thus want to diagonalise the matrix

A =

(
0 1

1 1

)
.

We obtain charA(x) = x2 − x − 1 and hence eigenvalues λ1 = (1 +
√
5)/2 and

λ2 = (1−
√
5)/2. From this we compute

EigA(λ1) = span

{(
1

λ1

)}
and EigA(λ2) = span

{(
1

λ2

)}
Let e = (e⃗1, e⃗2) denote the standard basis of R2 and consider the ordered basis

b =

((
1

λ1

)
,

(
1

λ2

))
of eigenvectors of fA. We have

M(fA,b,b) =

(
λ1 0

0 λ2

)
= D

and the change of base matrix is

C = C(b, e) =

(
1 1

λ1 λ2

)
and

C−1 = C(e,b) =
1

λ2 − λ1

(
λ2 −1

−λ1 1

)
.

Therefore A = CDC−1 and hence An = CDnC−1 so that

An =
1

λ2 − λ1

(
1 1

λ1 λ2

)(
λn
1 0

0 λn
2

)(
λ2 −1

−λ1 1

)
=

(
ξn−1 ξn
ξn ξn+1

)
.

This yields the formula

ξn =
λn
1 − λn

2

λ1 − λ2
.

Proposition 6.52 Let g : V → V be an endomorphism of a finite dimensional
K-vector space V of dimension n ⩾ 1.

(i) Let λ be an eigenvalue of g . Then its algebraic multiplicity is at least as big as its
geometric multiplicity.

(ii) If K = C, then g is diagonalisable if and only if for all eigenvalues of g , the
algebraic and geometric multiplicity are the same.

Proof (i) Let dimEigg (λ) = m and b be an ordered basis of Eigg (λ). Furthermore, let
b′ be an ordered tuple of vectors such that c = (b,b′) is an ordered basis of V . The
eigenspace Eigg (λ) is stable under g and

M(g |Eigg (λ),b,b) = λ1m.

By Proposition 6.34Proposition 6.34, the matrix representation of g with respect to the basis c takes the
form

M(g , c, c) =

(
λ1m ∗

0m−n,m B

)
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for some matrix B ∈ Mn−m,n−m(K). We thus obtain

charg (x) = det

(
(x − λ)1m ∗
0m−n,m x1n−m − B

)
Applying the Laplace expansion (5.55.5) with respect to the first column, we have

charg (x) = (x − λ) det

(
(x − λ)1m−1 ∗
0m−n,m−1 x1n−m − B

)
Applying the Laplace expansion again with respect to the first column, m-times in total,
we get

charg (x) = (x − λ)m det(x1n−m − B) = (x − λ)m charB(x).

The algebraic multiplicity of λ is thus at least m.

(ii) Suppose K = C and that g : V → V is diagonalisable. Hence we have an ordered
basis (v1, ... , vn) of V consisting of eigenvectors of g . Therefore,

charg (x) =
n∏

i=1

(x − λi )

where λi is the eigenvalue of the eigenvector vi , 1 ⩽ i ⩽ n. For any eigenvalue λj , its
algebraic multiplicity is the number of indices i with λi = λj . For each such index i , the
eigenvector vi satisfies g(vi ) = λivi = λjvi and hence is an element of the eigenspace
Eigg (λj). The geometric multiplicity of each eigenvalue is thus at least as big as the
algebraic multiplicity, but by the previous statement, the latter cannot be bigger than
the former, hence they are equal.

Conversely, suppose that for all eigenvalues of g , the algebraic and geometric multi-
plicity are the same. Since K = C, by Theorem 6.49Theorem 6.49, the sum of the algebraic multipli-
cities is n. The sum of the geometric multiplicities is by assumption also n. Since, by
Proposition 6.46Proposition 6.46, the eigenspaces with respect to different eigenvalues are in direct sum,
we obtain a basis of V consisting of eigenvectors of g . □

6.6 Special endomorphisms

6.6.1 Involutions

A mapping ι : X → X from a set X into itself is called an involution, if ι ◦ ι = IdX . In the
case where X is a vector space and ι is linear, then ι is called a linear involution.

Example 6.53 (Involutions)
(i) Let V be a K-vector space. Then the identity mapping IdV : V → V is a linear

involution.
(ii) For all n ∈ N, the transpose Mn,n(K) → Mn,n(K) is a linear involution.

(iii) For n ∈ N, let X denote the set of invertible n × n matrices. Then the matrix
inverse −1 : X → X is an involution. Notice that X is not a vector space.

(iv) For any K-vector space V , the mapping ι : V → V , v 7→ −v is a linear
involution. Considering F(I ,K), the K-vector space of functions on the interval
I ⊂ R, we obtain a linear involution of F(V ,K) by sending a function f to f ◦ ι.

(v) If A ∈ Mn,n(K) satisfies A2 = 1n, then fA : Kn → Kn is a linear involution.

The spectrum of an involution is a subset of {−1, 1}.
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Proposition 6.54 Let V be a K-vector space and ι : V → V a linear involution.
Then the spectrum of ι is contained in {−1, 1}. Moreover V = Eigι(1) ⊕ Eigι(−1)

and ι is diagonalisable.

Proof Suppose λ ∈ K is an eigenvalue of ι so that ι(v) = λv for some non-zero vector
v ∈ V . Then ι(ι(v)) = v = λι(v) = λ2v . Hence (1− λ2)v = 0V and since v is non-zero,
we conclude that λ = ±1. By Proposition 6.46Proposition 6.46, the eigenspaces Eigι(1) and Eigι(−1)

are in direct sum.

For v ∈ V we write

v =
1

2
(v + f (v))︸ ︷︷ ︸
∈Eigι(1)

+
1

2
(v − f (v))︸ ︷︷ ︸
∈Eigι(−1)

hence V = Eigι(1)⊕Eigι(−1). Take an ordered basis b+ of Eigι(1) and an ordered basis
b− of Eigι(1). Then (b+,b−) is an ordered basis of V consisting of eigenvectors of ι. □

6.6.2 Projections

A linear mapping Π : V → V satisfying Π ◦ Π = Π is called a projection.

Example 6.55 Consider V = R3 and

A =

1 0 0

0 1 0

0 0 0

 .

Clearly, A2 = A and fA : R3 → R3 projects a vector x⃗ = (xi )1⩽i⩽3 onto the plane
{x⃗ ∈ R3|x3 = 0}.

In a sense there is only one type of projection. Recall from the exercises that for a projec-
tion Π : V → V , we have V = Ker Π⊕ ImΠ. Given two subspaces U1,U2 of V such that
V = U1 ⊕ U2 , there is a projection Π : V → V whose kernel is U1 and whose image is
U2. Indeed, every vector v ∈ V can be written as v = u1 + u2 for unique vectors ui ∈ Ui

for i = 1, 2. Hence we obtain a projection by defining Π(v) = u2 for all v ∈ V .

Denote by X the set of projections from V to V and by Y the set of pairs (U1,U2) of
subspaces of V that are in direct sum and satisfy V = U1 ⊕ U2. Then we obtain a
mapping Λ : X → Y defined by f 7→ (Ker f , Im f ).

Similar to Proposition 6.54Proposition 6.54, we obtain:

Proposition 6.56 Let V be a K-vector space and Π : V → V a projection. Then
the spectrum of Π is contained in {0, 1}. Moreover V = EigΠ(0) ⊕ EigΠ(1), Π is
diagonalisable and ImΠ = EigΠ(1).

Proof Let v ∈ V be an eigenvector of the projection Π with eigenvalue λ. Hence we
obtain Π(Π(v)) = λ2v = Π(v) = λv , equivalently, λ(λ − 1)v = 0V . Since v is non
zero, it follows that λ = 0 or λ = 1. Since Π is a projection, we have V = Ker Π⊕ ImΠ.
Since Ker Π = EigΠ(0), we thus only need to show that ImΠ = EigΠ(1). Let v ∈ ImΠ so
that v = Π(v̂) for some vector v̂ ∈ V . Hence Π(v) = Π(Π(v̂)) = Π(v̂) = v and v is an
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eigenvector with eigenvalue 1. Conversely, suppose v ∈ V is an eigenvector of Π with
eigenvalue 1. Then Π(v) = v = Π(Π(v)) and hence v ∈ ImΠ. We thus conclude that
ImΠ = EigΠ(1). Choosing an ordered basis of Ker Π and an ordered basis of ImΠ gives
a basis of V consisting of eigenvectors, hence Π is diagonalisable. □

Exercises

Exercise 6.57 Derive the formula (6.36.3) for the coefficients bj .

Exercise 6.58 Show that Λ is a bijection.

Exercise 6.59 Show that if Π : V → V is a projection then IdV − Π : V → V is a
projection with kernel equal to the image of Π and image equal to the kernel of Π.
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CHAPTER 7

Quotient vector spaces

7.1 Affine mappings and affine spaces WEEK 13

Previously we saw that we can take the sum of subspaces of a vector space. In this final
chapter of the Linear Algebra I module we introduce the concept of a quotient of a vector
space by a subspace.

Translations are among the simplest non-linear mappings.

Definition 7.1 (Translation) Let V be a K-vector space and v0 ∈ V . The mapping

Tv0 : V → V , v 7→ v + v0

is called the translation by the vector v0.

Remark 7.2 Notice that for v0 ̸= 0V , a translation is not linear, since Tv0(0V ) =

0V + v0 = v0 ̸= 0V .

Taking s1 = 1 and s2 = −1 in (3.63.6), we see that a linear map f : V → W between
K-vector spacesV ,W satisfies f (v1−v2) = f (v1)− f (v2) for all v1, v2 ∈ V . In particular,
linear maps are affine maps in the following sense:

Definition 7.3 (Affine mapping) A mapping f : V → W is called affine if there
exists a linear map g : V → W so that f (v1)− f (v2) = g(v1 − v2) for all v1, v2 ∈ V .
We call g the linear map associated to f .

Affine mappings are compositions of linear mappings and translations:

Proposition 7.4 A mapping f : V → W is affine if and only if there exists a linear
map g : V → W and a translation Tw0 : W → W so that f = Tw0 ◦ g .

Proof ⇐ Let g : V → W be linear and Tw0 : W → W be a translation for some
vector w0 ∈ W so that Tw0(w) = w + w0 for all w ∈ W . Let f = Tw0 ◦ g so that
f (v) = g(v) + w0 for all v ∈ V . Then

f (v1)− f (v2) = g(v1) + w0 − g(v2)− w0 = g(v1)− g(v2) = g(v1 − v2),

hence f is affine.
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⇒ Let f : V → W be affine and g : V → W its associated linear map. Since f is affine
we have for all v ∈ V

f (v)− f (0V ) = g(v − 0V ) = g(v)− g(0V ) = g(v)

where we use the linearity of g and Lemma 3.15Lemma 3.15. Writing w0 = f (0V ) we thus have

f (v) = g(v) + w0

so that f is the composition of the linear map g and the translation Tw0 : W → W ,
w 7→ w + w0. □

Example 7.5 Let A ∈ Mm,n(K), b⃗ ∈ Km and

fA,b⃗ : Kn → Km, x⃗ 7→ Ax⃗ + b⃗.

Then fA,b⃗ is an affine map whose associated linear map is fA. Conversely, combining
Lemma 3.18Lemma 3.18 and Proposition 7.4Proposition 7.4, we see that every affine map Kn → Km is of the
form fA,b⃗ for some matrix A ∈ Mm,n(K) and vector b⃗ ∈ Km.

An affine subspace of a K-vector space V is a translation of a subspace by some fixed
vector v0.

Definition 7.6 (Affine subspace) Let V be a K-vector space. An affine subspace of
V is a subset of the form

U + v0 = {u + v0|u ∈ U},

where U ⊂ V is a subspace and v0 ∈ V . We call U the associated vector space to
the affine subspace U + v0 and we say that U + v0 is parallel to U .

Example 7.7 Let V = R2 and U = span{e⃗1 + e⃗2} = {s(e⃗1 + e⃗2)|s ∈ R} where
here, as usual, {e⃗1, e⃗2} denotes the standard basis of R2. So U is the line through
the origin 0R2 defined by the equation y = x . By definition, for all v⃗ ∈ R2 we have

U + v⃗ = {v⃗ + sw⃗ |s ∈ R} ,

where we write w⃗ = e⃗1 + e⃗2. So for each v⃗ ∈ R2, the affine subspace U + v⃗ is a line
in R2, the translation by the vector v⃗ of the line defined by y = x .

7.2 Quotient vector spaces

Let U be a subspace of a K-vector space V . We want to make sense of the notion of
dividing V by U . It turns out that there is a natural way to do this and moreover, the
quotient V /U again carries the structure of a K-vector space. The idea is to define V /U

to be the set of all translations of the subspace U , that is, we consider the set of subsets

V /U = {U + v |v ∈ V }.

We have to define what it means to add affine subspaces U + v1 and U + v2 and what it
means to scale U + v by a scalar s ∈ K. Formally, it is tempting to define 0V/U = U +0V
and

(7.1) (U + v1) +V/U (U + v2) = U + (v1 + v2)
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for all v1, v2 ∈ V as well as

(7.2) s ·V/U (U + v) = U + (sv)

for all v ∈ V and s ∈ K. However, we have to make sure that these operations are well
defined. We do this with the help of the following lemma.

Lemma 7.8 Let U ⊂ V be a subspace. Then any vector v ∈ V belongs to a unique
affine subspace parallel toU , namelyU+v . In particular, two affine subspacesU+v1
and U + v2 are either equal or have empty intersection.

Proof Since0V ∈ U , we have v ∈ (U+v), hence we only need to show that if v ∈ (U+v̂)

for some vector v̂ , then U + v = U + v̂ . Assume v ∈ (U + v̂) so that v = u+ v̂ for some
vector u ∈ U . Suppose w ∈ (U + v̂). We need to show that then also w ∈ (U + v). Since
w ∈ (U + v̂) we have w = û+ v̂ for some vector û ∈ U . Using that v̂ = v − u, we obtain

w = û + v − u = û − u + v

Since U is a subspace we have û − u ∈ U and hence w ∈ (U + v).

Conversely, suppose w ∈ (U + v), it follows exactly as before that then w ∈ (U + v̂) as
well. □

We are now going to show that (7.17.1) and (7.27.2) are well defined. We start with (7.17.1). Let
v1, v2 ∈ V and w1,w2 ∈ V such that

U + v1 = U + w1 and U + v2 = U + w2.

We need to show that U + (v1 + v2) = U + (w1 + w2). By Lemma 7.8Lemma 7.8 it suffices to show
that w1 + w2 is an element of U + (v1 + v2). Since U + w1 = U + v1 it follows that
w1 ∈ (U + v1) so that w1 = u1 + v1 for some element u1 ∈ U . Likewise it follows that
w2 = u2 + v2 for some element u2 ∈ U . Hence

w1 + w2 = u1 + u2 + v1 + v2.

Since U is a subspace, we have u1+u2 ∈ U and thus it follows that w1+w2 is an element
of U + (v1 + v2).

For (7.27.2) we need to show that if v ∈ V and w ∈ V are such that U + v = U + w , then
U+(sv) = U+(sw) for all s ∈ K. Again, applying Lemma 7.8Lemma 7.8 we only need to show that
sw ∈ U + (sv). Since U + v = U + w it follows that there exists u ∈ U with w = u + v .
Hence sw = su+sv andU being a subspace, we have su ∈ U and thus sw lies inU+(sv),
as claimed.

Having equippedV /U with addition+V/U defined by (7.17.1) and scalar multiplication ·V/U

defined by (7.27.2), we need to show that V /U with zero vector U +0V is indeed a K-vector
space. All the properties of Definition 3.1Definition 3.1 for V /U are however simply a consequence of
the corresponding property for V . For instance commutativity of vector addition in V /U

follows from the commutativity of vector in addition in V , that is, for all v1, v2 ∈ V we
have

(U + v1) +V/U (U + v2) = U + (v1 + v2) = U + (v2 + v1) = (U + v2) +V/U (U + v1).

The remaining properties follow similarly.

Notice that we have a surjective mapping

p : V → V /U, v 7→ U + v .
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which satisfies

p(v1 + v2) = U + (v1 + v2) = (U + v1) +V/U (U + v2) = p(v1) +V/U p(v2)

for all v1, v2 ∈ V and

p(sv) = U + (sv) = s ·V/U (U + v) = s ·V/U p(v).

for all v ∈ V and s ∈ K. Therefore, the mapping p is linear.

Definition 7.9 (Quotient vector space) The vector space V /U is called the quotient
(vector) space of V by U . The linear map p : V → V /U is called the canonical
surjection from V to V /U .

The mapping p : V → V /U satisfies

p(v) = 0V/W = U + 0V ⇐⇒ v ∈ U

and hence Ker(p) = U . This gives:

Proposition 7.10 Suppose the K-vector space V is finite dimensional. Then V /U is
finite dimensional as well and

dim(V /U) = dim(V )− dim(U).

Proof Since p is surjective it follows that V /U is finite dimensional as well. Hence we
can apply Theorem 3.76Theorem 3.76 and obtain

dimV = dimKer(p) + dim Im(p) = dimU + dim(V /U),

where we use that Im(p) = V /U and Ker(p) = U . □

Example 7.11 (Special cases)
(i) In the case where U = V we obtain V /U = {0V/U}.

(ii) In the case where U = {0V } we obtain that V /U is isomorphic to V .

Exercises

Exercise 7.12 Show that the image of an affine subspace under an affine map is
again an affine subspace and that the preimage of an affine subspace under an affine
map is again an affine subspace or empty (cf. Proposition 3.26Proposition 3.26).
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CHAPTER 8

Symmetry and groups

8.1 Symmetry WEEK 1

The notion of a group arose by trying to formalise the concept of symmetry. Roughly
speaking, given a non-empty set X with some extra structure, a symmetry or symmetry
transformation of X is a bijective transformation σ : X → X that respects the extra
structure. For simplicity, we ignore any extra structure, so for us a symmetry of a set X is
simply a bijective mapping from X to itself.

Example 8.1
(i) Let n ∈ N. A permutation is a symmetry of the set X = {1, 2, ... , n}.

(ii) LetV be aK-vector space andv0 ∈ V . The translationTv0 : V → V , v 7→ v+v0
by the vector v0 is a symmetry of V .

(iii) LetX be any non-empty set. The identity transformation IdX : X → X defined
by IdX (x) = x for all x ∈ X is a symmetry of X .

Often the setX is a subset of some larger setZ and the symmetries ofX arise as bijective
mappingsσ : Z → Z that leaveX invariant, that is, σ(x) ∈ X for all x ∈ X . We illustrate
this with two examples:

Example 8.2
(i) Consider Z = R2 and X to be the circle of radius r > 0 centred at the origin

0R2 , that is, X = {x⃗ = (xi )1⩽i⩽2 ∈ R2|(x1)2 + (x2)
2 = r2}. Let θ ∈ R and

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
so that fRθ

: R2 → R2 is the counter-clockwise rotation around the origin
0R2 with angle θ. A rotation does not change the length of a vector and hence
fRθ

(x⃗) ∈ X for each element x⃗ ∈ X . The restriction σ = fRθ
|X : X → X of the

rotation fRθ
to the circle X is thus a symmetry of the circle. Notice that not all

symmetries of the circle are restrictions of rotations. The linear mapping

f : R2 → R2,

(
x1
x2

)
7→
(

x1
−x2

)
is the reflection along the x1-axis and hence restricts to be a bijective mapping
from the circle X onto itself. It is thus also a symmetry of the circle.

(ii) Let n ∈ N with n ⩾ 3. We consider a regular polygon X with n sides centred
at the origin in Z = R2 an so that (1, 0) ∈ X . Clearly, not every rotation of R2

restricts to be a symmetry of X , but only rotations with angle 2πk/n where
k ∈ {0, 1, 2, ... , n − 1}. We thus have n rotation symmetries arising from the
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matrices (
cos 2πk

n − sin 2πk
n

sin 2πk
n cos 2πk

n

)
.

In addition, the reflection along the x1-axis is a symmetry of X .

Remark 8.3 The composition of two symmetries of a set X is again a symmetry of
X and composing symmetries satisfies the following fundamental properties:
• If σ,π, τ : X → X are symmetries, then

(σ ◦ π) ◦ τ = σ ◦ (π ◦ τ)

• The identity transformation IdX is a symmetry of X and for all symmetries σ :

X → X , we have
σ ◦ IdX = σ = IdX ◦ σ

• For each symmetry σ : X → X there exists an inverse symmetry σ−1 : X → X
so that

σ ◦ σ−1 = IdX = σ−1 ◦ σ.

8.2 Groups

We have defined the permutations Sn to be the bijective mappings of the set Xn =

{1, 2, ... , n}, hence by definition, they are symmetries of Xn. Recall that in addition,
every permutation σ ∈ Sn also gives rise to a bijective (linear) mapping from Kn → Kn

defined by e⃗i 7→ e⃗σ(i), where {e⃗1, ... , e⃗n} denotes the standard basis of Kn. Hence, every
permutation also gives a symmetry ofKn. The permutations thus make an appearance as
symmetries of two different sets, Xn andKn. This suggests that a more detailed picture of
a symmetry is needed. It turns out that a symmetry is the interplay of two mathematical
notions, the notion of a group and the action of a group on a set X . We start with the
definition of a group, c.f. Remark 8.3Remark 8.3:

Definition 8.4 (Group) A group is a pair (G , ∗G ) consisting of a set G together with
a binary operation ∗G : G × G → G , called group operation, so that the following
properties hold:

(i) The group operation ∗G is associative, that is,

(a ∗G b) ∗G c = a ∗G (b ∗G c) for all a, b, c ∈ G .

(ii) There exists an element eG ∈ G such that

eG ∗G a = a = a ∗G eG for all a ∈ G .

The element eG is unique (see below) and is called the identity element of G .
(iii) For each a ∈ G there exists an element b ∈ G such that

a ∗G b = eG = b ∗G a.

The element b is unique (see below) and called the inverse of a and is commonly
denoted by a−1.
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Example 8.5 (Examples of groups)
(i) The symmetries of a set X form a group G , often denoted by Sym(X ), where

∗G = ◦ is the composition of mappings. The identity element is the identity
mapping eG = IdX and the inverse of each symmetry σ is the mapping inverse
σ−1. In particular, for n ∈ N, the permutations of Xn = {1, 2, ... , n} form a
group G = Sn with ∗G = ◦ and eG = 1, the identity permutation.

(ii) A field K gives rise to two groups. The additive group of the field where G = K
and ∗G = +K and the multiplicative group of the field where G = K∗ and
∗G = ·K. For the additive group we have eG = 0K and the inverse of x ∈ K is
−x . For the multiplicative group we have eG = 1K and the inverse of x ∈ K∗ is
1
x .

(iii) A K-vector space V gives rise to a group where G = V and ∗G = +V . Here the
identity element is the zero vector eG = 0V and the inverse of v ∈ V is −v .

(iv) Let n ∈ N. The invertible n × n matrices with entries in K form a group G

commonly denoted by GLn(K) or GL(n,K). Here ∗G is matrix multiplication,
eG = 1n, the identity matrix of size n and the inverse of a group element is the
matrix inverse. GL is an abbreviation of general linear.

Remark 8.6
• A group with finitely many elements is called finite. The group of permutations Sn

is an example of a finite group. A finite field gives rise to two finite groups.
• Notice that we do not require the group operation ∗G : G × G → G to be

commutative, so in general a∗G b ̸= b∗G a. As an example considerG = GL(n,K)

where ∗G is matrix multiplication. If the group operation ∗G is commutative, then
the group is called Abelian or commutative. The examples (ii) and (iii) above
are examples of Abelian groups. The permutation group Sn is Abelian only for
n = 1, 2.

• Often we write +G instead of ∗G and 0G instead of eG when the group is Abelian.
• Some authors write 1G instead of eG and/or ·G instead of ∗G .
• As always, the subscript G is often omitted so that we write ∗ instead of ∗G and e

or 1 instead of eG . Like for fields, ∗ or ∗G is often omitted entirely so that we write
ab instead of a ∗G b.

Similar to fields, the definition of a group implies some basic properties:

Proposition 8.7 Let (G , ∗G ) be a group. Then
(i) the identity element eG is unique;

(ii) for all a ∈ G , the inverse a−1 is unique.

Proof

(i) Suppose eG and êG are identity elements for G . Then

eG = eG ∗G êG = êG .

(ii) Suppose a ∈ G and both b and c are inverse elements for a. Then

b = b ∗G eG = b ∗G (a ∗G c) = (b ∗G a) ∗G c = eG ∗G c = c .

□
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Similar to vector spaces and fields, groups allow for the notion of a subgroup.

Definition 8.8 (Subgroup) A non-empty subset H of a group G is called a subgroup
if for all a, b ∈ H , we have a ∗G b ∈ H and for all a ∈ H , we have a−1 ∈ H .

Notice that if H ⊂ G is a subgroup, the non-emptiness condition implies that there exists
a ∈ H . Therefore, a−1 ∈ H and hence a ∗G a−1 = eG ∈ H . We can thus equip H with the
structure of a group as well by defining eH = eG and a ∗H b = a ∗G b for all a, b ∈ H .

Example 8.9 The set of integers Z is a subgroup of the Abelian group (Q, +), where
+ denotes usual addition of rational numbers. Indeed 0 ∈ Z and the sum of two
integers is again an integer. Recall that for m ∈ Z, the notation m−1 refers to the
inverse element ofmwith respect to the group operation. So herem−1 is the additive
inverse of m ∈ Z, that is −m. Since −m ∈ Z for all m ∈ Z, we conclude that Z is an
(Abelian) subgroup of (Q, +).

Example 8.10 A subspaceU ⊂ V of aK-vector spaceV is a subgroup of the Abelian
group (V , +V ).

Example 8.11 Let SL(n,K) denote the subset of GL(n,K) consisting of matrices of
determinant 1. The set SL(n,K) is non-empty since it contains 1n. Furthermore, the
product rule for the determinant Proposition 5.21Proposition 5.21 implies that if A,B ∈ SL(n,K),
then so is the matrix product AB. Corollary 5.22Corollary 5.22 furthermore implies that if A ∈
SL(n,K), then so is A−1. It follows that SL(n,K) – commonly also denoted by
SLn(K) – is a subgroup of GL(n,K) called the special linear group.

Example 8.12 The trigonometric identities for sin and cos imply thatRθRϑ = Rθ+ϑ,
where θ,ϑ ∈ R Since R0 = 12 ∈ SL(2,R) and detRθ = 1 for all θ ∈ R, we conclude
that the rotations {Rθ|θ ∈ R} around the origin 0R2 form a subgroup of SL(2,R).
The group of rotations in R2 is denoted by SO(2). Later on we will encounter the
orthogonal group O(n) and the special orthogonal group SO(n), the latter of which
generalises SO(2) to higher dimensions.

8.3 Group actions

In order to tie the notion of a group more closely to the notion of a symmetry, we need the
concept of a group G acting on a set X . This section – which we include for the interested
reader – goes beyond the usual material in a Linear Algebra course and is not examinable.

Definition 8.13 (Group action) Let G be a group and X a non-empty set. A (left)
group action of G on X is a mapping ϕ : G ×X → X such that for all x ∈ X

ϕ(eG , x) = x
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and
ϕ(a ∗G b, x) = ϕ(a,ϕ(b, x))

for all a, b ∈ G and x ∈ X .

Remark 8.14
• The first condition simply requests that the identity element eG of G acts trivially,

that is, nothing happens to the elements of X when acting with eG .
• The second condition requests that acting with a ∗G b corresponds to first acting

with b and then acting with a.
• Notice that for each fixed a ∈ G we obtain a mapping ϕa : X → X defined

by ϕa(x) = ϕ(a, x). The above properties imply that for all a ∈ G we have
ϕa ◦ ϕa−1 = ϕa−1 ◦ ϕa = IdX , hence ϕa : X → X is bijective and hence a
symmetry of X .

Example 8.15
(i) Every group G acts on itself. We take X = G and define

ϕ : G × G → G , (a, b) 7→ ϕ(a, b) = a ∗G b.

Then for all a ∈ G we have ϕ(eg , a) = eg ∗G a = a. Furthermore, for all
a, b, c ∈ G we have

ϕ(a ∗G b, c) = (a ∗G b) ∗G c = a ∗G (b ∗G c) = a ∗G ϕ(b, c) = ϕ(a,ϕ(b, c))

so that ϕ does indeed define an action of G on itself.
(ii) Consider X = R2 and G = SO(2). We define an action

ϕ : G ×X → X , (Rθ, x⃗) 7→ ϕ(Rθ, x⃗) = Rθ x⃗

which rotates a vector x⃗ ∈ R2 counter-clockwise around the origin 0R2 by the
angle θ. Here ∗G is just matrix multiplication, so we have for all x⃗ ∈ R2 and
Rθ,Rϑ ∈ SO(2)

ϕ(RθRϑ, x⃗) = RθRϑx⃗ = Rθϕ(Rϑ, x⃗) = ϕ(Rθ,ϕ(Rϑ, x⃗)).

Furthermore, since eSO(2) = R0 = 12, we have for all x⃗ ∈ R2

ϕ(eSO(2), x⃗) = 12x⃗ = x⃗ .

It follows that ϕ does indeed define an action of SO(2) on R2.
(iii) Let n ∈ N and X = Mn,n(K). The general linear group GL(n,K) acts on X by

conjugation. We define

ϕ : GL(n,K)×Mn,n(K) → Mn,n(K), (C,A) 7→ ϕ(C,A) = CAC−1.

Then for all A ∈ Mn,n(K) we have

ϕ(eG ,A) = ϕ(1n,A) = 1nA(1n)
−1 = A

where we use that eGL(n,K) = 1n. Moreover, for C,C′ ∈ GL(n,K) and A ∈
Mn,n(K), we have

ϕ(CC′,A) = CC′A(CC′)−1 = CC′A(C′)−1C−1

= Cϕ(C′,A)C−1 = ϕ(C,ϕ(C′,A)),

where we use that for all C,C′ ∈ GL(n,K), we have (CC′)−1 = (C′)−1C−1. It
follows that ϕ does indeed define an action of GL(n,K) on Mn,n(K).
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(iv) LetV be aK-vector space andU ⊂ V a subspace. TakingG = U with ∗G = +U

and X = V , the group G acts by translation. We define

ϕ : U × V → V , (u, v) 7→ ϕ(u, v) = u +V v .

Since eG = 0U = 0V , we have for all v ∈ V

ϕ(eG , v) = 0V +V v = v .

Moreover, for all u1, u2 ∈ U and v ∈ V we have

ϕ(u1 +U u2, v) = (u1 +U u2) +V v = u1 +V ϕ(u2, v) = ϕ(u1,ϕ(u2, v)),

where we use that +U : U × U → U is the restriction of +V : V × V → V to
U × U ⊂ V × V . We conclude that ϕ defines an action of the subspace U on
V .

(v) Let n ∈ N. A permutation σ ∈ Sn acts on Xn = {1, 2, ... , n} by

ϕ : Sn ×Xn → Xn (σ,m) 7→ ϕ(σ,m) = σ(m).

We leave it to the reader to check that this is indeed an action. In addition, a
permutation σ ∈ Sn does also act on Kn by the rule

ϕ(σ, x⃗) = Pσ x⃗ ,

where x⃗ ∈ Kn and Pσ is the permutation matrix associated to σ ∈ Kn,
c.f. Definition 5.28Definition 5.28.

A particularly important class of group actions arises when (G , ∗G ) is the Abelian group
(R, +) or its subgroup (Z, +). This case arise for instance when the setX is a phase space
(roughly speaking, the set of different physical states) of a physical system and the action
describes the evolution of the system under the progression of time.

Definition 8.16 (Dynamical system) Let X be a non-empty set. A time-discrete
dynamical system is an action of (Z, +) on X . A time-continuous dynamical system
is an action of (R, +) on X .

Often the term dynamical system is also used when the action is only defined for all
non-negative times R+

0 = {t ∈ R|t ⩾ 0} or N0 = {t ∈ Z|t ⩾ 0}.

Example 8.17
(i) Let X ⊂ R3 denote the set of all points in our solar system. An asteroid initially

at rest at the position x0 ∈ X will move under the influence of gravity. Let xt
denote the position of the asteroid after time t ∈ R has passed. The mapping

ϕ : R+
0 ×X → X , (t, x0) 7→ ϕ(t, x0) = xt

describing the movement of the asteroid is then a time-continuous dynamical
system.

(ii) Let X = {0, 1}N denote the carrier status of a contagious disease of each
individual of a population of sizeN ∈ N. Sox ∈ X is a list of lengthN containing
0s and 1s, where the k-th entry reflects the carrier status of the k-th member
of the population, 0 for non-carriers and 1 for carriers. Let x0 ∈ X denote the
carrier status at some initial time t = 0 and form ∈ N0 let xm denote the carrier
status after m days have passed. The mapping

ϕ : N0 ×X → X , (m, x0) 7→ ϕ(m, x0) = xm
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describing the progression of the disease in the population is then a time-
discrete dynamical system.

Given a group action on some set X and some point x ∈ X , we consider the subset of
elements of X that can be reached by acting with all the groups elements of G . This
subset is known as the orbit of x . More precisely:

Definition 8.18 (Orbit) Let X be a non-empty set, ϕ : G ×X → X an action of the
group (G , ∗G ) on X and x ∈ X . The orbit of x ∈ X under G (or sometimes G -orbit
of x ) is the subset

G ∗G x = {ϕ(a, x) ∈ X |a ∈ G} .
The set of all G -orbits in X is denoted by X/G .

In the time-continuous dynamical system above, the orbit of x0 ∈ X consists of the
points xt where t ∈ R+

0 and xt is the time t position of the asteroid with initial position
x0. The orbit is thus the trajectory of the asteroid as time progresses. Therefore, the
mathematical concept of orbit is a generalisation of the standard use of the term orbit.

Example 8.19
(i) Consider the action of SO(2) on R2 from above. The orbit of x⃗ ̸= 0R2 consists

of all points in R2 obtained by rotating x⃗ counter-clockwise around the origin.
Since the rotation angle can be chosen arbitrarily, the orbit of x⃗ is the circle of
all points of R2 that have the same length as x⃗ . On the other hand, the orbit of
0R2 only consists of 0R2 , that is, we have

SO(2) ∗SO(2) 0R2 = {0R2}.

In this particular case we have a complete picture of all possible orbits, an orbit
is either the zero vector or else a circle centred at the origin, hence

X/G = R2/SO(2) = {0R2} ∪ {circle of radius r centred at 0R2 |r > 0}.

(ii) Consider the action of GL(n,K) on Mn,n(K) from above. Let D =

diag(λ1, ... ,λn) be a diagonal matrix with entriesλ1, ... ,λn ∈ K. TheGL(n,K)-
orbit of D then consists of all n × n-matrices with entries in K that are diagon-
alisable with eigenvalues λ1, ... ,λn. A complete description of the set of orbits
Mn,n(K)/GL(n,K) is out of reach for us at this point, we will however have
more to say about this in the Linear Algebra II module.

(iii) We consider the action of S2 on R2 as defined above. The orbit of a vector

v⃗ =

(
x

y

)
∈ R2 with x ̸= y is the subset

S2 ∗S2 v⃗ =

{(
x

y

)
,

(
y

x

)}
.

On the other hand, the orbit of a vector v⃗ =

(
x

x

)
∈ R2 is just {v⃗}. For a vector

of the first type, either x > y or x < y . The orbit of each such vector can thus

be represented uniquely by a vector v⃗ =

(
x

y

)
with y > x . The vectors of the

second type lie on the axis defined by the equation y = x . We thus have a
bijective mapping from R2/S2 to the half plane H = {(x , y) ∈ R2|y ⩾ x}.

123



CHAPTER 8 — SYMMETRY AND GROUPS

Remark 8.20 (Quotient vector space) Given a subspace U ⊂ V , we have seen that
the Abelian group (G , ∗G ) = (U, +U) acts on X = V by translation. In this sense
U + v is simply the orbit of v under this action and V /U is the set of orbits X/G .
Furthermore, Lemma 7.8Lemma 7.8 is a special case of a more general statement about orbits:
If a group (G , ∗G ) acts on a non-empty set X , then every element x ∈ X belongs to
a unique G -orbit, namely G ∗G x . In particular two orbits G ∗G x1 and G ∗G x2 are
either equal or have empty intersection.

Exercises

Exercise 8.21 Show that mappingSn×Kn → Kn given in Example 8.15Example 8.15 does indeed
define an action.

Exercise 8.22 Prove the statement about orbits from Remark 8.20Remark 8.20.
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CHAPTER 9

Bilinear forms

9.1 Definitions and basic properties WEEK 2

So far in Linear Algebra we have dealt with vector spaces without thinking much about
geometric aspects. For example, for an abstract vector space we cannot say what the
angle between two vectors is. Likewise, we are not able to talk about the distance between
elements of a vector space. To make sense of these notions, the vector space needs further
structure given by an inner product.

An inner product is a special case of a bilinear form. The prototypical example of a bilinear
form is the standard scalar product on Rn that you might already know. Recall that for
x⃗ = (xi )1⩽i⩽n and y⃗ = (yi )1⩽i⩽n ∈ Rn, we define

(9.1) x⃗ · y⃗ =
n∑

i=1

xiyi = x1y1 + · · ·+ xnyn.

It is also common to write ⟨x⃗ , y⃗⟩ instead of x⃗ · y⃗ . As we have already seen in Example 5.3Example 5.3,
the standard scalar product is an example of a 2-multilinear map.

Definition 9.1 (Bilinear form) Let V be a K-vector space. A bilinear form on V is a
2-multilinear map with values in K

⟨·,·⟩ : V × V → K, (v1, v2) 7→ ⟨v1, v2⟩.

That is, for all s1, s2 ∈ K and all v1, v2, v3 ∈ V we have

⟨s1v1 + s2v2, v3⟩ = s1⟨v1, v3⟩+ s2⟨v2, v3⟩

as well as
⟨v3, s1v1 + s2v2⟩ = s1⟨v3, v1⟩+ s2⟨v3, v2⟩.

We say that ⟨·,·⟩ is symmetric if ⟨v1, v2⟩ = ⟨v2, v1⟩ for all v1, v2 ∈ V and alternating if
⟨v , v⟩ = 0 for all v ∈ V .

Example 9.2 (Bilinear forms)
(i) The standard scalar product defined by the rule (9.19.1) is a bilinear form on Rn.

(ii) Let n ∈ N and A ∈ Mn,n(K) be a matrix. Using matrix multiplication, we define
a mapping

(9.2) ⟨·,·⟩A : Kn ×Kn → K, (x⃗1, x⃗2) 7→ ⟨x⃗1, x⃗2⟩A = x⃗T1 Ax⃗2.

Notice that Ax⃗2 ∈ Mn,1(K) and x⃗T1 ∈ M1,n(K) so that x⃗T1 Ax⃗2 ∈ M1,1(K) = K.
The properties of the transpose and matrix multiplication imply that ⟨·,·⟩A is
indeed a bilinear form on Kn. Also, observe that the standard scalar product
on Rn arises by taking A to be the identity matrix 1n ∈ Mn,n(R). That is, for all
x⃗ , y⃗ ∈ Rn, we have x⃗ · y⃗ = ⟨x⃗ , y⃗⟩1n .
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(iii) Using the determinant of a 2× 2-matrix, we obtain a map

⟨·,·⟩ : K2 ×K2 → K (ξ⃗1, ξ⃗2) 7→ ⟨ξ⃗1, ξ⃗2⟩ = det

(
ξ⃗1
ξ⃗2

)
.

The properties of the determinant then imply that ⟨·,·⟩ is an alternating bilinear
form on the K-vector space K2.

(iv) For n ∈ N we consider V = Mn,n(K), the K-vector space of n × n-matrices
with entries in K. We define ⟨·,·⟩ : Mn,n(K)×Mn,n(K) → K by the rule

(9.3) (A,B) 7→ ⟨A,B⟩ = Tr(AB).

Definition 6.17Definition 6.17 implies that

Tr(s1A1 + s2A2) = s1 Tr(A1) + s2 Tr(A2)

for all s1, s2 ∈ K and allA1,A2 ∈ Mn,n(K), that is, the trace is a linear map from
Mn,n(K) into K. Hence we obtain for all s1, s2 ∈ K and all A1,A2,B ∈ Mn,n(K)

⟨s1A1 + s2A2,B⟩ = Tr((s1A1 + s2A2)B) = s1 Tr(A1B) + s2 Tr(A2B)

= s1⟨A1,B⟩+ s2⟨A2,B⟩.

showing that ⟨·,·⟩ is linear in the first argument. Proposition 6.19Proposition 6.19 implies that
⟨A,B⟩ = ⟨B,A⟩ for all A,B ∈ Mn,n(K), hence ⟨·,·⟩ is symmetric and therefore
also linear in the second variable. We conclude that (9.39.3) defines a symmetric
bilinear form on the vector space Mn,n(K).

(v) We consider V = P(K), the K-vector space of polynomials. For some fixed
scalar x0 ∈ K we may define

⟨·,·⟩ : P(K)× P(K) → K, (p, q) 7→ ⟨p, q⟩ = p(x0)q(x0).

Then we have for all s1, s2 ∈ K and polynomials p1, p2, q ∈ P(K)

⟨s1 ·P(K) p1 +P(K) s2 ·P(K) p2, q⟩ =
(
s1 ·P(K) p1 +P(K) s2 ·P(K) p2

)
(x0)q(x0)

= (s1p1(x0) + s2p2(x0))q(x0)

= s1p1(x0)q(x0) + s2p2(x0)q(x0)

= s1⟨p1, q⟩+ s2⟨p2, q⟩.

Hence ⟨·,·⟩ is linear in the first variable. Clearly ⟨·,·⟩ is also symmetric and
therefore defines a symmetric bilinear form on V = P(K).

(vi) We consider V = C([−1, 1],R), the R-vector space of continuous real-valued
functions defined on the interval [−1, 1]. Recall from M03 Analysis I that con-
tinuous functions are integrable, hence we can define

⟨·,·⟩ : V × V → R, (f , g) 7→ ⟨f , g⟩ =
∫ 1

−1

f (x)g(x)dx .

The properties of integration imply that this defines a symmetric bilinear form
on C([−1, 1],R).

Recall that the choice of an ordered basis of a finite dimensionalK-vector spaceV allowed
to associate a matrix to every endomorphism f : V → V . Similarly, an ordered basis
also allows to associate a matrix to a bilinear form ⟨·,·⟩ on V .

Definition 9.3 (Matrix representation of a bilinear form) Let V be a finite dimen-
sionalK-vector space, b = (v1, ... , vn) an ordered basis ofV and ⟨·,·⟩ a bilinear form
on V . The matrix representation of ⟨·,·⟩ with respect to b is the matrix M(⟨·,·⟩,b)
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satisfying
M(⟨·,·⟩,b) = (⟨vi , vj⟩)1⩽i ,j⩽n.

Remark 9.4 (♡ – not examinable) Let Bil(V ) denote the set of bilinear forms on
some K-vector space V . By definition, Bil(V ) is a subset of the vector space of
functions from V × V into K. By Definition 3.21Definition 3.21, it follows that Bil(V ) is itself a
K-vector space. Moreover, if dimV = n ∈ N and V is equipped with an ordered
basis b, the mapping from Bil(V ) into Mn,n(K) which sends a bilinear form to its
matrix representation with respect to b

⟨·,·⟩ 7→ M(⟨·,·⟩,b)

is an isomorphism. In particular, dimBil(V ) = n2. The proof is left to the interested
reader.

Example 9.5
(i) Let ⟨·,·⟩ denote the standard scalar product on Rn and e = (e⃗1, ... , e⃗n) the

standard basis of Kn. Then, one easily computes that

⟨e⃗i , e⃗j⟩ = e⃗Ti e⃗j = δij

and hence M(⟨·,·⟩, e) = (δij)1⩽i ,j⩽n = 1n.
(ii) Likewise, if A ∈ Mn,n(K), then M(⟨·,·⟩A, e) = A. Indeed, writing A =

(Aij)1⩽i ,j⩽n, we have

Ae⃗j =
n∑

k=1

Akj e⃗k

and thus

⟨e⃗i , e⃗j⟩A = e⃗Ti Ae⃗j = e⃗Ti

n∑
k=1

Akj e⃗k =
n∑

k=1

Akj e⃗
T
i e⃗k =

n∑
k=1

Akjδik = Aij .

(iii) Let ⟨·,·⟩ denote the alternating bilinear form on K2 from Example 9.2Example 9.2 above
and

b =
((
1 0

)
,
(
0 1

))
.

The alternating property of ⟨·,·⟩ implies that the diagonal entries of M(⟨·,·⟩,b)
vanish. Hence we obtain

M(⟨·,·⟩,b) =

 0 det

(
1 0

0 1

)
det

(
0 1

1 0

)
0

 =

(
0 1

−1 0

)
.

Proposition 9.6 Let V be a finite dimensional K-vector space, b = (v1, ... , vn) an
ordered basis of V with associated linear coordinate system β : V → Kn and ⟨·,·⟩ a
bilinear form on V . Then

(i) for all w1,w2 ∈ V we have

⟨w1,w2⟩ = (β(w1))
TM(⟨·,·⟩,b)β(w2).

(ii) ⟨·,·⟩ is symmetric if and only if M(⟨·,·⟩,b) is symmetric;
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(iii) if b′ is another ordered basis of V , then

M(⟨·,·⟩,b′) = CTM(⟨·,·⟩,b)C,

where C = C(b′,b) denotes the change of basis matrix, see Definition 3.103Definition 3.103.

Proof (i) Since b is a basis of V , it follows that for all w1,w2 ∈ V there exist unique
scalars s1, ... , sn and t1, ... , tn so that

w1 =
n∑

i=1

sivi and w2 =
n∑

i=1

tivi .

Recall that this means that

β(w1) =

s1
...
sn

 and β(w2) =

t1
...
tn

 .

Using the bilinearity of ⟨·,·⟩, this gives

⟨w1,w2⟩ =

〈
n∑

i=1

sivi ,
n∑

j=1

tjvj

〉
=

n∑
i=1

si

n∑
j=1

tj⟨vi , vj⟩

=
n∑

i=1

si

n∑
j=1

[M(⟨·,·⟩,b)]ij tj = (β(w1))
TM(⟨·,·⟩,b)β(w2).

(ii) Suppose ⟨·,·⟩ is symmetric. Then for all 1 ⩽ i , j ⩽ n, we have

[M(⟨·,·⟩,b)]ij = ⟨vi , vj⟩ = ⟨vj , vi ⟩ = [M(⟨·,·⟩,b)]ji

so that M(⟨·,·⟩,b) is symmetric. Conversely, suppose M(⟨·,·⟩,b) is symmetric. Using
notation as in (i), we obtain for all w1,w2 ∈ V

⟨w1,w2⟩ =
n∑

i=1

n∑
j=1

si [M(⟨·,·⟩,b)]ij tj =
n∑

j=1

n∑
i=1

tj [M(⟨·,·⟩,b)]ji si

= ⟨w2,w1⟩

so that ⟨·,·⟩ is symmetric as well.

(iii) Let b′ = (v ′
1, ... , v

′
n) be another ordered basis of V . Since b is a basis of V there exist

unique scalars Cij , 1 ⩽ i , j ⩽ n such that

v ′
j =

n∑
i=1

Cijvi

and, by Definition 3.103Definition 3.103, we have C(b′,b) = (Cij)1⩽i ,j⩽n. Writing C = (Cij)1⩽i ,j⩽n and
using the bilinearity of ⟨·,·⟩, we calculate

[M(⟨·,·⟩,b′)]ij = ⟨v ′
i , v

′
j ⟩ =

〈
n∑

k=1

Ckivk ,
n∑

l=1

Cljvl

〉
=

n∑
k=1

n∑
l=1

CkiClj⟨vk , vl⟩

=
n∑

k=1

Cki

n∑
l=1

⟨vk , vl⟩Clj =
n∑

k=1

Cki [M(⟨·,·⟩,b)C ]kj

=
n∑

k=1

[CT ]ik [M(⟨·,·⟩,b)C ]kj = [CTM(⟨·,·⟩,b)C ]ij

as claimed. □

128



9.1 — Definitions and basic properties

Example 9.7 We consider the symmetric bilinear form ⟨·,·⟩A on R2 arising from the
matrix

A =

(
5 1

1 5

)
.

via the rule (9.29.2). Let e = (e⃗1, e⃗2) denote the ordered standard basis of R2 and
b = (e⃗1 + e⃗2, e⃗2 − e⃗1). In Example 9.5Example 9.5 we have seen that M(⟨·,·⟩A, e) = A. In
Example 3.105Example 3.105 we computed that

C(b, e) =

(
1 −1

1 1

)
.

By definition, we have

[M(⟨·,·⟩A,b)]11 =
(
1 1

)(5 1

1 5

)(
1

1

)
= 12,

[M(⟨·,·⟩A,b)]12 =
(
1 1

)(5 1

1 5

)(
−1

1

)
= 0,

[M(⟨·,·⟩A,b)]22 =
(
−1 1

)(5 1

1 5

)(
−1

1

)
= 8,

so that

M(⟨·,·⟩A,b) =
(
12 0

0 8

)
.

Indeed, writing C = C(b, e), we have

CTM(⟨·,·⟩A, e)C =

(
1 1

−1 1

)(
5 1

1 5

)(
1 −1

1 1

)
=

(
12 0

0 8

)
= M(⟨·,·⟩A,b),

in agreement with Proposition 9.6Proposition 9.6.

Remark 9.8 You may remember from school that two non-zero vectors x⃗1, x⃗2 ∈ Rn

are perpendicular if and only if x⃗1 · x⃗2 = 0. In particular, no non-zero vector in Rn

is perpendicular to all vectors, or phrased differently, if x⃗ · x⃗0 = 0 for all vectors x⃗ ,
then x⃗0 = 0Rn .

This condition also makes sense for a bilinear form:

Definition 9.9 (Non-degenerate bilinear form) Let ⟨·,·⟩ be a bilinear form on a finite
dimensional K-vector space V . Then ⟨·,·⟩ is called non-degenerate, if whenever a
vector v0 ∈ V satisfies ⟨v , v0⟩ = 0 for all vectors v ∈ V , then we must have v0 = 0V .

Non-degeneracy of a bilinear form ⟨·,·⟩ can be characterized in terms of its matrix repres-
entation, more precisely:

Proposition 9.10 Let ⟨·,·⟩ be a bilinear form on a finite dimensional K-vector
space V and b an ordered basis of V . Then ⟨·,·⟩ is non-degenerate if and only if
detM(⟨·,·⟩,b) ̸= 0.

Proof Let n = dimV . First observe that a vector y⃗ ∈ Kn satisfies x⃗T y⃗ = 0 for all x⃗ ∈ Kn

if and only if y⃗ = 0Kn .
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The statement of the proposition is equivalent to the statement that detM(⟨·,·⟩,b) = 0

if and only there exists a non-zero vector v0 ∈ V so that ⟨v , v0⟩ = 0 for all v ∈ V .
We write A = M(⟨·,·⟩,b). By Proposition 6.22Proposition 6.22, detA = 0 is equivalent to the mapping
fA : Kn → Kn not being injective and hence by Lemma 3.31Lemma 3.31 equivalent to the existence
of a non-zero vector x⃗0 ∈ Kn with Ax⃗0 = 0Kn . Let v0 ∈ V be the non-zero vector whose
coordinate representation is x⃗0, that is, β(v0) = x⃗0, where β : V → Kn denotes the
linear coordinate system associated to b. By Proposition 9.6Proposition 9.6 we have for all v ∈ V

(9.4) ⟨v , v0⟩ = (β(v))TM(⟨·,·⟩,b)β(v0) = (β(v))TAx⃗0.

Writing y⃗ = Ax⃗0, the observation at the beginning of the proof shows that (9.49.4) is 0 for
all v ∈ V if and only if Ax⃗0 = 0Kn . □

Exercises

Exercise 9.11 We consider V = M2,2(R) and define

⟨·,·⟩ : V × V → R, (A,B) 7→ ⟨A,B⟩ = 1

4
(det(A+ B)− det(A− B)) .

Show that ⟨·,·⟩ defines a symmetric bilinear form on V = M2,2(R).
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9.2 Symmetric bilinear forms WEEK 3

We now restrict to the case K = R. Perpendicular vectors are orthogonal in the following
sense:

Definition 9.12 (Orthogonal vectors) Let V be an R-vector space equipped with a
symmetric bilinear form ⟨·,·⟩. Two vectors v1, v2 ∈ V are called orthogonal with re-
spect to ⟨·,·⟩ if ⟨v1, v2⟩ = 0. We write v1 ⊥ v2 if the vectors v1, v2 ∈ V are orthogonal.
A subset S ⊂ V is called orthogonal with respect to ⟨·,·⟩ if all pairs of distinct vectors
of S are orthogonal with respect to ⟨·,·⟩. A basis of V which is also an orthogonal
subset is called an orthogonal basis.

Example 9.13
(i) Perpendicular vectors in Rn are orthogonal with respect to the standard scalar

product defined by the rule (9.19.1).
(ii) Example 9.7Example 9.7 continued: As we computed above, the vectors v⃗1 = e⃗1 + e⃗2 and

v⃗2 = e⃗2 − e⃗1 satisfy ⟨v⃗1, v⃗2⟩A = 0 and hence are orthogonal with respect to
⟨·,·⟩A.

(iii) Example 9.2Example 9.2 (vi) continued: Let f1 ∈ V be the function x 7→ x and f3 ∈ V be
the function x 7→ 1

2 (5x
3 − 3x). Then

⟨f1, f3⟩ =
∫ 1

−1

x
1

2
(5x3 − 3x)dx =

1

2

(
x5 − x3

)∣∣∣∣1
−1

= 0,

so that f1 and f3 are orthogonal with respect to ⟨·,·⟩.

Definition 9.14 (Orthonormal vectors) Let V be an R-vector space equipped with
a symmetric bilinear form ⟨·,·⟩. A subset S ⊂ V is called orthonormal with respect
to ⟨·,·⟩ if S is orthogonal with respect to ⟨·,·⟩ and if for all vectors v ∈ S we have
⟨v , v⟩ = 1. A basis of V which is also a orthonormal subset is called an orthonormal
basis.

Remark 9.15
• Often when ⟨·,·⟩ is clear from the context we will simply speak of orthogonal or

orthonormal vectors without explicitly mentioning ⟨·,·⟩.
• Notice that an ordered basis b of V is orthonormal with respect to ⟨·,·⟩ if and only

if
M(⟨·,·⟩,b) = 1n,

where n = dimV .

Example 9.16
(i) The standard basis {e⃗1, ... , e⃗n} of Rn satisfies

e⃗i · e⃗j = δij

and hence is a orthonormal basis with respect to the standard scalar product
on Rn.
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(ii) Example 9.2Example 9.2 (vi) continued: Let S = {f1, f2, f3} ⊂ C([−1, 1],R) be the subset
defined by the functions

f1 : x 7→
√

3

2
x , f2 : x 7→ 1

2

√
5

2
(3x2 − 1), f3 : x 7→ 1

2

√
7

2
(5x3 − 3x).

Then S is orthonormal with respect to ⟨·,·⟩ as can be verified by direct compu-
tation.

Given a subspace U ⊂ V , its orthogonal subspace consists of all vectors in V that are
orthogonal to all vectors of U .

Definition 9.17 (Orthogonal subspace) Let V be an R-vector space equipped with
a symmetric bilinear form ⟨·,·⟩ and U ⊂ V a subspace. The set

U⊥ = {v ∈ V |⟨v , u⟩ = 0 ∀u ∈ U}

is called the orthogonal subspace to U .

Remark 9.18
• It is common to write ⟨v ,U⟩ = 0 instead of ⟨v , u⟩ = 0 ∀u ∈ U .
• Notice that the orthogonal subspace is indeed a subspace. The bilinearity of ⟨·,·⟩

implies that ⟨0V , u⟩ = 0 for all u ∈ U , hence 0V ∈ U⊥ and U⊥ is non-empty.
Moreover, if v1, v2 ∈ U⊥, then we have for all u ∈ U and all s1, s2 ∈ R

⟨s1v1 + s2v2, u⟩ = s1⟨v1, u⟩+ s2⟨v2, u⟩ = 0

where we use the bilinearity of ⟨·,·⟩ and that v1, v2 ∈ U⊥. By Definition 3.21Definition 3.21 it
follows that U⊥ is indeed a subspace.

• Notice also that a symmetric bilinear form ⟨·,·⟩ on V is non-degenerate if and only
if V⊥ = {0V }.

Example 9.19
(i) Let R3 be equipped with the standard scalar product. If U is a line through the

origin in R3, then U⊥ consists of the plane through the origin that is perpendic-
ular to U , see Figure 9.1Figure 9.1.

(ii) Example 9.2Example 9.2 (iv) continued. Let U = {s1n|s ∈ R} then

U⊥ = {A ∈ Mn,n(R)|Tr(As1n) = 0 ∀s ∈ R} .

Since Tr(As1n) = s Tr(A1n) = s Tr(A), we conclude that the orthogonal
subspace to U consists of the matrices whose trace is zero

U⊥ = {A ∈ Mn,n(R)|Tr(A) = 0} .

Previously in Corollary 3.65Corollary 3.65 we saw that every finite dimensional vector space V admits
a basis. We can now upgrade this fact in the case where V is equipped with a symmetric
bilinear form:
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U⊥

U

FIGURE 9.1. The orthogonal complement of a line through the origin.

Theorem 9.20 (Existence of an orthogonal basis) Let V be a finite dimensional
R-vector space equipped with a symmetric bilinear form ⟨·,·⟩. Then V admits an
orthogonal basis with respect to ⟨·,·⟩.

For the proof of Theorem 9.20Theorem 9.20 we need two lemmas.

Lemma 9.21 Let V be an R-vector space and ⟨·,·⟩ a symmetric bilinear form on V .
Suppose there exist vectors v1, v2 ∈ V such that ⟨v1, v2⟩ ≠ 0. Then there exists a
vector v ∈ V with ⟨v , v⟩ ≠ 0.

Proof If ⟨v1, v1⟩ ̸= 0 or ⟨v2, v2⟩ ̸= 0 we are done, hence assume ⟨v1, v1⟩ = ⟨v2, v2⟩ = 0.
Let v = v1 + v2, then we obtain

⟨v , v⟩ = ⟨v1 + v2, v1 + v2⟩ = ⟨v1, v1⟩+ 2⟨v1, v2⟩+ ⟨v2, v2⟩ = 2⟨v1, v2⟩.

By assumption we have ⟨v1, v2⟩ ≠ 0 and hence also ⟨v , v⟩ ≠ 0. □

Lemma 9.22 LetV be a finite dimensionalR-vector space equipped with a symmetric
bilinear form ⟨·,·⟩. Suppose v ∈ V satisfies ⟨v , v⟩ ̸= 0, then V = U ⊕ U⊥ where
U = {sv |s ∈ R}.

Proof Applying Remark 6.7Remark 6.7, we need to show thatU∩U⊥ = {0V } and thatU+U⊥ = V .

We first show that U ∩ U⊥ = {0V }. Suppose u ∈ U and u ∈ U⊥. Since u ∈ U we have
u = sv for some scalar s . Since u ∈ U⊥ we must also have 0 = ⟨u, v⟩ = s⟨v , v⟩. Since
⟨v , v⟩ ≠ 0, this implies s = 0 and hence u = 0V .

We next show that U + U⊥ = V . Let w ∈ V . We want to write w = sv + v̂ for some v̂

satisfying ⟨v̂ , v⟩ = 0. Since v̂ = w − sv , this condition becomes

0 = ⟨v ,w − sv⟩ = ⟨v ,w⟩ − s⟨v , v⟩

and since ⟨v , v⟩ ≠ 0, this gives s = ⟨v ,w⟩
⟨v ,v⟩ . Taking

v̂ = w − ⟨v ,w⟩
⟨v , v⟩

v

thus gives w = sv + v̂ . □

Proof of Theorem 9.20Theorem 9.20 Letn = dimV . Suppose ⟨·,·⟩ is degenerate and considerV⊥. By
Corollary 6.11Corollary 6.11 there exists a subspace V ′ ⊂ V such that V = V⊥ ⊕ V ′. By construction,
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the restriction of ⟨·,·⟩ onto V ′ is non-degenerate. If v1, ... , vm is an orthogonal basis of
V ′ and vm+1, ... , vn a basis of V⊥, then {v1, ... , vn} is an orthogonal basis of V , since the
vectors vm+1, ... , vn are orthogonal to all vectors of V .

It is thus sufficient to prove the existence of an orthogonal basis for the case when ⟨·,·⟩ is
non-degenerate.

Let us therefore assume that ⟨·,·⟩ is non-degenerate on V . We are going to prove the
statement by using induction on the dimension of the vector space. If dimV = 0 there is
nothing to show, hence the statement is anchored. We will argue next that if every (n−1)-
dimensional R-vector space equipped with a non-degenerate symmetric bilinear form
admits an orthogonal basis, then so does every n-dimensional R-vector space equipped
with a non-degenerate symmetric bilinear form.

Let v1 ∈ V be any non-zero vector. Since ⟨·,·⟩ is non-degenerate v1 cannot be orthogonal
to all vectors ofV and hence there exists a vector v2 ∈ V such that ⟨v1, v2⟩ ≠ 0. Therefore,
by Lemma 9.21Lemma 9.21 there exists a non-zero vector v ∈ V with ⟨v , v⟩ ≠ 0. Writing U =

{sv |s ∈ R}, we have that V = U ⊕ U⊥ by Lemma 9.22Lemma 9.22. Since dimU = 1, we must have
dimU⊥ = n − 1 by Proposition 6.12Proposition 6.12. The restriction of ⟨·,·⟩ onto U⊥ is non-degenerate.
Indeed, if there were a vector in U⊥ which is orthogonal to all vectors in U⊥, then – since
it lies in U⊥ – it is also orthogonal to all vectors of U and hence to all vectors of V . This
contradicts the assumption that ⟨·,·⟩ is non-degenerate on V . Since the restriction of ⟨·,·⟩
on U⊥ is non-degenerate and dimU⊥ = n − 1, the induction hypothesis implies that
there exists a basis {w2, ... ,wn} of U⊥ which is orthogonal with respect to ⟨·,·⟩. Setting
w1 = v gives an orthogonal basis {w1,w2, ... ,wn} of V . □

We also have:

Lemma 9.23 LetV be a finite dimensionalR-vector space equipped with a symmetric
bilinear form ⟨·,·⟩. Furthermore, let U ⊂ V be a subspace and {u1, ... , uk} be a basis
of U . Then the following two statements are equivalent

(i) a vector v ∈ V is an element of U⊥;
(ii) for 1 ⩽ i ⩽ k we have ⟨v , ui ⟩ = 0.

Proof Exercise. □

As a corollary to Theorem 9.20Theorem 9.20 we obtain a generalisation of Lemma 9.22Lemma 9.22.

Corollary 9.24 Let V be a finite dimensional R-vector space and ⟨·,·⟩ a symmetric
bilinear form on V . Suppose U ⊂ V is a subspace such that the restriction of ⟨·,·⟩ to
U is non-degenerate. Then U and U⊥ are in direct sum and we have

V = U ⊕ U⊥.

Proof The proof is similar to Lemma 9.22Lemma 9.22. We first show that U ∩ U⊥ = {0V }. Suppose
u0 ∈ U ∩ U⊥. Recall that

U⊥ = {v ∈ V |⟨v , u⟩ = 0 ∀u ∈ U}

Since u0 ∈ U⊥ we thus have for all u ∈ U

⟨u0, u⟩ = 0.
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Since the restriction of ⟨·,·⟩ to U is non-degenerate, this implies that u = 0V , hence
U ∩ U⊥ = {0V }.

We next show that U + U⊥ = V . By Theorem 9.20Theorem 9.20, the subspace U admits an ordered
basis b = (v1, ... , vk) that is orthogonal with respect to ⟨·,·⟩, that is, ⟨vi , vj⟩ = 0 for
i ̸= j . In particular, the matrix representation of ⟨·,·⟩ with respect to b is diagonal and
the diagonal entries are given by ⟨vi , vi ⟩ for 1 ⩽ i ⩽ k . By Proposition 5.24Proposition 5.24 we have

detM(⟨·,·⟩|U ,b) =
k∏

i=1

⟨vi , vi ⟩

where ⟨·,·⟩|U denotes the restriction of ⟨·,·⟩ onto U × U . Since ⟨·,·⟩|U is non-degenerate,
we have detM(⟨·,·⟩|U ,b) ̸= 0 by Proposition 9.10Proposition 9.10, hence ⟨vi , vi ⟩ ≠ 0 for 1 ⩽ i ⩽ k .

Finally, we argue that any vector w ∈ V can be written as w = v̂ +
∑k

i=1 sivi for a
suitable vector v̂ ∈ U⊥ and scalars si . As in the proof of Lemma 9.22Lemma 9.22, we define

si =
⟨vi ,w⟩
⟨vi , vi ⟩

and v̂ = w −
∑k

i=1 sivi . Then w = v̂ +
∑k

i=1 sivi and moreover ⟨v̂ , vi ⟩ = 0 for 1 ⩽ i ⩽ k ,
since ⟨vi , vj⟩ = 0 for i ̸= j . Sinceb is a basis ofU Lemma 9.22Lemma 9.22 implies that v̂ is an element
of U⊥. □

Remark 9.25 In the case where the restriction of a symmetric bilinear form to a
subspace U is non-degenerate, we have seen that U⊥ is a complement to U . The
subspace U⊥ is called the orthogonal complement of U .

The process of scaling a vector v so that ⟨v , v⟩ equals some specific value – typically 1 –
is known as normalising the vector.

Remark 9.26 (Normalisation) By definition, the matrix representation of a symmet-
ric bilinear form ⟨·,·⟩ with respect to an ordered orthogonal basis b = (v1, ... , vn) of
V is diagonal. Notice that if we define

v ′
i =

{
vi , ⟨vi , vi ⟩ = 0
vi√

|⟨vi ,vi ⟩|
, ⟨vi , vi ⟩ ≠ 0

for 1 ⩽ i ⩽ n, then b′ = (v ′
1, ... , v

′
n) is also an ordered basis of V and either

⟨v ′
i , v

′
i ⟩ = 0 or

⟨v ′
i , v

′
i ⟩ =

〈
vi√

|⟨vi , vi ⟩|
,

vi√
|⟨vi , vi ⟩|

〉
=

⟨vi , vi ⟩
|⟨vi , vi ⟩|

= ±1.

Therefore, the matrix representation of ⟨·,·⟩ with respect to b′ is diagonal as well
and the diagonal entries are elements of the set {−1, 0, 1}.

This observation allows to reformulate Theorem 9.20Theorem 9.20:

Theorem 9.27 (Matrix version of Theorem 9.20Theorem 9.20) Let n ∈ N and A ∈ Mn,n(R) be a
symmetric n × n-matrix. Then there exists an invertible n × n-matrix C ∈ GL(n,R)
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and integers p, q, s such that

(9.5) CTAC =

1p
−1q

0s

 .

Proof Let A ∈ Mn,n(R) be a symmetric n × n-matrix and let ⟨·,·⟩ denote the symmet-
ric bilinear form on Rn defined by the rule ⟨x⃗1, x⃗2⟩ = x⃗T1 Ax⃗2 for all x⃗1, x⃗2 ∈ Rn. By
Example 9.5Example 9.5 (ii), we have that M(⟨·,·⟩, e) = A, where e denotes the standard ordered
basis ofRn. Theorem 9.20Theorem 9.20 implies thatRn admits an orthogonal basis with respect to ⟨·,·⟩.
After carrying out the normalisation procedure described in Remark 9.26Remark 9.26 and possibly
renumbering the basis vectors, we thus obtain an ordered basis b of Rn such that

M(⟨·,·⟩,b) =

1p
−1q

0s

 .

Defining C = C(b, e), Proposition 9.6Proposition 9.6 thus implies that CTAC = M(⟨·,·⟩,b) as claimed.
Finally, the matrix C is invertible by Remark 3.104Remark 3.104. □

Remark 9.28 (Sylvester’s law of inertia)
• Sylvester’s law of inertia states that the numbers p and q in (9.59.5) (and hence also
s) are uniquely determined by the bilinear form ⟨·,·⟩. That is, they do not depend
on the choice of matrix C ∈ GL(n,R) such that CTAC is diagonal with diagonal
entries from the set {−1, 0, 1}. We will not prove this fact, but a proof can be
found in most textbooks about Linear Algebra.

• The pair (p, q) is known as the signature of the bilinear form ⟨·,·⟩.
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Euclidean spaces

10.1 Inner products WEEK 4

A symmetric bilinear form ⟨·,·⟩ on an R-vector space V allows to talk about vectors being
orthogonal, but so far we have not defined the length of a vector or the distance between
two vectors. In Rn equipped with the standard scalar product ⟨·,·⟩, the length of a vector
x⃗ = (xi )1⩽i⩽n ∈ Rn is denoted by ∥x⃗∥ and defined as

∥x⃗∥ =
√
⟨x⃗ , x⃗⟩ =

√√√√ n∑
i=1

(xi )2.

Over the real numbers we can only take square roots of non-negative numbers. Hence
if we want to analogously define the length of vectors in an abstract vectors space V

that is equipped with a bilinear form ⟨·,·⟩, then we need that ⟨v , v⟩ ⩾ 0 for all vectors
v ∈ V . This is known as positivity. Clearly, having a positive symmetric bilinear form on
an R-vector space, we can define the length of vectors as in the case of Rn equipped with
the standard scalar product. It might however still happen that there are vectors v ∈ V

different from the zero vector 0V that satisfy ⟨v , v⟩ = 0. Naturally, one might ask that the
zero vector is the only vector with length zero. This leads to the notion of definiteness.

Definition 10.1 (Properties of bilinear forms) A bilinear form ⟨·,·⟩ on an R-vector
space V is called
• positive if ⟨v , v⟩ ⩾ 0 for all vectors v ∈ V ;
• definite if ⟨v , v⟩ = 0 if and only if v = 0V .

Combining positivity, definiteness and symmetry, we arrive at the notion of an inner
product:

Definition 10.2 (Inner product) Let V be an R-vector space. A bilinear form ⟨·,·⟩ on
V that is positive definite and symmetric is called an inner product.

Remark 10.3 Notice that an inner product ⟨·,·⟩ on an R-vector space V is always a
non-degenerate bilinear form. Indeed, if v0 ∈ V satisfies ⟨v , v0⟩ = 0 for all vectors
v ∈ V , then we also have ⟨v0, v0⟩ = 0 and hence v0 = 0V , since ⟨·,·⟩ is positive
definite.

Example 10.4 (Inner products)
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(i) The standard scalar product on Rn defined by the rule (9.19.1) is indeed an inner
product. Clearly, ⟨·,·⟩ is symmetric and from the Analysis I module we know
that y2 ⩾ 0 for all real numbers y and that y2 = 0 if and only if y = 0. Since

⟨x⃗ , x⃗⟩ =
n∑

i=1

(xi )
2,

we conclude that ⟨·,·⟩ is positive definite and hence an inner product. The vector
space Rn equipped with the standard scalar product is sometimes denoted by
En (the letter E is to remind of the Greek Geometer Euclid).

(ii) We consider V = M3,3(R) and let U ⊂ V be the subspace consisting of anti-
symmetric matrices. On U we define a symmetric bilinear form (notice the
minus sign)

⟨·,·⟩ : U × U → R, (A,B) 7→ ⟨A,B⟩ = −Tr(AB).

An element A of U satisfies AT = −A and hence can be written as

A =

 0 x y

−x 0 z

−y −z 0


for real numbers x , y , z . We obtain

⟨A,A⟩ = −Tr

−x2 − y2 −yz xz

−yz −x2 − z2 −xy

xz −xy −y2 − z2

 = 2x2 + 2y2 + 2z2.

We conclude that ⟨A,A⟩ ⩾ 0 and ⟨A,A⟩ = 0 if and only if A = 03. Therefore,
⟨·,·⟩ is an inner product on U .

(iii) Let a < b be real numbers and consider V = C([a, b],R), the R-vector space
of continuous real-valued functions on the interval [a, b]. As in Example 9.2Example 9.2, (vi)
we obtain a symmetric bilinear form on V via the definition

⟨·,·⟩ : V × V → R, (f , g) 7→ ⟨f , g⟩ =
∫ b

a

f (x)g(x)dx .

The properties of integration from the Analysis module imply that ⟨·,·⟩ is also
positive definite and hence an inner product.

Remark 10.5 (Naming convention) As we have seen, the standard scalar product
on Rn is an example of an inner product. It is common to refer to inner products
as scalar products as well. In these notes we will reserve the term scalar product
for the standard scalar product on Rn and use inner product for a general positive
definite symmetric bilinear form.

Notice that a symmetric bilinear form can be positive, but not positive definite:

Example 10.6 For any x0 ∈ R, the symmetric bilinear form on V = P(R) defined
by

⟨·,·⟩ : V × V → R, (p, q) 7→ p(x0)q(x0)

satisfies ⟨p, p⟩ = p(x0)
2 ⩾ 0 and hence is positive. It is however not an inner

product. The polynomial f defined by the rule x 7→ f (x) = (x − x0) for all x ∈ R is
different from the zero polynomial o : x 7→ 0 ∀x ∈ R, but also satisfies ⟨f , f ⟩ = 0.
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1

θ

v⃗1

v⃗2

FIGURE 10.1. Angle between two vectors

An inner product ⟨·,·⟩ on an abstract R-vector space V allows to define geometric notions
like length and distance on V .

Definition 10.7 (Euclidean space)
(i) A pair (V , ⟨·,·⟩) consisting of an R-vector space V and an inner product ⟨·,·⟩ on

V is called a Euclidean space.
(ii) The mapping ∥ · ∥ : V → R defined by the rule

v 7→ ∥v∥ =
√
⟨v , v⟩

for all v ∈ V is called the norm induced by ⟨·,·⟩. Moreover, for any vector v ∈ V ,
the real number ∥v∥ is called the length of the vector v .

(iii) The mapping d : V × V → R defined by the rule

(v1, v2) 7→ d(v1, v2) = ∥v1 − v2∥

for all v1, v2 ∈ V is called the metric induced by ⟨·,·⟩ (or also metric induced
by the norm ∥ · ∥). Furthermore, for any vectors v1, v2 ∈ V , the real number
d(v1, v2) is called the distance from the vector v1 to the vector v2.

Recall that the angle between two non-zero vectors v⃗1, v⃗2 ∈ E2 is defined as follows.
The half lines spanned by v⃗1 and v⃗2 will each intersect the circle of radius 1 centred at
the origin in exactly one point. Consequently, the circle of radius 1 is divided into two
segments, depicted in red and blue in Figure 10.1Figure 10.1. The minimum of the lengths of the two
circle segments is the angle θ between v⃗1 and v⃗2. It is tempting to use (10.310.3) as a definition
of the angle between two vectors v1, v2 in an abstract Euclidean space (V , ⟨·,·⟩). That
is, for any non-zero vectors v1, v2 ∈ V define the angle between v1, v2 to be the unique
real-number θ ∈ [0,π] such that

cos θ =
⟨v1, v2⟩
∥v1∥∥v2∥

.

Since the cosine is a bijective mapping from [0,π] into [−1, 1], this definition only makes
sense if the quotient ⟨v1, v2⟩/(∥v1∥∥v2∥) lies in the interval [−1, 1] for all pairs v1, v2 ∈ V

of non-zero vectors. That this is indeed the case follows from one of the most important
inequalities in mathematics (recall that for x ∈ R we write |x | for the absolute value of
x ):

Proposition 10.8 (Cauchy–Schwarz inequality) Let (V , ⟨·,·⟩) be a Euclidean space.
Then, for any two vectors v1, v2 ∈ V , we have

(10.1) |⟨v1, v2⟩| ⩽ ∥v1∥∥v2∥.

Furthermore, |⟨v1, v2⟩| = ∥v1∥∥v2∥ if and only if {v1, v2} are linearly dependent.
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By the Cauchy–Schwarz inequality we thus have for all non-zero vectors v1, v2 ∈ V

0 ⩽
|⟨v1, v2⟩|
∥v1∥∥v2∥

⩽ 1,

so that ⟨v1, v2⟩/(∥v1∥∥v2∥) ∈ [−1, 1]. This allows to define:

Definition 10.9 (Angle between two vectors) Let (V , ⟨·,·⟩) be a Euclidean space
and v1, v2 ∈ V two non-zero vectors. The angle between the vectors v1 and v2 is the
unique real number θ ∈ [0,π] such that

cos θ =
⟨v1, v2⟩
∥v1∥∥v2∥

.

Remark 10.10 Notice that two non-zero vectors v1, v2 in E2 are orthogonal in the
sense that ⟨v1, v2⟩ = 0 if and only if they are perpendicular, that is, the angle between
v1 and v2 is π/2.

Proof of Proposition 10.8Proposition 10.8 First consider the case where v2 = 0V . Then both sides of
(10.110.1) are 0, hence the inequality holds and, moreover, v1 and v2 are linearly dependent.

Let therefore be v1, v2 ∈ V with v2 ̸= 0V and consider the function p : R → R defined
by the rule

p(t) = ⟨v1 + tv2, v1 + tv2⟩
for all t ∈ R. Using the bilinearity and the symmetry of ⟨·,·⟩, we expand

p(t) = ⟨v1, v1⟩+ 2t⟨v1, v2⟩+ t2⟨v2, v2⟩ = ∥v1∥2 + 2t⟨v1, v2⟩+ t2∥v2∥2.

Since v2 ̸= 0V , the function p is a polynomial of degree 2 in the variable t. If the discrim-
inant of p is positive, then p has two distinct zeros and attains both positive and negative
values. The bilinear form ⟨·,·⟩ is positive definite, hence we have p(t) ⩾ 0 for all t ∈ R
and the discriminant ∆ of p must be non-positive

∆ = 4
(
⟨v1, v2⟩2 − ∥v1∥2∥v2∥2

)
⩽ 0.

Taking the square root implies (10.110.1).

If v1, v2 are linearly dependent and since v2 ̸= 0V , there exists a scalar s such that v1 = sv2.
Hence ∥v2∥∥v1∥ = |s|∥v2∥2 = |⟨sv2, v2⟩| and equality holds in (10.110.1).

Conversely, suppose that ⟨v1, v2⟩ = ±∥v1∥∥v2∥. Then we obtain

p(t) = ∥v1∥2 ± 2t∥v1∥∥v2∥+ t2∥v2∥2 = (∥v1∥ ± t∥v2∥)2.

Taking t0 = ∓∥v1∥/∥v2∥ gives p(t0) = ⟨v1 + t0v2, v1 + t0v2⟩ = 0. Since ⟨·,·⟩ is positive
definite, this implies that v1 + t0v2 = 0V and hence v1, v2 are linearly dependent. □

Example 10.11 (Cauchy–Schwarz inequality)
(i) Consider V = Rn equipped with the standard scalar product ⟨·,·⟩. The Cauchy–

Schwarz inequality translates to the statement that for all x⃗ = (xi )1⩽i⩽n and
y⃗ = (yi )1⩽i⩽n ∈ Rn, we have∣∣∣ n∑

i=1

xiyi

∣∣∣ ⩽
√√√√ n∑

i=1

(xi )2

√√√√ n∑
i=1

(yi )2.
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(ii) For V = C([a, b],R) and inner product defined as in Example 10.4Example 10.4 (iii) above,
taking the square of the Cauchy–Schwarz inequality, we obtain that for all
f , g ∈ V ∣∣∣ ∫ b

a

f (x)g(x)dx
∣∣∣2 ⩽ ∫ b

a

f (x)2dx

∫ b

a

g(x)2dx .

The norm induced by an inner product satisfies a few elementary properties:

Proposition 10.12 (Properties of the norm) Let (V , ⟨·,·⟩) be a Euclidean space with
induced norm ∥ · ∥ : V → R. Then

(i) for all v ∈ V we have ∥v∥ ⩾ 0 and ∥v∥ = 0 if and only if v = 0V ;
(ii) for all s ∈ R and all v ∈ V we have ∥sv∥ = |s|∥v∥;

(iii) for all vectors v1, v2 ∈ V , we have the so-called triangle inequality

∥v1 + v2∥ ⩽ ∥v1∥+ ∥v2∥.

Proof The first two properties follow immediately from the definition of ∥ · ∥ and the
positive definiteness of ⟨·,·⟩. Using the Cauchy–Schwarz inequality (10.110.1), we obtain for
all v1, v2 ∈ V

∥v1 + v2∥2 = ⟨v1 + v2, v1 + v2⟩ = ⟨v1, v1⟩+ 2⟨v1, v2⟩+ ⟨v2, v2⟩

⩽ ∥v1∥2 + 2|⟨v1, v2⟩|+ ∥v2∥2 ⩽ ∥v1∥2 + 2∥v1∥∥v2∥+ ∥v2∥2

= (∥v1∥+ ∥v2∥)2 ,

and where we also used that ⟨v1, v2⟩ ⩽ |⟨v1, v2⟩|. Since both ∥v1 + v2∥ ⩾ 0 and ∥v1∥+
∥v2∥ ⩾ 0, taking the square root implies

∥v1 + v2∥ ⩽ ∥v1∥+ ∥v2∥,

as claimed. □

Likewise, we obtain:

Proposition 10.13 (Properties of the metric) Let (V , ⟨·,·⟩) be a Euclidean space with
induced metric d : V × V → R. Then for all v1, v2, v3 ∈ V we have

(i) d(v1, v2) = 0 if and only if v1 = v2;
(ii) d(v1, v2) = d(v2, v1) (symmetry);

(iii) d(v1, v3) ⩽ d(v1, v2) + d(v2, v3) (triangle inequality).

Proof Exercise. □

10.2 The orthogonal projection

In the Euclidean setting, the restriction of an inner product to a subspace is again an
inner product:
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v⃗2
v⃗1

v⃗3

0R2

FIGURE 10.2. In E2 the triangle inequality states that for any triangle,
the sum of the lengths of any two sides must be greater than or equal
to the length of the remaining side.

Lemma 10.14 Let (V , ⟨·,·⟩) be a Euclidean space and U ⊂ V a subspace. Then the
restriction ⟨·,·⟩|U of ⟨·,·⟩ to U is an inner product and hence (U, ⟨·,·⟩|U) is a Euclidean
space as well.

Proof Symmetry and positive definiteness holds for all vectors or pairs of vectors in V ,
hence also for all vectors or pairs of vectors in U ⊂ V . □

Remark 10.15 Since an inner product is a map ⟨·,·⟩ : V × V → R, it would be
more precise to write ⟨·,·⟩|U×U and speak of the restriction of ⟨·,·⟩ to U × U . For
simplicity, we well use the terminology of Lemma 10.14Lemma 10.14.

Recall that a projection is an endomorphism Π : V → V which satisfies Π ◦ Π = Π and
that for a projection Π : V → V we have V = Ker Π ⊕ ImΠ. Given two subspaces U1

and U2 of V such that V = U1 ⊕ U2, we can write every vector v ∈ V uniquely as a sum
v = u1 + u2 where ui ∈ Ui for i = 1, 2. The mapping Π : V → V defined by the rule
Π(v) = u1 for all v ∈ V thus is a projection with ImΠ = U1 and Ker Π = U2. Notice that
Π is the unique projection whose image is U1 and whose kernel is U2. If Π̂ : V → V is
another projection with this property, then we have for all v ∈ V

Π̂(v) = Π̂(u1 + u2) = Π̂(u1)

Since u1 ∈ U1 = Im Π̂, we can write u1 = Π̂(w) for some vector w ∈ V , hence Π̂(u1) =

Π̂(Π̂(w)) = Π̂(w) = u1. We thus have

Π̂(v) = Π̂(u1) = u1 = Π(v)

so that Π̂ = Π. This shows that there is precisely one projection with ImΠ = U1 and
Ker Π = U2.

Remark 10.16 By Lemma 10.14Lemma 10.14 and Remark 10.3Remark 10.3, the restriction of an inner
product ⟨·,·⟩ on a finite dimensional vector space V to a subspace U ⊂ V is al-
ways non-degenerate. Therefore, by Corollary 9.24Corollary 9.24, the orthogonal subspace U⊥ is
always a complement to U , so that V = U ⊕ U⊥ and

dimU⊥ = dimV − dimU

by Remark 6.7Remark 6.7 and Proposition 6.12Proposition 6.12.

This allows to define:
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Definition 10.17 (Orthogonal projection) Let (V , ⟨·,·⟩) be a finite dimensional Euc-
lidean space and U ⊂ V a subspace. The projection whose image is U and whose
kernel is U⊥ is called the orthogonal projection onto the subspace U and will be
denoted by Π⊥

U .

While the existence of the orthogonal projection onto a subspace U of a Euclidean space
(V , ⟨·,·⟩) follows abstractly from the above considerations, it is illustrative to give an
explicit geometric construction. We first consider the case where U is spanned by a
non-zero vector u ∈ V . We define a linear map Π⊥

U : V → V by the rule

Π⊥
U (v) =

⟨v , u⟩
⟨u, u⟩

u

for all v ∈ V . Then Π⊥
U (u) = u and Ker Π⊥

U = {v ∈ V | ⟨v , u⟩ = 0} = U⊥. Since
Π⊥

U (v) = su for some scalar s ∈ K, we conclude that Π⊥
U ◦ Π⊥

U = Π⊥
U , hence Π⊥

U is the
orthogonal projection onto U .

U
u⃗

v⃗

Π⊥
U (v⃗) 0R2

v⃗⊥U
= v⃗ − Π⊥

U (v⃗)

FIGURE 10.3. Orthogonal projection of the vector v⃗ ∈ E2 onto the sub-
space U spanned by u⃗. Notice that the vector v⃗⊥U

= v⃗ − Π⊥
U (v⃗) is

orthogonal to the vector u⃗.

In general, we have:

Proposition 10.18 Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space and U ⊂ V

a subspace of dimension k ∈ N. Let {u1, ... , uk} be an orthogonal basis of U , then
the map Π⊥

U : V → V defined by the rule

(10.2) Π⊥
U (v) =

k∑
i=1

⟨v , ui ⟩
⟨ui , ui ⟩

ui

for all v ∈ V is the orthogonal projection onto U .

Proof Letn = dimV . Notice that since ⟨·,·⟩ is positive definite, we must have ⟨ui , ui ⟩ > 0

for 1 ⩽ i ⩽ k , hence the map Π⊥
U is well defined. For 1 ⩽ j ⩽ k we obtain

Π⊥
U (uj) =

k∑
i=1

⟨uj , ui ⟩
⟨ui , ui ⟩

ui =
⟨uj , uj⟩
⟨uj , uj⟩

uj = uj ,

where we use the orthogonality of the basis {u1, ... , uk}. By definition, for all v ∈ V we
have Π⊥

U (v) =
∑k

i=1 siui for scalars si = ⟨v ,ui ⟩
⟨ui ,ui ⟩ . Since Π⊥

U (ui ) = ui , we obtain

Π⊥
U (Π

⊥
U (v)) = Π⊥

U

(
k∑

i=1

siui

)
=

k∑
i=1

siΠ
⊥
U (ui ) =

k∑
i=1

siui = Π⊥
U (v).

Hence we have Π⊥
U ◦ Π⊥

U = Π⊥
U and Π⊥

U is a projection.

By Remark 10.16Remark 10.16 we can write V = U ⊕ U⊥ and by Theorem 3.64Theorem 3.64 we can find a basis
{uk+1, ... , un} of U⊥ so that {u1, ... , uk , uk+1, ... , un} is a basis of V . Let v ∈ V . We write
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v =
∑n

j=1 tjuj for scalars tj , 1 ⩽ j ⩽ n. Then v lies in the kernel of Π⊥
U if and only if we

have

0V = Π⊥
U (v) =

k∑
i=1

〈∑n
j=1 tjuj , ui

〉
⟨ui , ui ⟩

ui =
k∑

i=1

n∑
j=1

tj
⟨uj , ui ⟩
⟨ui , ui ⟩

ui =
k∑

i=1

tiui ,

where we use that the vectors {u1, ... , uk} are orthogonal and that {uk+1, ... , un} ∈ U⊥.
The vector v thus lies in the kernel of Π⊥

U if and only if v =
∑n

i=k+1 tiui , that is, if and
only if v ∈ U⊥. The map Π⊥

U thus is the orthogonal projection on U . □

U

v⃗

Π⊥
U (v⃗)

v⃗⊥U
= v⃗ − Π⊥

U (v⃗)

FIGURE 10.4. Orthogonal projection onto the plane U in E3.

Remark 10.19 Let (V , ⟨·,·⟩) be a finite-dimensional Euclidean space and U ⊂ V

a subspace. Then for all v ∈ V we can write v = v − Π⊥
U (v) + Π⊥

U (v). Since
Π⊥

U (v) ∈ U and V = U ⊕ U⊥, it follows that the vector

v⊥U
= v − Π⊥

U (v) ∈ U⊥

and moreover, v⊥U
= 0V if and only if v ∈ U .

Exercises

Exercise 10.20 Let v⃗1, v⃗2 ∈ E2 be two non-zero vectors. Show that the angle θ

between v⃗1 and v⃗2 satisfies

(10.3) ⟨v⃗1, v⃗2⟩ = ∥v⃗1∥∥v⃗2∥ cos θ.
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10.3 Gram–Schmidt orthonormalisation WEEK 5

Using the orthogonal projection onto a subspace, we can now describe an explicit com-
putational algorithm which constructs an orthonormal basis from a given ordered basis
b = (v1, ... , vn) of a Euclidean space (V , ⟨·,·⟩). This algorithm is known as Gram–Schmidt
orthonormalisation.

We first consider the case of a 3-dimensional Euclidean space (V , ⟨·,·⟩) equipped with an
ordered basis b = (v1, v2, v3). We take

u1 =
v1
∥v1∥

as the first vector of our new orthonormal basis. We then construct a vector from v2 that
is orthogonal to the subspace U1 = span{u1}

w2 = v2 − Π⊥
U1
(v2) = v2 −

⟨v2, u1⟩
⟨u1, u1⟩

u1 = v2 − ⟨v2, u1⟩u1,

where we use that ⟨u1, u1⟩ = 1. As our second basis vector we can thus take

u2 =
w2

∥w2∥
.

We then define U2 = span{u1, u2} and set

w3 = v3 − Π⊥
U2
(v3) = v3 −

⟨v3, u1⟩
⟨u1, u1⟩

u1 −
⟨v3, u2⟩
⟨u2, u2⟩

u2 = v3 − ⟨v3, u1⟩u1 − ⟨v3, u2⟩u2

As our third basis vector we can thus take

u3 =
w3

∥w3∥
.

Setting b′ = (u1, u2, u3), we have obtained an orthonormal basis b′ of (V , ⟨·,·⟩).

Example 10.21 We consider V = R3 with the standard scalar product ⟨·,·⟩ and the
ordered basis b = (v⃗1, v⃗2, v⃗3), where

v⃗1 =

1

1

1

 , v⃗2 =

1

0

1

 , v⃗3 =

1

1

0

 .

We apply Gram-Schmidt orthonormalisation to b. We obtain

u⃗1 =
v⃗1
∥v⃗1∥

=
1√
3

1

1

1


and

w⃗2 = v⃗2 − ⟨v⃗2, u⃗1⟩u⃗1 =

1

0

1

− 2√
3

1√
3

1

1

1

 =
1

3

 1

−2

1


so that

u⃗2 =
w⃗2

∥w⃗2∥
=


1√
6

−
√
2√
3

1√
6

 .

Likewise,
w⃗3 = v⃗3 − ⟨v⃗3, u⃗1⟩u⃗1 − ⟨v⃗3, u⃗2⟩u⃗2

=

1

1

0

− 2√
3

1√
3

1

1

1

−
(
− 1√

6

)
1√
6

−
√
2√
3

1√
6

 =
1

2

 1

0

−1


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so that

u⃗3 =
1√
2

 1

0

−1


and we have indeed ⟨u⃗i , u⃗j⟩ = δij for 1 ⩽ i , j ⩽ 3. Hence the ordered basis b′ =
(u⃗1, u⃗2, u⃗3) is orthonormal with respect to ⟨·,·⟩.

The careful reader might object that we have not argued above that b′ is indeed well
defined and an ordered basis. This is however the case:

Theorem 10.22 (Gram–Schmidt orthonormalisation) Let (V , ⟨·,·⟩) be an n-
dimensional Euclidean space and b = (v1, ... , vn) an ordered basis of V . For
2 ⩽ i ⩽ n we define recursively

wi = vi − Π⊥
Ui−1

(vi ) and ui =
wi

∥wi∥
,

where Ui−1 = span{u1, ... , ui−1} and u1 = v1/∥v1∥. Then b′ = (u1, ... , un) is
well defined and an orthonormal ordered basis of V . Moreover, b′ is the unique
orthonormal ordered basis of V so that the change of basis matrix C(b′,b) is an
upper triangular matrix with positive diagonal entries.

Proof We will use induction on the dimension n of the Euclidean space (V , ⟨·,·⟩). In the
case where dimV = 1 we have a single basis vector v1 ̸= 0V . We set u1 = v1/∥v1∥. Then
b′ = (u1) is an ordered basis of V which is orthonormal. The change of basis matrix
is C(b′,b) = (1/∥v1∥) and hence is an upper triangular matrix with positive diagonal
entries. The only other ordered basis of V which is orthonormal is (−u1), but the change
of basis matrix for this basis has a negative diagonal entry. Therefore, the statement is
anchored.

Inductive step: Suppose n ⩾ 2 and that the statement is true for an (n − 1)-dimensional
Euclidean space. Let (V , ⟨·,·⟩) be an n-dimensional Euclidean space and b = (v1, ... , vn)

an ordered basis of V . Consider the subspace Un−1 = span{v1, ... , vn−1} of dimension
n − 1 for which c = (v1, ... , vn−1) is an ordered basis. By the induction hypothesis,
there exists a unique ordered basis c′ = (u1, ... , un−1) of Un−1 which is orthonormal and
such that the change of basis matrix C(c′, c) is an upper triangular matrix with positive
diagonal entries. Set wn = vn −Π⊥

Un−1
(vn) so that wn ∈ U⊥

n−1. Since b is a basis it follows
that vn /∈ Un−1, therefore Remark 10.19Remark 10.19 implies that wn ̸= 0V and we conclude that
{u1, ... , un−1,wn} is orthogonal as well as linearly independent. Let un = wn/∥wn∥, then
b′ = (u1, ... , un) is an ordered basis of V which is orthonormal. By definition, we have

un =
vn − Π⊥

Un−1
(vn)

∥vn − Π⊥
Un−1

(vn)∥
=

vn
∥vn − Π⊥

Un−1
(vn)∥

+
n−1∑
i=1

sivi

for suitable scalars s1, ... , sn−1. Writing s⃗ = (si )1⩽i⩽n−1, the change of basis matrix thus
takes the form

C(b′,b) =

(
C(c′, c) s⃗

0Rn−1

1
∥vn−Π⊥

Un−1
(vn)∥

)
.

Since C(c′, c) is an upper triangular matrix with positive entries, it follows that C(b′,b)
is an an upper triangular matrix with positive entries as well.

Finally, we argue that b′ is the unique ordered basis of V satisfying the conditions of the
theorem. Notice that un must be an element of U⊥

n−1. Now dimV = n and dimUn−1 =

n − 1 and since V = Un−1 ⊕ U⊥
n−1 by Corollary 9.24Corollary 9.24, we must have dimU⊥

n−1 = 1 by
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Remark 10.16Remark 10.16. This implies that un is uniquely determined up to multiplication by±1, but
the above choice is the only one resulting in a change of basis matrix which has positive
diagonal entries. Since by the induction hypothesis the basis c′ is unique, it follows that
b′ is the unique ordered basis of V satisfying the conditions of the theorem. □

It follows from Theorem 3.64Theorem 3.64 that an ordered basis of a subspaceU of a finite dimensional
vector space V can always be extended to a basis of V . A corresponding statement is
also true for orthonormal bases:

Corollary 10.23 Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space and U ⊂ V

a subspace. Suppose b is an ordered orthonormal basis of U , then there exists an
ordered orthonormal basis of V which contains b.

Proof Let k = dimU , n = dimV and b = (v1, ... , vk). Choose any ordered basis c of
U⊥ and apply Gram–Schmidt orthonormalisation to c to obtain an orthonormal basis
b′ = (vk+1, ... , vn) of U⊥. Since all vectors of U are orthogonal to all vectors of U⊥, the
ordered basis (v1, ... , vn) is an orthonormal ordered basis for (V , ⟨·,·⟩). □

Notice that if we carry out the Gram–Schmidt procedure without normalising the vectors
wi at each step – sometimes referred to as Gram–Schmidt orthogonalisation – then we
still obtain an ordered orthogonal basis (w1, ... ,wn).

Example 10.24 (Legendre polynomials) We consider again the vector space V =

C([−1, 1],R) of continuous real-valued functions defined on the interval [−1, 1],
equipped with the bilinear form defined by the rule

⟨f , g⟩ =
∫ 1

−1

f (x)g(x)dx

for all f , g ∈ V . For n ∈ N ∪ {0} let Un denote the subspace of V consisting
of polynomials of degree n. An ordered basis of Un is given by the polynomials
b = (1, x , x2, x3, ... , xn). Applying Gram–Schmidt orthogonalisation we obtain an
ordered orthogonal basis (p0, p1, ... , pn) of Un. That is, for i ̸= j , the polynomials
satisfy

⟨pi , pj⟩ =
∫ 1

−1

pi (x)pj(x)dx = 0.

The polynomials pi are known at the Legendre polynomials. There are different
ways to normalise the Legendre polynomials. Besides the standard normalisation
which makes the polynomials orthonormal, that is, ⟨pi , pi ⟩ = 1, it is also common to
request that ⟨pi , pi ⟩ = 2/(2i + 1). The reason for this normalisation is that it allows
to give a neat formula for pi known as Rodrigues’ formula (which we will not prove)

pi (x) =
1

2i i !

di

dx i
(x2 − 1)i ,
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where di

dx i stands for the i -th derivative with respect to the variable x . Using this
formula we obtain for the first four Legendre polynomials

p0(x) =
1

200!

d0

dx0
(x2 − 1)0 = (x2 − 1)0 = 1,

p1(x) =
1

211!

d

dx
(x2 − 1)1 =

1

2
(2x) = x ,

p2(x) =
1

222!

d2

dx2
(x2 − 1)2 =

1

8

d2

dx2
(x4 − 2x2 + 1) =

1

2
(3x2 − 1),

p3(x) =
1

233!

d3

dx3
(x2 − 1)3 =

1

48

d3

dx3
(x6 − 3x4 + 3x2 − 1) =

1

2
(5x3 − 3x).

The Gram–Schmidt orthonormalisation Theorem 10.22Theorem 10.22 has a matrix version known as
the Cholesky decomposition. In order to phrase it, we make the following definition.

Definition 10.25 (Positive definite matrix) Let n ∈ N and A ∈ Mn,n(R). The matrix
A is called positive definite if the bilinear form ⟨·,·⟩A on Rn is positive definite.

Theorem 10.26 (Cholesky decomposition) Let n ∈ N and A ∈ Mn,n(R) be a sym-
metric positive definite matrix. Then there exists a unique upper triangular matrix
C ∈ Mn,n(R) with positive diagonal entries such that A = CTC.

Proof SinceA is positive definite and symmetric, ⟨·,·⟩A is an inner product onRn. Lete =

(e⃗1, ... , e⃗n) denote the standard ordered basis of Rn. Recall that we have M(⟨·,·⟩A, e) =
A. Theorem 10.22Theorem 10.22 implies the existence of a unique ordered basis b′ of Rn which is
orthonormal with respect to ⟨·,·⟩A. Therefore, using Proposition 9.6Proposition 9.6, we obtain

A = M(⟨·,·⟩A, e) = CTM(⟨·,·⟩A,b′)C = CTC,

where C = C(e,b′) and where we use that the matrix representation of an inner product
with respect to an orthonormal basis is the identity matrix. Theorem 10.22Theorem 10.22 implies that
C(b′, e) is an upper triangular matrix with positive diagonal entries. By Remark 3.104Remark 3.104 we
haveC(e,b′) = C(b′, e)−1 and hence Corollary 5.46Corollary 5.46 implies thatC is an upper triangular
matrix as well. Now for 2 ⩽ i ⩽ n − 1, we have (the cases i = 1 and i = n are similar)

1 = [CC−1]ii =
n∑

k=1

[C]ik [C
−1]ki = [C]ii [C

−1]ii +
i−1∑
k=1

[C]ik [C
−1]ki +

n∑
k=i+1

[C]ik [C
−1]ki

= [C]ii [C
−1]ii ,

where we use that C and C−1 are upper triangular matrices. It follows that [C]ii has the
same sign as [C−1]ii for 1 ⩽ i ⩽ n. Therefore we conclude that C has positive diagonal
entries as well.

Suppose that Ĉ ∈ Mn,n(R) is another upper triangular matrix with positive diagonal
entries so that A = ĈT Ĉ. Using Lemma 3.108Lemma 3.108 we conclude that there exists an ordered
basis c′ of Rn such that Ĉ = C(e, c′). Since A = ĈT Ĉ the basis c′ is orthonormal with
respect to ⟨·,·⟩A. The uniqueness statement of Theorem 10.22Theorem 10.22 implies that c′ = b′ and
hence C = Ĉ. □
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Remark 10.27 Notice that every invertible matrix C ∈ Mn,n(R) gives rise to a
symmetric positive definite matrix A = CTC. Indeed, by Remark 2.18Remark 2.18 we have
AT = (CTC)T = CT (CT )T = CTC = A so that A is symmetric. Using
Remark 2.18Remark 2.18 again we obtain for all x⃗ ,∈ Rn

⟨x⃗ , x⃗⟩A = x⃗TCTCx⃗ = (Cx⃗)TCx⃗ = ⟨Cx⃗ ,Cx⃗⟩

where the bilinear form on the right hand side denotes the standard scalar product
on Rn. In particular this implies that ⟨·,·⟩A is positive. Since the standard scalar
product on Rn is positive definite, the last expression is 0 if and only if Cx⃗ = 0Rn .
Since C is invertible this condition is equivalent to x⃗ = 0Rn . It follows that ⟨·,·⟩A is
positive definite as well.

Finally, we observe that the coordinate representation of a vector with respect to an
orthonormal basis can be computed easily:

Remark 10.28 (Coordinate representation with respect to an orthonormal basis)
Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space equipped with an ordered
orthonormal basis b = (v1, ... , vn) with corresponding linear coordinate system β.
Then for all v ∈ V we have

β(v) =

⟨v , v1⟩
...

⟨v , vn⟩

 ⇐⇒ v =
n∑

i=1

⟨v , vi ⟩vi

Indeed, since b is a basis we can write v =
∑n

i=1 sivi for unique real numbers si ,
where 1 ⩽ i ⩽ n. Using that ⟨vi , vj⟩ = 0 for i ̸= j and that ⟨vi , vi ⟩ = 1, we obtain

⟨v , vj⟩ =
〈 n∑

i=1

sivi , vj
〉
=

n∑
i=1

si ⟨vi , vj⟩ = sj .

Correspondingly, for all v ∈ V we obtain the following formula for the length of v

∥v∥ =
∥∥∥ n∑

i=1

⟨v , vi ⟩vi
∥∥∥ =

√√√√〈 n∑
i=1

⟨v , vi ⟩vi ,
n∑

j=1

⟨v , vj⟩vj
〉

=

√√√√ n∑
i=1

n∑
j=1

⟨v , vi ⟩⟨v , vj⟩⟨vi , vj⟩ =

√√√√ n∑
i=1

⟨v , vi ⟩2.

Remark 10.29 (Linear independence of orthogonal vectors) Let (V , ⟨·,·⟩) be a Eu-
clidean space and {u1, ... , uk} be non-zero orthogonal vectors so that ⟨ui , uj⟩ = 0

for all 1 ⩽ i , j ⩽ k with i ̸= j . Suppose we have scalars s1, ... , sk ∈ R such that∑k
j=1 sjuj = 0V . Then, taking the inner product with ui gives

0 = ⟨0V , ui ⟩ =
K∑
j=1

sj⟨uj , ui ⟩ = si ⟨ui , ui ⟩.

Since by assumption ui ̸= 0V , we have ⟨ui , ui ⟩ ̸= 0 and hence si = 0. It follows that
{u1, ... , uk} is linearly independent.
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Example 10.30 (Example 10.21Example 10.21 continued) If we want to compute C(b,b′) we need
to compute β′(vi ) for i = 1, 2, 3 and write the resulting vectors into the columns of
C(b,b′). Since b′ is orthonormal, the preceding remark gives

β′(v1) =

⟨v1, u1⟩
⟨v1, u2⟩
⟨v1, u3⟩

 =


√
3

0

0

 .

Likewise we have

β′(v2) =

⟨v2, u1⟩
⟨v2, u2⟩
⟨v2, u3⟩

 =


2√
3√
2√
3

0


and

β′(v3) =

⟨v3, u1⟩
⟨v3, u2⟩
⟨v3, u3⟩

 =


2√
3

− 1√
6

1√
2


so that

C(b,b′) =


√
3 2√

3
2√
3

0
√
2√
3

− 1√
6

0 0 1√
2

 .

The proof of Theorem 10.26Theorem 10.26 implies thatC(b′,b) = C(b,b′)−1 is an upper triangular
matrix with positive diagonal entries as well, as predicted by Theorem 10.22Theorem 10.22.

Exercises

Exercise 10.31 Compute the Cholesky decomposition of the positive definite sym-
metric matrix

A =

 3 0 −1

0 8 4

−1 4 3

 .
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10.4 The orthogonal group WEEK 6

Recall that an isomorphism of vector spacesV andW is a bijective linear map f : V → W .
In the case where both V and W are equipped with an inner product, we may ask that f
preserves the inner products in the following sense:

Definition 10.32 (Orthogonal transformation) Let (V , ⟨·,·⟩) and (W , ⟨⟨·,·⟩⟩) be Euc-
lidean spaces. An isomorphism f : V → W is called an orthogonal transformation
if

⟨u, v⟩ = ⟨⟨f (u), f (v)⟩⟩
for all u, v ∈ V .

Recall that in a Euclidean space (V , ⟨·,·⟩) both the notion of angle between two vectors
(Definition 10.9Definition 10.9) and the notion of distance between two vectors (Definition 10.7Definition 10.7) only
depends on the inner product ⟨·,·⟩. Orthogonal transformations thus preserve both
angles between vectors and distances between vectors.

We can also consider the set of orthogonal transformations from a Euclidean space to
itself:

Definition 10.33 (Orthogonal group & orthogonal matrices)
• Let (V , ⟨·,·⟩) be a Euclidean space. The set of orthogonal transformations from
(V , ⟨·,·⟩) to itself is called the orthogonal group of (V , ⟨·,·⟩) and denoted by
O(V , ⟨·,·⟩).

• A matrix R ∈ Mn,n(R) is called orthogonal if fR : Rn → Rn is an orthogonal
transformation of (Rn, ⟨·,·⟩), where ⟨·,·⟩ denotes the standard scalar product of
Rn. The set of orthogonal n × n-matrices is denoted by O(n) and called the
orthogonal group.

The use of the term group in the above definition is indeed justified:

Proposition 10.34 Let (V , ⟨·,·⟩) be a Euclidean space. Then the set O(V , ⟨·,·⟩) is
a group in the sense of Definition 8.4Definition 8.4 when the group operation is taken to be the
composition of mappings. In particular, O(n) is a group when the group operation is
taken to be matrix multiplication.

Proof Let G = O(V , ⟨·,·⟩). As the group identity element we take eG = IdV , where IdV
denotes the identity mapping on V , so that Id(v) = v for all v ∈ V . Clearly IdV ∈ G and
f ◦ IdV = IdV ◦ f = f for all f ∈ G . Likewise, if f ∈ G , then the inverse mapping f −1 is
an element of G as well. Indeed, for all u, v ∈ V we obtain

⟨u, v⟩ = ⟨IdV (u), IdV (v)⟩ = ⟨(f ◦ f −1)(u), (f ◦ f −1)(v)⟩ = ⟨f (f −1(u)), f (f −1(v))⟩

= ⟨f −1(u), f −1(v)⟩,

where we use that f ∈ G . Therefore, for all f ∈ G there exists a group element b, namely
f −1 such that f ◦b = b◦f = eG = IdV . Since the composition of mappings is associative,
it follows that O(V , ⟨·,·⟩) is a group with respect to the composition of mappings.

The second claim follows since for matrices A,B ∈ Mn,n(R), we have fA ◦ fB = fAB,
where AB denotes the matrix multiplication of A and B, see Theorem 2.21Theorem 2.21. □
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Lemma 10.35 For all n ∈ N we have

O(n) =
{
R ∈ Mn,n(R)|RTR = 1n

}
=
{
R ∈ GL(n,R)|RT = R−1

}
.

Proof By definition, R ∈ Mn,n(R) is an element of O(n) if and only if

⟨x⃗ , y⃗⟩ = x⃗T y⃗ = ⟨x⃗ , y⃗⟩1n = ⟨Rx⃗ ,Ry⃗⟩ = (Rx⃗)TRy⃗ = x⃗TRTRy⃗ = ⟨x⃗ , y⃗⟩RTR

for all vectors x⃗ , y⃗ ∈ Rn. From the exercises we known that this condition is equivalent
to RTR = 1n, as claimed.

In order to show the second equality sign in the lemma, recall that GL(n,R) consists of
the matrices A ∈ Mn,n(R) that are invertible. If R ∈ GL(n,R) satisfies R−1 = RT , then
RTR = R−1R = 1n hence we have{

R ∈ GL(n,R)|RT = R−1
}
⊂
{
R ∈ Mn,n(R)|RTR = 1n

}
.

The converse inclusion of sets follows from the observation that a matrix R ∈ O(n)

satisfies detR = ±1. Indeed, the product rule for the determinant Proposition 5.21Proposition 5.21 gives

det(RTR) = det(RT ) det(R) = (det(R))2 = det(1n) = 1,

where we also use that det(AT ) = det(A) for all A ∈ Mn,n(R). Since detR = ±1, the
matrix R is invertible and hence RTR = 1n implies that RT = R−1. □

The orthogonal transformations in a finite dimensional Euclidean space (V , ⟨·,·⟩) can
similarly be characterised in terms of their matrix representation with respect to an
orthonormal basis:

Proposition 10.36 Let n ∈ N and (V , ⟨·,·⟩) be an n-dimensional Euclidean space
equipped with an orthonormal ordered basis b. Then an endomorphism f : V → V is
an orthogonal transformation if and only if its matrix representation R = M(f ,b,b)

with respect to b is an orthogonal matrix.

Proof By definition an endomorphism f : V → V is an orthogonal transformation of
(V , ⟨·,·⟩) if and only if ⟨u, v⟩ = ⟨f (u), f (v)⟩ for all vectors u, v ∈ V . Writing x⃗ = β(u),
y⃗ = β(v) and R = M(f ,b,b), this gives

⟨u, v⟩ = x⃗TM(⟨·,·⟩,b)y⃗ = ⟨x⃗ , y⃗⟩1n = ⟨f (u), f (v)⟩

= (β(f (u)))Tβ(f (v)) = (Rx⃗)TRy⃗ = x⃗TRTRy⃗ = ⟨x⃗ , y⃗⟩RTR,

where we use that M(⟨·,·⟩,b) = 1n, Proposition 9.6Proposition 9.6 and Proposition 3.97Proposition 3.97. Since every
vector x⃗ ∈ Rn can be written as x⃗ = β(u) for some vector u ∈ V , the claim follows as in
the proof of Lemma 10.35Lemma 10.35. □

Corollary 10.37 Let n ∈ N and (V , ⟨·,·⟩) be an n-dimensional Euclidean space
equipped with an orthonormal ordered basis b. Then an ordered basis b′ of V is
orthonormal with respect to ⟨·,·⟩ if and only if the change of basis matrix C(b′,b) is
orthogonal.

Proof Write b = (v1, ... , vn), b′ = (v ′
1, ... , v

′
n) and let β,β′ denote the corresponding

linear coordinate systems. Consider the endomorphism g = (β′)−1 ◦ β : V → V

satisfying M(g ,b,b) = C(b′,b). Using Proposition 10.36Proposition 10.36 it is sufficient to show that g
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is orthogonal if and only if b′ is orthonormal. By definition, g satisfies g(vi ) = v ′
i for all

1 ⩽ i ⩽ n. Suppose the endomorphism g is orthogonal, then

⟨v ′
i , v

′
j ⟩ = ⟨g(vi ), g(vj)⟩ = ⟨vi , vj⟩ = δij ,

where the last equality uses that b is orthonormal. We conclude that b′ is orthonormal as
well. Conversely, suppose that b′ is orthonormal. Let u, v ∈ V and write u =

∑n
i=1 sivi

and v =
∑n

j=1 tjvj for scalars si , ti , i = 1, ... , n. Then, using the bilinearity of ⟨·,·⟩, we
compute

⟨g(u), g(v)⟩ =
〈
g
( n∑

i=1

sivi
)
, g
( n∑

j=1

tjvj
)〉

=
n∑

i=1

n∑
j=1

si tj⟨g(vi ), g(vj)⟩

=
n∑

i=1

n∑
j=1

si tj⟨v ′
i , v

′
j ⟩ =

n∑
i=1

n∑
j=1

si tjδij =
n∑

i=1

n∑
j=1

si tj⟨vi , vj⟩

=
〈 n∑

i=1

sivi ,
n∑

j=1

tjvj
〉
= ⟨u, v⟩,

so that g is orthogonal. □

Example 10.38 A matrix A ∈ Mn,n(R) is orthogonal if and only if its column vectors
form an orthonormal basis of Rn with respect to the standard scalar product ⟨·,·⟩.
To this end let Ω̂ : (Rn)n → Mn,n(K) denote the map which forms an n × n matrix
from n column vectors of length n. That is, Ω̂ satisfies

[Ω̂(a⃗1, ... , a⃗n)]ij = [a⃗j ]i

for all 1 ⩽ i , j ⩽ n and where [a⃗j ]i denotes the i -th entry of the vector a⃗j . Then, by
the definition of matrix multiplication, we have for all 1 ⩽ i , j ⩽ n

[Ω̂(a⃗1, ... , a⃗n)
T Ω̂(a⃗1, ... , a⃗n)]ij =

n∑
k=1

[Ω̂(a⃗1 ... , a⃗n)
T ]ik [Ω̂(a⃗1 ... , a⃗n)]kj

=
n∑

k=1

[Ω̂(a⃗1 ... , a⃗n)]ki [Ω̂(a⃗1 ... , a⃗n)]kj

=
n∑

k=1

[a⃗i ]k [a⃗j ]k = ⟨a⃗i , a⃗j⟩1n = δij ,

as claimed.
The reader is invited to check that a corresponding statement also holds for the
rows of an orthogonal matrix.

Example 10.39 (Permutation matrices) Let n ∈ N and σ ∈ Sn be a permutation.
Recall that for 1 ⩽ i ⩽ n, the i -th column of the permutation matrix Pσ of σ is given
by e⃗σ(i), where e = (e⃗1, ... , e⃗n) denotes the standard ordered basis of Rn. Therefore,
the columns of a permutation matrix form an ordered orthonormal basis of Rn and
hence permutation matrices are orthogonal by the previous remark.

Example 10.40 (Reflection along a hyperplane) A plane in R3 is a subspace U of
dimension 2 = 3−1. More generally, a hyperplane in an n-dimensional vector space
V is a subspace U of dimension n − 1.
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We can reflect a vector orthogonally along a plane in E3, see Figure 10.5Figure 10.5. This map
generalises to hyperplanes as follows: Let (V , ⟨·,·⟩)be a finite dimensional Euclidean
space and U ⊂ V a hyperplane. Then the orthogonal reflection along U is the map
rU : V → V defined by the rule

rU(v) = v − 2(v − Π⊥
U (v)) = 2Π⊥

U (v)− v

for all v ∈ V . This mapping is indeed an orthogonal transformation. To see this
consider an orthonormal basis {u1, ... , un−1}ofU . By Corollary 10.23Corollary 10.23 we can extend
this to an orthonormal basis {u1, ... , un−1, un} of V . Notice that dimU⊥ = 1 and
that U⊥ = span{un}. For v ∈ V we write v =

∑n
i=1 siui for unique real numbers si ,

1 ⩽ i ⩽ n. Then we obtain

rU(v) + v = 2Π⊥
U

(
n∑

i=1

siui

)
= 2

n−1∑
j=1

〈
uj ,

n∑
i=1

siui
〉
uj

= 2
n∑

i=1

 n∑
j=1

si ⟨uj , ui ⟩uj − si ⟨un, ui ⟩un


= 2

n∑
i=1

siui − 2
〈
un,

n∑
i=1

siui
〉
un = 2v − 2⟨un, v⟩un,

where we use (10.210.2). Writing un = e, we conclude that for the orthogonal reflection
along a hyperplane U ⊂ V we have the formula

rU(v) = v − 2⟨e, v⟩e,

where the vector e ∈ V satisfies ⟨e, e⟩ = 1 and U⊥ = span{e}.
We can now verify that rU is an orthogonal transformation. For all vectors u, v ∈ V

we have
⟨rU(u), rU(v)⟩ = ⟨u − 2⟨e, u⟩e, ⟨v − 2⟨e, v⟩e⟩

= ⟨u, v⟩ − 2⟨u, e⟩⟨e, v⟩ − 2⟨e, u⟩⟨e, v⟩+ 4⟨e, u⟩⟨e, v⟩⟨e, e⟩
= ⟨u, v⟩,

where we use that ⟨·,·⟩ is bilinear, symmetric and that ⟨e, e⟩ = 1. We conclude that
rU is an orthogonal transformation.
Finally, observe that with respect to the ordered basis b = (u1, ... , un−1, un) of V
we have

M(rU ,b,b) =

(
1n−1

−1

)
.

Indeed, since ui ∈ U for all 1 ⩽ i ⩽ n − 1, we obtain rU(ui ) = 2Π⊥
U (ui ) − ui =

2ui − ui = ui . Furthermore, rU(un) = un − 2⟨un, un⟩un = −un, as claimed. We
conclude that det rU = −1.

Definition 10.41 (Special orthogonal group & special orthogonal matrices)
• Let (V , ⟨·,·⟩) be a Euclidean space. The subset of O(V , ⟨·,·⟩) consisting of en-

domorphisms whose determinant is 1 is called the special orthogonal group of
(V , ⟨·,·⟩) and is denoted by SO(V , ⟨·,·⟩).

• A matrix R ∈ Mn,n(R) is called special orthogonal if R ∈ O(n) and detR = 1.
The set of special orthogonal n × n-matrices is denoted by SO(n) and called the
special orthogonal group.
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U

v⃗

Π⊥
U (v⃗)

rU(v⃗)

FIGURE 10.5. Orthogonal reflection along the plane U in E3.

Example 10.42 (The group O(2)) Recall from the exercises that if a matrix R ∈
M2,2(R) satisfies RTR = 12, then it is either of the form(

a −b

b a

)
or

(
a b

b −a

)
for some real numbers a, b. The condition RTR = 12 implies that a2 + b2 = 1,
hence we can write a = cosα and b = sinα for some α ∈ R. In the second case we
have detR = −a2 − b2 = −1, thus

SO(2) =

{
Rα =

(
cosα − sinα

sinα cosα

)
|α ∈ R

}
.

Recall also that the mapping fRα
: R2 → R2 is the counter-clockwise rotation

around 0R2 by the angle α. In the second case we obtain(
cosα sinα

sinα − cosα

)
=

(
cosα − sinα

sinα cosα

)(
1 0

0 −1

)
.

The matrix (
1 0

0 −1

)
is the matrix representation of the orthogonal reflection along the x-axis in E2 with
respect to the standard ordered basis e of R2. We thus obtain a complete picture of
all orthogonal transformations of E2. An orthogonal transformation of E2 is either a
special orthogonal transformation in which case it is a rotation around 0R2 or else a
composition of the orthogonal reflection along the x -axis and a rotation around 0R2 .

We will discuss the structure of O(n) for n > 2 below.

10.5 The adjoint mapping

In this section we discuss what one might consider to be the nicest endomorphisms of a
Euclidean space (V , ⟨·,·⟩), the so-called self-adjoint endomorphisms. Such endomorph-
isms are not only diagonalisable, but the basis of eigenvectors can be chosen to consist
of orthonormal vectors with respect to ⟨·,·⟩.

Lemma 10.43 Let (V , ⟨·,·⟩) and (W , ⟨⟨·,·⟩⟩) be finite dimensional Euclidean spaces
and b = (v1, ... , vn) an orthonormal basis of (V , ⟨·,·⟩) and c = (w1, ... ,wm) an
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orthonormal basis of (W , ⟨⟨·,·⟩⟩). Then the matrix representation of a linear map
f : V → W satisfies

[M(f ,b, c)]ij = ⟨⟨f (vj),wi ⟩⟩
for all 1 ⩽ i ⩽ m and for all 1 ⩽ j ⩽ n.

Proof By definition, we have for all 1 ⩽ j ⩽ n

f (vj) =
m∑

k=1

[M(f ,b, c)]kjwk .

Hence for all 1 ⩽ i ⩽ m, we obtain

⟨⟨f (vj),wi ⟩⟩ =
〈〈 m∑

k=1

[M(f ,b, c)]kjwk ,wi

〉〉
=

m∑
k=1

[M(f ,b, c)]kj ⟨⟨wk ,wi ⟩⟩

=
m∑

k=1

[M(f ,b, c)]kjδki = [M(f ,b, c)]ij ,

as claimed. □

Proposition 10.44 Let (V , ⟨·,·⟩) and (W , ⟨⟨·,·⟩⟩) be finite dimensional Euclidean
spaces and f : V → W a linear map. Then there exists a unique linear map f ∗ :

W → V such that
⟨⟨f (v),w⟩⟩ = ⟨v , f ∗(w)⟩

for all v ∈ V and w ∈ W .

Proof Let b = (v1, ... , vn) be an orthonormal basis of (V , ⟨·,·⟩) and c = (w1, ... ,wm) be
an orthonormal basis of (W , ⟨⟨·,·⟩⟩). Let f ∗ : W → V be the unique linear map such that

M(f ∗, c,b) = M(f ,b, c)T .

Since ⟨·,·⟩ and ⟨⟨·,·⟩⟩ are both bilinear it suffices to show that

⟨⟨f (vj),wi ⟩⟩ = ⟨vj , f ∗(wi )⟩

for all 1 ⩽ j ⩽ n and all 1 ⩽ i ⩽ m. By the previous lemma we have for all 1 ⩽ j ⩽ n and
all 1 ⩽ i ⩽ m

⟨⟨f (vj),wi ⟩⟩ = [M(f ,b, c)]ij = [M(f ∗, c,b)]ji = ⟨f ∗(wi ), vj⟩ = ⟨vj , f ∗(wi )⟩.

This shows that f ∗ : W → V exists. Let g : W → V be another linear map such that

⟨⟨f (v),w⟩⟩ = ⟨v , g(w)⟩

for all v ∈ V and w ∈ W . Then we have for all v ∈ V and w ∈ W

⟨v , f ∗(w)− g(w)⟩ = ⟨v , f ∗(w)⟩ − ⟨v , g(w)⟩ = ⟨⟨f (v),w⟩⟩ − ⟨⟨f (v),w⟩⟩ = 0.

This shows that for all w ∈ W the vector f ∗(w)− g(w) ∈ V is orthogonal to all vectors
of V . Since ⟨·,·⟩ is non-degenerate this implies that f ∗(w)− g(w) = 0V , that is, f ∗(w) =

g(w) for all w ∈ W and hence f ∗ = g . □

Linear maps for which f = f ∗ are of particular importance:

Definition 10.45 (Adjoint mapping, self-adjoint mappings and normal mappings)
• Let (V , ⟨·,·⟩) and (W , ⟨⟨·,·⟩⟩) be finite dimensional Euclidean spaces and f : V →
W a linear map. The unique mapping f ∗ : W → V guaranteed to exist by
Proposition 10.44Proposition 10.44 is called the adjoint mapping of f .
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• An endomorphism f : V → V of a Euclidean space (V , ⟨·,·⟩) is called self-adjoint
if f = f ∗ and normal if f ◦ f ∗ = f ∗ ◦ f .

Example 10.46
(i) The proof of Proposition 10.44Proposition 10.44 implies that an endomorphism f : V → V of

a finite dimensional Euclidean space (V , ⟨·,·⟩) is self-adjoint if and only if its
matrix representation with respect to an orthonormal basisb ofV is symmetric.
In particular, in Rn equipped with the standard scalar product, a mapping
fA : Rn → Rn for A ∈ Mn,n(R) is self-adjoint if and only if A is symmetric.

(ii) Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space and f : V → V an
orthogonal transformation. Then f is normal. Indeed, using that f is orthogonal,
we obtain for all u, v ∈ V

⟨f −1(u), v⟩ = ⟨f (f −1(u)), f (v)⟩ = ⟨u, f (v)⟩

so that the adjoint mapping of an orthogonal transformation is its inverse
mapping, f ∗ = f −1. It follows that f ◦ f ∗ = f ◦ f −1 = IdV = f −1 ◦ f = f ∗ ◦ f
so that f is normal.

Exercises

Exercise 10.47 Verify that SO(V , ⟨·,·⟩) is a subgroup of O(V , ⟨·,·⟩) in the sense of
Definition 8.8Definition 8.8. In particular, SO(V , ⟨·,·⟩) is indeed a group and hence so is SO(n).

157



CHAPTER 10 — EUCLIDEAN SPACES

10.6 The spectral theorem WEEK 7

We now come to one of the core results of the Linear Algebra II module:

Theorem 10.48 (The spectral theorem) Let f : V → V be an endomorphism of the
finite dimensional Euclidean space (V , ⟨·,·⟩). Then there exists an orthonormal basis
of V consisting of eigenvectors of f if and only if f is self-adjoint.

For the proof of this statement we need two lemmas.

Lemma 10.49 Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space of dimension
n ⩾ 1 and f : V → V a self-adjoint endomorphism. Then f admits an eigenvalue
λ ∈ R.

Proof Let b be an ordered orthonormal basis of (V , ⟨·,·⟩) and A = M(f ,b,b). Since f

is self-adjoint, we have that A = AT . Recall that the characteristic polynomial charf :

R → R of f satisfies charf (x) = det(x1n − A) for all x ∈ R. We may interpret each
entry of A as a complex number and hence the characteristic polynomial as a function
charf : C → C. In doing so, we can apply the fundamental theorem of algebra and
conclude that there exists a complex number w such that charf (w) = 0. We next argue
that w has vanishing imaginary part and hence is a real number. Since det(w1n −A) = 0

we can find a non-zero vector z⃗ ∈ Cn such that Az⃗ = wz⃗ . We write z⃗ = x⃗ + iy⃗ for vectors
x⃗ , y⃗ ∈ Rn andw = s+it for real numbers s, t. DecomposingA(x⃗+iy⃗) = (s+it)(x⃗+iy⃗)

into real and imaginary parts, we obtain the equations

Ax⃗ = sx⃗ − ty⃗ ,

Ay⃗ = sy⃗ + tx⃗ .

Using the symmetry of A, we compute

⟨Ax⃗ , y⃗⟩1n = (Ax⃗)T y⃗ = x⃗TAy⃗ = ⟨x⃗ ,Ay⃗⟩1n .

Using the above equations, we obtain

⟨Ax⃗ , y⃗⟩1n = ⟨sx⃗ − ty⃗ , y⃗⟩1n = s⟨x⃗ , y⃗⟩1n − t∥y⃗∥2 = ⟨x⃗ ,Ay⃗⟩1n = ⟨x⃗ , sy⃗ + tx⃗⟩1n
= s⟨x⃗ , y⃗⟩1n + t∥x⃗∥2,

where ∥ · ∥ denotes the norm induced by the standard scalar product ⟨·,·⟩1n on Rn. The
last equation is equivalent to

0 = t(∥x⃗∥2 + ∥y⃗∥2).

Since z⃗ ̸= 0Cn , the properties of the norm ∥ · ∥ – see Proposition 10.12Proposition 10.12 – imply that
(∥x⃗∥2 + ∥y⃗∥2) > 0 and hence we must have t = 0. □

Recall that a subspace U ⊂ V is said to be stable under an endomorphism f : V → V if
f (u) ∈ U for all u ∈ U .

Lemma 10.50 Let (V , ⟨·,·⟩) be a Euclidean space, f : V → V a self adjoint endo-
morphism and λ an eigenvalue of f . Then (Eigf (λ))

⊥ is stable under f .

Proof Write U = Eigf (λ) and let w ∈ U⊥. Then, for all u ∈ U we obtain

⟨u, f (w)⟩ = ⟨u, f ∗(w)⟩ = ⟨f (u),w⟩ = λ⟨u,w⟩,
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where we use the self-adjointness of f and that u is an eigenvector of f . Since w ∈ U⊥,
we have ⟨u,w⟩ = 0 and hence ⟨u, f (w)⟩ = 0 for all u ∈ U . This shows that f (w) ∈ U⊥,
hence U⊥ is stable under f . □

Proof of Theorem 10.48Theorem 10.48 We first show that if f admits an orthonormal basis consisting
of eigenvectors of f , then f must be self-adjoint. Let b = (u1, ... , un) be such a basis. We
need to show that for all v ,w ∈ V we have

⟨f (v),w)⟩ = ⟨v , f (w)⟩

There exist unique scalars s1, ... , sn ∈ R and t1, ... , tn ∈ R such that v =
∑n

i=1 siui and
w =

∑n
j=1 tjuj . From this we compute

⟨f (v),w)⟩ =

〈
f

(
n∑

i=1

siui

)
,

n∑
j=1

tjuj

〉
=

n∑
i=1

n∑
j=1

si tj⟨f (ui ), uj⟩

=
n∑

i=1

n∑
j=1

si tjλi ⟨ui , uj⟩ =
n∑

i=1

n∑
j=1

si tjλiδij =
n∑

i=1

si tiλi ,

where λi ∈ R denotes the eigenvalue of the eigenvector ui for i = 1, ... , n. Likewise we
have

⟨v , f (w)⟩ =
n∑

i=1

n∑
j=1

si tj⟨ui , f (uj)⟩ =
n∑

i=1

n∑
j=1

si tjλj⟨ui , uj⟩ =
n∑

i=1

si tiλi ,

as claimed.

Conversely, assume that f is self-adjoint. We will use induction on the dimension n of
V to show that (V , ⟨·,·⟩) admits an orthonormal basis consisting of eigenvector of f .
For n = 1 every endomorphism is diagonal, hence there is nothing to show and the
statement is anchored.

Inductive step: Assume n ⩾ 2 and that the statement is true for all Euclidean spaces of
dimension at most n − 1. By Lemma 10.49Lemma 10.49 the self-adjoint endomorphism f : V → V

admits an eigenvalue λ ∈ R. Write U = Eigf (λ). By Remark 10.16Remark 10.16 we have V = U ⊕U⊥

and by Lemma 10.50Lemma 10.50 we have that U⊥ is stable under f . We thus obtain a linear map
f̂ = f |U⊥ : U⊥ → U⊥ by restricting f to U⊥. Recall that the restriction ⟨·,·⟩|U⊥ of
⟨·,·⟩ to U⊥ turns (U⊥, ⟨·,·⟩|U⊥) into another Euclidean space. Since dimU ⩾ 1, the di-
mension of U⊥ is at most n − 1. The self-adjointness condition f (v) = f ∗(v) must
hold for all vectors v ∈ V and hence in particular also for all vectors of U⊥ ⊂ V . It
follows that f̂ : U⊥ → U⊥ is self-adjoint with respect to ⟨·,·⟩|U⊥ . Write k = dimU⊥.
By the induction hypothesis there exists an orthonormal basis {u1, ... , uk} consisting
of eigenvectors of f̂ . Since f̂ = f |U⊥ , the vectors {u1, ... , uk} are also eigenvectors of
f and since the inner product of vectors in U⊥ is the same as the inner product com-
puted in V , it follows that {u1, ... , uk} is orthonormal with respect to ⟨·,·⟩. Finally, using
Gram-Schmidt orthonormalisation (Theorem 10.22Theorem 10.22), we can find an orthonormal basis
{v1, ... , vn−k} of U = Eigf (λ) consisting of eigenvectors with eigenvalue λ. It follows
that {u1, ... , uk , v1, ... , vn−k} is an orthonormal basis of V consisting of eigenvectors of
f . □

Again, there is a matrix version of Theorem 10.48Theorem 10.48:

Theorem 10.51 (Matrix version of the spectral theorem) Let n ∈ N andA ∈ Mn,n(R)
be a matrix. Then there exists an orthogonal matrix R ∈ Mn,n(R) such that RART is
a diagonal matrix if and only if A is symmetric.
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Proof We first show that if there exists an orthogonal matrix R ∈ Mn,n(R) such that
RART = D for some diagonal matrix D ∈ Mn,n(R), then A must be symmetric. Since
A = RTDR we obtain

AT = (RTDR)T = RTDTR = RTDR = A,

where we use DT = D and Remark 2.18Remark 2.18.

For the converse direction consider V = Rn equipped with its standard scalar product
⟨·,·⟩. Since A is symmetric, the endomorphism fA : Rn → Rn is self-adjoint with respect
to ⟨·,·⟩. Applying Theorem 10.48Theorem 10.48 we can thus find an ordered orthonormal basis b of Rn

consisting of eigenvectors of fA. Denoting by e the standard ordered basis of Rn, we have
by Theorem 3.106Theorem 3.106

M(fA,b,b) = C(e,b)M(fA, e, e)C(e,b)
−1.

The basis b consists of eigenvectors of fA, hence M(fA,b,b) is a diagonal matrix by
Remark 6.30Remark 6.30. Now recall from Example 3.95Example 3.95 that M(fA, e, e) = A, thus writing R =

C(e,b), we conclude that RAR−1 is diagonal. The standard ordered basis e of Rn is
orthonormal with respect to the standard scalar product of Rn, hence Corollary 10.37Corollary 10.37
implies that R is orthogonal, R−1 = RT . We have thus found an orthogonal matrix R so
that RART is diagonal. □

10.6.1 Geometric description of self-adjoint endomorphisms

The spectral theorem tells us that self-adjoint endomorphisms can be diagonalised with
an orthonormal basis. As a consequence one can give a precise geometric description of
self-adjoint mappings. A first key observation towards this end is the following:

Lemma 10.52 Let (V , ⟨·,·⟩) be a Euclidean space and f : V → V a self-adjoint
endomorphism. Then the eigenspaces of f are orthogonal. That is, for eigenvalues
λ ̸= µ of f we have ⟨u, v⟩ = 0 for all u ∈ Eigf (λ) and for all v ∈ Eigf (µ).

Proof Let u ∈ Eigf (λ) and v ∈ Eigf (µ). Then

λ⟨u, v⟩ = ⟨f (u), v⟩ = ⟨u, f (v)⟩ = µ⟨u, v⟩

and hence 0 = (λ− µ)⟨u, v⟩. It follows that ⟨u, v⟩ = 0 since λ− µ ̸= 0. □

Recall that a vector space V is the direct sum of vector subspaces U1, ... ,Uk of V if every
vector v ∈ V can be written uniquely as a sum v = u1 + u2 + · · ·+ uk with ui ∈ Ui for
1 ⩽ i ⩽ k . In this case we write V =

⊕k
i=1 Ui . In the presence of an inner product on V ,

we may ask that the subspaces Ui are all orthogonal:

Definition 10.53 (Orthogonal direct sum) Let (V , ⟨·,·⟩) be a Euclidean space and
U1, ... ,Uk be subspaces of V such that V =

⊕k
i=1 Ui . We say V is the orthogonal

direct sum of the subspaces U1, ... ,Uk if for all i ̸= j , we have ⟨ui , uj⟩ = 0 for all
ui ∈ Ui and for all uj ∈ Uj . In this case we write

V =
k⊕

i=1

⊥ Ui .
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Example 10.54
(i) Let (V , ⟨·,·⟩) be a Euclidean space and U ⊂ V a subspace. Then V is the

orthogonal direct sum of U and U⊥.
(ii) Let (V , ⟨·,·⟩) be a Euclidean space and {u1, ... , un} an orthogonal basis of V .

Then V is the orthogonal direct sum of the subspaces Ui = span{ui} for 1 ⩽
i ⩽ n.

Proposition 10.55 Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space and f :

V → V a self-adjoint endomorphism. Let {λ1, ... ,λk} denote the eigenvalues of f .
Then

V =
k⊕

i=1

⊥ Eigf (λi ).

Proof By Proposition 6.46Proposition 6.46 the eigenspaces of f are in direct sum and by Lemma 10.52Lemma 10.52
this direct sum is orthogonal with respect to ⟨·,·⟩. By Theorem 10.48Theorem 10.48 f is diagonalisable,
hence

V =
k⊕

i=1

⊥ Eigf (λi ). □

We now obtain the aforementioned geometric description: A self adjoint endomorphism
of a finite dimensional vector space is a linear combination of orthogonal projections.

Proposition 10.56 Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space and f :

V → V a self-adjoint endomorphism with eigenvalues {λ1, ... ,λk}. Then we have
for all v ∈ V

f (v) =
k∑

i=1

λiΠ
⊥
Ui
(v),

where we write Ui = Eigf (λi ).

Proof Let g : V → V be the endomorphism defined by the rule g(v) =
∑k

i=1 λiΠ
⊥
Ui
(v)

for all v ∈ V . We want to show that f (v) = g(v) for all v ∈ V . Recall that for an
orthogonal projection onto a subspace U ⊂ V we have

Π⊥
U (v) =

{
v v ∈ U,

0V v ∈ U⊥.

Let j ∈ {1, ... , k} and v ∈ Uj = Eigf (λj). By Lemma 10.52Lemma 10.52 we have Uj ⊂ U⊥
i for all

i ∈ {1, ... , k} with j ̸= i . Therefore,

g(v) =
k∑

i=1

λiΠ
⊥
Ui
(v) = λjΠ

⊥
Uj
(v) = λjv = f (v)

and the two mappings agree on all eigenspaces. Since V =
⊕k

i=1 Eigf (λi ), the claim
follows. □

10.7 Quadratic forms

Closely related to the notion of a symmetric bilinear form is that of a quadratic form.
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Definition 10.57 (Quadratic form) A function q : V → R is called a quadratic form
on V if there exists a symmetric bilinear form ⟨·,·⟩ on V such that

q(v) = ⟨v , v⟩

for all v ∈ V .

Remark 10.58
• The adjective quadratic is used since a quadratic form q : V → R is so-called
2-homogeneous, that is, it satisfies

q(sv) = s2q(v)

for all s ∈ R and v ∈ V .
• By definition, every symmetric bilinear form ⟨·,·⟩ on V gives rise to a quadratic

form q. The mapping ⟨·,·⟩ 7→ q from the set of symmetric bilinear forms into the
set of quadratic forms is thus surjective. That this mapping is also injective is a
consequence of the so-called polarisation identity

4⟨v1, v2⟩ = ⟨v1 + v2, v1 + v2⟩ − ⟨v1 − v2, v1 − v2⟩

which holds for all v1, v2 ∈ V . Written in terms of the quadratic form associated
to ⟨·,·⟩, it becomes

4⟨v1, v2⟩ = q(v1 + v2)− q(v1 − v2).

Therefore, if two symmetric bilinear forms define the same quadratic form, then
they must agree.

Example 10.59
(i) Consider V = R2. The function

q : R2 → R, v⃗ =

(
x

y

)
7→ q(v⃗) = 2x2 − 4xy + 5y2

is a quadratic form. Indeed, we have q(v⃗) = ⟨v⃗ , v⃗⟩A, where

A =

(
2 −2

−2 5

)
.

(ii) Likewise, the function

q : R3 → R, v⃗ =

x

y

z

 7→ q(v⃗) = 4xy − 6yz + z2

is a quadratic form. Indeed, we have q(v⃗) = ⟨v⃗ , v⃗⟩A, where

A =

0 2 0

2 0 −3

0 −3 1

 .

Applying the spectral theorem Theorem 10.48Theorem 10.48, we see that we can "diagonalise" quad-
ratic forms.
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Theorem 10.60 (Principal axes theorem) Let (V , ⟨·,·⟩) be a Euclidean space of di-
mension n ∈ N and q : V → R a quadratic form. Then there exists an orthonormal
ordered basis b = (v1, ... , vn) of V with corresponding linear coordinate system
β : V → Rn and a diagonal matrix D ∈ Mn,n(R) such that for all v ∈ V

q(v) = β(v)TDβ(v).

Remark 10.61 The lines spanned by the vectors vi for 1 ⩽ i ⩽ n of the orthonormal
basis are known as the principal axes of the quadratic form q. We will explain this
terminology below.

Proof of Theorem 10.60Theorem 10.60 Fix an orthonormal ordered basis b′ of (V , ⟨·,·⟩) and let ⟨⟨·,·⟩⟩
denote the symmetric bilinear form on V such that q(v) = ⟨⟨v , v⟩⟩ for all v ∈ V . Let A =

M(⟨⟨·,·⟩⟩,b′) and f : V → V denote the endomorphism whose matrix representation is
A with respect to the ordered basis b′ of V . Since ⟨⟨·,·⟩⟩ is a symmetric bilinear form, the
matrix A is symmetric and hence f is self-adjoint with respect to ⟨·,·⟩ by Example 10.46Example 10.46.
Theorem 10.48Theorem 10.48 implies that there exists an orthonormal ordered basis b of (V , ⟨·,·⟩)
consisting of eigenvectors of f . LetD = M(f ,b,b) be the diagonal matrix representation
of f with respect to b. From Proposition 9.6Proposition 9.6 we have for all v ∈ V

(10.4) q(v) = ⟨⟨v , v⟩⟩ = β(v)TM(⟨⟨·,·⟩⟩,b)β(v).

By construction we have M(⟨⟨·,·⟩⟩,b′) = M(f ,b′,b′), hence Proposition 9.6Proposition 9.6 gives

M(⟨⟨·,·⟩⟩,b) = CTM(⟨⟨·,·⟩⟩,b′)C = CTM(f ,b′,b′)C,

where C = C(b,b′). Since both b′ and b are ordered basis that are orthonormal with
respect to ⟨·,·⟩, Proposition 10.36Proposition 10.36 implies that C is orthogonal, CT = C−1. Finally, using
Theorem 3.106Theorem 3.106, we thus obtain

(10.5) M(⟨⟨·,·⟩⟩,b) = C−1M(f ,b′,b′)C = M(f ,b,b) = D.

Combining (10.410.4) and (10.510.5), we get

q(v) = β(v)TDβ(v),

as claimed. □

Example 10.62 (Example 10.59Example 10.59 (i) continued) Here we are in the case whereV = R2

and ⟨·,·⟩ is the standard scalar product. We have q(v⃗) = ⟨⟨v⃗ , v⃗⟩⟩ = ⟨v⃗ , v⃗⟩A. Taking
b′ = e to be the orthonormal standard ordered basis of R2, we get

M(⟨⟨·,·⟩⟩,b′) = A =

(
2 −2

−2 5

)
.

Orthonormal eigenvectors of A can be computed to be

b = (v1, v2) =

((
− 1√

5
2√
5

)
,−

(
2√
5
1√
5

))
so that

C(b,b′) =

(
− 1√

5
− 2√

5
2√
5

− 1√
5

)
and

CTAC =

(
6 0

0 1

)
= D.
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e⃗1

e⃗2

v⃗2

v⃗1

FIGURE 10.6. The ellipse defined by the equation 2x2 − 4xy + 5y2 = 1

and its principal axes spanned by the orthonormal vectors v⃗1 and v⃗2.

Writing

v⃗ =

(
x

y

)
and β(v⃗) =

(
X (v⃗)

Y (v⃗)

)
,

we obtain

X (v⃗) =

(
x

y

)T
(
− 1√

5
2√
5

)
= − x√

5
+

2y√
5

and

Y (v⃗) = −
(
x

y

)T
(

2√
5
1√
5

)
= − 2x√

5
− y√

5
,

so that
q(v⃗) = 2x2 − 4xy + 5y2 = 6X (v⃗)2 + Y (v⃗)2.

Remark 10.63 Especially in the physics literature it is customary to also use the
letters x , y to denote functions from R2 → R (and likewise for higher dimensions).
The function x returns the first component of a vector v⃗ ∈ R2 and y returns the
second component, so that for instance

x

((
2

−4

))
= 2 and y

((
3

5

))
= 5.

Thinking of x , y as functions – and doing the same for X ,Y , the quadratic form from
the previous example can then be written as (notice that we write q and not q(v⃗))

q = 2x2 − 4xy + 5y2 = 6X 2 + Y 2.

Definition 10.64 (Quadric) Let q : V → Rbe a quadratic form and c ∈ R. A quadric
Q in V is the set of solutions v ∈ V to an equation of the form q(v) = c .

Example 10.65 The set

Q =
{
(x , y) ∈ R2|2x2 − 4xy + 5y2 = 1

}
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is a quadric in R2. Written this way it is not immediately clear how the set of solution
looks like. With respect to our new orthonormal orthonormal basis b = (v1, v2)

provided by the example above, we can however write Q as

Q =
{
v⃗ ∈ R2|6X (v⃗)2 + Y (v⃗)2 = 1

}
and we recognise Q as an ellipse. The X -axis spanned by v1 and the Y -axis spanned
by v2 are symmetry axes for the ellipse and are known as its principal axes, see
Figure 10.6Figure 10.6.

Remark 10.66 (♡ - not examinable) Quadratic forms also play an important role
in calculus. Let f : Rn → R be a twice continuously differentiable function. The
Hessian matrix of f at x⃗ = (xi )1⩽i⩽n ∈ Rn is given by

[Hf (x⃗)]ij =
∂2f

∂xi∂xj

where 1 ⩽ i , j ⩽ n. By the Schwartz theorem, this matrix is symmetric and hence
for each x⃗ ∈ Rn we obtain a quadratic form on Rn defined by the rule

q(h⃗) =
1

2
h⃗THf (x⃗)h⃗ =

1

2
⟨h⃗, h⃗⟩Hf (x⃗).

for all h⃗ ∈ Rn and where ⟨·,·⟩ denotes the standard scalar product of Rn. The
significance of this quadratic form arises from the Taylor approximation of f . For
vectors h⃗ ∈ Rn of small length we have the approximation

f (x⃗ + h⃗) ≈ f (x⃗) + ⟨∇f (x⃗), h⃗⟩+ 1

2
⟨h⃗, h⃗⟩Hf (x⃗),

where ∇f (x⃗) denotes the gradient of f at x⃗ . Recall that at a critical point x⃗ of f we
have ∇f (x⃗) = 0Rn and hence

f (x⃗ + h⃗) ≈ f (x⃗) + q(h⃗).

In order to decide whether f admits a local maximum / a local minimum at a critical
point, one thus needs to investigate the sign of q(h⃗) for all h⃗.

The previous remark is one motivation for the following definition:

Definition 10.67 Let q : V → R be a quadratic form on theR-vector spaceV . Then
q is called
• positive or positive semi-definite if q(v) ⩾ 0 for all v ∈ V ;
• positive definite if q(v) ⩾ 0 and q(v) = 0 if and only if v = 0V ;
• negative or negative semi-definite if q(v) ⩽ 0 for all v ∈ V ;
• negative definite if q(v) ⩽ 0 and q(v) = 0 if and only if v = 0V ;
• indefinite if there exists v ∈ V and w ∈ V such that q(v) < 0 and q(w) > 0.

By the principal axes theorem (Theorem 10.60Theorem 10.60), we can write a quadratic form q : V → R
on a Euclidean space (V , ⟨·,·⟩) as q(v) = β(v)TDβ(v), where b is an ordered orthonor-
mal basis of V and D a diagonal matrix.
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Exercises

Exercise 10.68 Show the following characterisations:
(i) q is positive if and only if all diagonal entries of D are greater than or equal to

zero;
(ii) q is positive definite if and only if all diagonal entries of D are positive;

(iii) q is negative if and only if all diagonal entries of D are less than or equal to zero;
(iv) q is negative definite if and only if all diagonal entries of D are negative;
(v) q is indefinite if and only if D has positive and negative diagonal entries.
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Unitary spaces WEEK 8

Unitary spaces are the complex companions of Euclidean spaces. Much of the theory of
Euclidean spaces also holds over to the complex numbers when we suitably adapt the
notion of an inner product. In addition, almost all proofs carry over from the real case,
hence we will only provide proofs when the arguments from the real case do not work.

11.1 Hermitian inner products

Naively one might define a “standard scalar product” on Cn as in the case of Rn, that is,
for z⃗ = (zi )1⩽i⩽n and w⃗ = (wi )1⩽i⩽n ∈ Cn we put z⃗ · w⃗ =

∑n
i=1 ziwi . However, doing

so, it is not true any more that z⃗ · z⃗ = 0 only for the zero vector in Cn. For instance, the
vector

z⃗ =

(
1

i

)
satisfies z⃗ · z⃗ = 0, but z⃗ ̸= 0C2 . Instead of the above definition we define the Hermitian
standard scalar product on Cn by the rule

⟨z⃗ , w⃗⟩ =
n∑

i=1

z iwi ,

where z denotes the complex conjugate of the complex number z ∈ C. Recall that
zz = Re(z)2 + Im(z)2 ⩾ 0 so that zz = 0 if and only if z = 0. The Hermitian standard
scalar product is an example of a sesquilinear form:

Definition 11.1 (Sesquilinear form) Let V be a complex vector space. A sesquilinear
form on V is a map ⟨·,·⟩ : V × V → C such that

(i) ⟨·,·⟩ is linear in the second variable, that is,

⟨v , s1w1 + s2w2⟩ = s1⟨v ,w1⟩+ s2⟨v ,w2⟩

for all s1, s2 ∈ C and all v ,w1,w2 ∈ V ;
(ii) ⟨·,·⟩ is conjugate linear in the first variable, that is,

⟨s1w1 + s2w2, v⟩ = s1⟨w1, v⟩+ s2⟨w2, v⟩

for all s1, s2 ∈ C and all v ,w1,w2 ∈ V ;
Moreover, a sesquilinear form is called Hermitian if

⟨v ,w⟩ = ⟨w , v⟩

for all v ,w ∈ V .

Remark 11.2
• Sesquilinear forms correspond to bilinear forms in the real setting and Hermitian

forms correspond to symmetric bilinear forms.
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• In our convention a sesquilinear form is conjugate linear in the first variable and
linear in the second variable. The reader is warned that some authors use the
opposite convention so that a sesquilinear form is linear in the first variable and
conjugate linear in the second variable.

Let V be a finite dimensional C-vector space and b = (v1, ... , vn) an ordered basis of V .
As in the case of bilinear forms over real vector spaces, we define the matrix representation
of a sesquilinear form ⟨·,·⟩ on V with respect to b

M(⟨·,·⟩,b) = (⟨vi , vj⟩)1⩽i ,j⩽n.

Recall that in the real setting symmetric bilinear forms are represented by symmetric
matrices. Similarly, sesquilinear Hermitian forms – usually just called Hermitian forms –
are represented by so-called Hermitian matrices. For a precise definition, we need:

Definition 11.3 (Conjugate matrix) Let A = (Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(C). The
conjugate matrix of A is the matrix A = (Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(C) whose entries
are the complex conjugates of the entries of A.

Lemma 11.4 (Properties of the conjugate matrix)
(i) For all A,B ∈ Mm,n(C) and all s, t ∈ C, we have

sA+ tB = s A+ tB, A = A, AT = A
T
.

(ii) For all A ∈ Mm,n(C) and B ∈ Mn,p(C), we have

AB = AB.

In particular, A ∈ Mn,n(C) is invertible if and only if A is invertible and
(
A
)−1

=

A−1.
(iii) For all A ∈ Mn,n(C) we have

detA = det(A).

Proof (i) and (ii) follow from the definitions of matrix operations and from z = z

and zw = z w for all complex numbers z ,w . (iii) follows from the Leibniz formula
Proposition 5.39Proposition 5.39. □

Hermitian matrices have the property that their transpose equals their conjugate matrix.

Definition 11.5 (Hermitian matrix) A matrix A = (Aij)1⩽i ,j⩽n ∈ Mn,n(C) is called
Hermitian if

AT = A ⇐⇒ A = A
T ⇐⇒ Aji = Aij , 1 ⩽ i , j ⩽ n.

Remark 11.6
• Notice that the diagonal entries of a Hermitian matrixA = (Aij)1⩽i ,j⩽n ∈ Mn,n(C)

satisfy Aii = Aii for all 1 ⩽ i ⩽ n and hence must be real.
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• If we write A ∈ Mn,n(C) as A = B+ iC for B,C ∈ Mn,n(R), then A is Hermitian
if and only if

AT = (B+ iC)T = BT + iCT = A = B− iC

which is equivalent to B being symmetric and C being anti-symmetric.

Example 11.7 2× 2 and 3× 3 Hermitian matrices are of the form(
a z

z b

)
,

 a z w

z b u

w u c


for a, b, c ∈ R and u, z ,w ∈ C.

In analogy to Proposition 9.6Proposition 9.6 we obtain:

Proposition 11.8 Let V be a finite dimensional C-vector space and b = (v1, ... , vn)

an ordered basis ofV with associated linear coordinate systemβ : V → Kn. Suppose
⟨·,·⟩ is a sesquilinear form on V , then

(i) for all v ,w ∈ V we have

⟨v ,w⟩ = β(v)
T
M(⟨·,·⟩,b)β(w);

(ii) ⟨·,·⟩ is Hermitian if and only if M(⟨·,·⟩,b) is a Hermitian matrix;
(iii) if b′ is another ordered basis of V , then

M(⟨·,·⟩,b′) = C
T
M(⟨·,·⟩,b)C,

where C = C(b′,b) denotes the change of basis matrix.

Proof Exercise. □

Non-degenerateness of a sesquilinear form is defined exactly as in the real case and
correspondingly, a sesquilinear form on a finite dimensional complex vector space is
non-degenerate if and only if its matrix representation with respect to some (and hence
any) basis has non-vanishing determinant (c.f. Proposition 9.10Proposition 9.10).

Again, in analogy to the real case we call a sesquilinear form ⟨·,·⟩onV positive if ⟨v , v⟩ ⩾ 0

for all v ∈ V and positive definite if ⟨·,·⟩ is positive and ⟨v , v⟩ = 0 if and only if v = 0V .
Also, in analogy to Definition 10.2Definition 10.2, we define:

Definition 11.9 (Hermitian inner product) LetV be aC-vector space. A sesquilinear
form on V that is positive definite and Hermitian is called a Hermitian inner product.

Example 11.10 (Hermitian forms and Hermitian inner products)
(i) Suppose A ∈ Mn,n(C) is a Hermitian matrix, then the map ⟨·,·⟩ : Cn ×Cn → C

defined by the rule
⟨z⃗ , w⃗⟩A = (z⃗)TAw⃗

for all z⃗ , w⃗ ∈ Cn defines a Hermitian form on Cn.
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(ii) Let a < b be real numbers and consider V = C([a, b],C), the complex-vector
space of continuous complex-valued functions on the interval [a, b]. We define
⟨·,·⟩ : V × V → C by the rule

⟨f , g⟩ =
∫ b

a

f (x)g(x)dx .

Then the properties of integration from the Analysis module show that ⟨·,·⟩ is a
Hermitian inner product on V .

(iii) Let V = Mn,n(C) denote the C-vector space of n × n-matrices with complex
entries. We define a map ⟨·,·⟩ : V × V → C defined by the rule

⟨A,B⟩ = Tr
(
A

T
B
)

for all A,B ∈ Mn,n(C). Since the trace is a linear map Tr : Mn,n(C) → C
satisfying Tr(A) = Tr(A) for all A ∈ Mn,n(C), it follows that ⟨·,·⟩ is a Hermitian
form on Mn,n(C). Writing A = (Aij)1⩽i ,j⩽n, we obtain

⟨A,A⟩ =
n∑

i=1

n∑
j=1

AjiAji =
n∑

i=1

n∑
j=1

|Aji |2

so that ⟨A,A⟩ ⩾ 0 and ⟨A,A⟩ = 0 if and only if all entries of A are zero, that is,
A = 0. We conclude that ⟨·,·⟩ defines a Hermitian inner product on Mn,n(C).

The complex companions of Euclidean spaces (c.f. Definition 10.7Definition 10.7) are the so-called unit-
ary spaces:

Definition 11.11 (Unitary space) A pair (V , ⟨·,·⟩) consisting of an C-vector space V

and a Hermitian inner product ⟨·,·⟩ on V is called a unitary space.

As in the case of Euclidean spaces, a Hermitian inner product ⟨·,·⟩ on a complex vector
space V allows to define a norm ∥ · ∥ =

√
⟨·,·⟩ on V . Since ⟨·,·⟩ is a Hermitian form, we

have that ⟨v , v⟩ = ⟨v , v⟩ for all v ∈ V . Therefore, ⟨v , v⟩ is a non-negative real number
for all v ∈ V and hence ∥ · ∥ is well defined. Although we will not prove it here, the
Cauchy–Schwarz inequality holds as well in the setting of unitary spaces. That is, as in
Proposition 10.8Proposition 10.8, we have again that for all v1, v2 ∈ V

|⟨v1, v2⟩| ⩽ ∥v1∥∥v2∥

with equality if and only if {v1, v2} are linearly dependent. Here | · | on the left denotes
the absolute value.

The distance function is also defined analogously and again we have the triangle inequal-
ity. Again, we will not prove this.

The notions of orthogonality, orthonormality, the orthogonal complement, the ortho-
gonal projection onto a subspace are again defined analogously to the Euclidean case.

Example 11.12 Consider V = C([0, 2π],C), the C-vector space of continuous com-
plex-valued functions defined on the interval [0, 2π]. We equip V with the Hermitian
inner product ⟨·,·⟩ as defined in Example 11.10Example 11.10 above. For n ∈ Z let fn : [0, 2π] → C
be defined by the rule

fn(t) =
1√
2π

eint
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for all t ∈ [0, 2π]. Then for n ̸= m, we obtain

⟨fn, fm⟩ =
1

2π

∫ 2π

0

einteimtdt =
1

2π

∫ 2π

0

ei(m−n)tdt =
1

2πi(m − n)
ei(m−n)t

∣∣∣∣2π
0

= 0

and for all n ∈ Z we have that ⟨fn, fn⟩ = 1. It follows that {fn|n ∈ Z} is an or-
thonormal subset of V . This observation is at the heart of the theory of Fourier
series.

Again, Theorem 10.22Theorem 10.22 also has a complex version:

Theorem 11.13 (Gram–Schmidt orthonormalisation for unitary spaces) Let
(V , ⟨·,·⟩) be an n-dimensional unitary space and b = (v1, ... , vn) an ordered basis of
V . For 2 ⩽ i ⩽ n we define recursively

wi = vi − Π⊥
Ui−1

(vi ) and ui =
wi

∥wi∥
,

where Ui−1 = span{u1, ... , ui−1} and u1 = v1/∥v1∥. Then b′ = (u1, ... , un) is
well defined and an orthonormal ordered basis of V . Moreover, b′ is the unique
orthonormal ordered basis of V so that the change of basis matrix C(b′,b) is an
upper triangular matrix whose diagonal entries are real and positive.

As in Definition 10.25Definition 10.25, we have:

Definition 11.14 (Positive definite matrix) Let n ∈ N and A ∈ Mn,n(C). The matrix
A is called positive definite if the sesquilinear form ⟨·,·⟩A on Cn is positive definite.

As in Theorem 10.26Theorem 10.26, we obtain:

Theorem 11.15 (Cholesky decomposition over C) Let n ∈ N and A ∈ Mn,n(C) be a
positive definite Hermitian matrix. Then there exists a unique upper triangular matrix
C ∈ Mn,n(C) with real and positive diagonal entries such that A = CTC.

Remark 11.16 Similar to the real case (c.f. Remark 10.27Remark 10.27), for an invertible complex
matrix C ∈ Mn,n(C), the matrix CT

C is Hermitian and positive definite.

Remark 11.17 As in Remark 10.28Remark 10.28, in a finite dimensional unitary space (V , ⟨·,·⟩)
equipped with an ordered orthonormal basis b = (v1, ... , vn), we have the following
identities for all v ∈ V

v =
n∑

i=1

⟨v , vi ⟩vi and ∥v∥ =

√√√√ n∑
i=1

⟨v , vi ⟩2.
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Exercises

Exercise 11.18 Compute the Cholesky decomposition of the positive definite Her-
mitian matrix

A =

 6 −1 + i −2

−1− i 3 −2 + i

−2 −2− i 3

 .
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11.2 The unitary group WEEK 9

Orthogonal transformations between Euclidean spaces correspond to so-called unitary
transformations between unitary spaces:

Definition 11.19 (Unitary transformation) Let (V , ⟨·,·⟩) and (W , ⟨⟨·,·⟩⟩) be unitary
spaces. An isomorphism f : V → W is called a unitary transformation if

⟨u, v⟩ = ⟨⟨f (u), f (v)⟩⟩

for all u, v ∈ V .

With this definition, all the statements about orthogonal transformations have corres-
ponding statements for unitary transformations.

Definition 11.20 (Unitary group & unitary matrices)
• Let (V , ⟨·,·⟩) be a unitary space. The set of unitary transformations from (V , ⟨·,·⟩)

to itself is called the unitary group of (V , ⟨·,·⟩) and denoted by U(V , ⟨·,·⟩).
• A matrixR ∈ Mn,n(C) is called unitary if fR : Cn → Cn is an unitary transformation

of (Cn, ⟨·,·⟩), where ⟨·,·⟩ denotes the standard Hermitian scalar product of Cn.
The set of unitary n × n-matrices is denoted by U(n) and called the unitary group.

Like the orthogonal group, the unitary group is indeed a group:

Proposition 11.21 Let (V , ⟨·,·⟩)be a unitary space. Then the setU(V , ⟨·,·⟩) is a group
in the sense of Definition 8.4Definition 8.4 when the group operation is taken to be the composition
of mappings. In particular, U(n) is a group when the group operation is taken to be
matrix multiplication.

We have the characterisation:

Lemma 11.22 For all n ∈ N we have

U(n) =
{
R ∈ Mn,n(C)|RTR = 1n

}
=
{
R ∈ GL(n,C)|RT = R−1

}
.

A unitary transformation has a unitary matrix representation with respect to an orthonor-
mal basis:

Proposition 11.23 Let n ∈ N and (V , ⟨·,·⟩) be an n-dimensional unitary space
equipped with an orthonormal ordered basis b. Then an endomorphism f : V → V is
a unitary transformation if and only if its matrix representation R = M(f ,b,b) with
respect to b is a unitary matrix.

We also have:
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Corollary 11.24 Letn ∈ Nand (V , ⟨·,·⟩)be ann-dimensional unitary space equipped
with an orthonormal ordered basis b. Then an ordered basis b′ of V is orthonormal
with respect to ⟨·,·⟩ if and only if the change of basis matrix C(b′,b) is unitary.

The special unitary transformations are those with determinant one:

Definition 11.25 (Special unitary group & special unitary matrices)
• Let (V , ⟨·,·⟩) be a unitary space. The subset of U(V , ⟨·,·⟩) consisting of endo-

morphism whose determinant is 1 is called the special unitary group of (V , ⟨·,·⟩)
and is denoted by SU(V , ⟨·,·⟩).

• A matrix R ∈ Mn,n(C) is called special unitary if R ∈ U(n) and detR = 1. The
set of special unitary n × n-matrices is denoted by SU(n) and called the special
unitary group.

Again, we have indeed groups:

Example 11.26 While O(1) just consists of the matrices ±(1). The group U(1) has
infinitely many elements. Indeed (z) ∈ U(1) if and only if |z |2 = 1 so that

U(1) =
{
(eiϑ)|ϑ ∈ R

}
.

11.3 Adjoint and normal endomorphisms

The notion of the adjoint for maps between unitary spaces is defined as in the case of
Euclidean spaces. Given finite dimensional unitary spaces (V , ⟨·,·⟩) and (W , ⟨⟨·,·⟩⟩) and
a linear map f : V → W , the adjoint of f is the unique map f ∗ : W → V such that

⟨⟨f (v),w⟩⟩ = ⟨v , f ∗(w)⟩

for all v ∈ V and w ∈ W . The adjoint f ∗ is constructed by choosing an orthonormal
basis b of V and an orthonormal basis c of W and by requesting that

(11.1) M(f ∗, c,b) = M(f ,b, c)
T
.

The self-adjoint mappings of a unitary space (V , ⟨·,·⟩)are then the linear maps f : V → V

satisfying f ∗ = f . If we equip V with an ordered orthonormal basis b, then a linear map
f : V → V is self-adjoint if and only if M(f ,b,b) is a Hermitian matrix.

Let A ∈ Mn,n(C) and equip Cn with the standard Hermitian scalar product ⟨·,·⟩. Then
(11.111.1) implies that (fA)∗ = f

A
T . This motivates the following definition:

Definition 11.27 (Adjoint matrix) For a matrix A ∈ Mn,n(C) we define

A∗ = A
T

and call A∗ the adjoint matrix of A.

The spectral theorem also holds in the unitary setting:
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Theorem 11.28 (The spectral theorem for unitary spaces) Let (V , ⟨·,·⟩) be a finite
dimensional unitary space and f : V → V a self-adjoint endomorphism. Then there
exists an orthonormal basis of V consisting of eigenvectors of f . In particular, f is
diagonalisable.

Again we have a matrix version:

Theorem 11.29 Let n ∈ N andA ∈ Mn,n(C) be a Hermitian matrix. Then there exists
a unitary matrix R ∈ Mn,n(C) such that RAR∗ is a diagonal matrix.

As in the real case we call an endomorphism f : V → V of a unitary space (V , ⟨·,·⟩)
normal if f ◦ f ∗ = f ∗ ◦ f . Normal endomorphisms can be characterised in terms of the
following lemma:

Lemma 11.30 Let (V , ⟨·,·⟩) be a unitary space and f : V → V an endomorphism.
Then f is normal if and only if

∥f (v)∥ = ∥f ∗(v)∥

for all v ∈ V .

Before we give a proof, we remark:

Remark 11.31 LetV be a finite dimensionalC-vector space and ⟨·,·⟩ and Hermitian
form on V . Similar to the real case, writing q(v) = ⟨v , v⟩, we obtain for all v ,w ∈ V

4Re⟨v ,w⟩ = 2(⟨v ,w⟩+ ⟨v ,w⟩) = 2(⟨v ,w⟩+ ⟨w , v⟩)
= ⟨v + w , v + w⟩ − ⟨v − w , v − w⟩ = q(v + w)− q(v − w),

so that the real part of ⟨·,·⟩ is determined by q. On the other hand, we have for all
v ,w ∈ V

Re(⟨iv ,w⟩) = −Re(i⟨v ,w⟩) = Im(⟨v ,w⟩),
so that the imaginary part of ⟨·,·⟩ is determined by q as well. It follows that two
Hermitian forms ⟨·,·⟩and ⟨⟨·,·⟩⟩onV satisfy ⟨·,·⟩ = ⟨⟨·,·⟩⟩ if and only if ⟨v , v⟩ = ⟨⟨v , v⟩⟩
for all v ∈ V .

Proof Suppose f is normal, then we have for all v ∈ V

∥f (v)∥2 = ⟨f (v), f (v)⟩ = ⟨v , f ∗(f (v))⟩ = ⟨v , (f ∗ ◦ f )(v)⟩ = ⟨v , (f ◦ f ∗)(v)⟩

= ⟨f ∗(v), f ∗(v)⟩ = ∥f ∗(v)∥2.

Taking the square root implies that ∥f (v)∥ = ∥f ∗(v)∥ for all v ∈ V .

Conversely, suppose ∥f (v)∥ = ∥f ∗(v)∥ for all v ∈ V , then the previous calculation
implies that

⟨v , (f ∗ ◦ f )(v)⟩ = ⟨v , (f ◦ f ∗)(v)⟩

for all v ∈ V . We define Hermitian forms φ1 and φ2 on V by the rule

φ1(v ,w) = ⟨w , (f ∗ ◦ f )(v)⟩ and φ2(v ,w) = ⟨w , (f ◦ f ∗)(v)⟩
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for all v ,w ∈ V . We have φ1(v , v) = φ2(v , v) for all v ∈ V . By the previous remark this
implies that φ1 = φ2. Hence for all v ,w ∈ V , we have

⟨w , (f ∗ ◦ f − f ◦ f ∗)(v)⟩ = 0.

Taking w = (f ∗ ◦ f − f ◦ f ∗)(v), we conclude that ∥(f ∗ ◦ f − f ◦ f ∗)(v)∥ = 0 for all
v ∈ V . It follows that f is normal. □

Similar to the real case, every unitary endomorphism is normal. In addition, we mention
the following properties of normal endomorphisms:

Proposition 11.32 (Properties of normal endomorphisms) Let (V , ⟨·,·⟩) be a finite
dimensional unitary space and f : V → V a normal endomorphism. Then

(i) Ker f = Ker f ∗;
(ii) λ is an eigenvalue of f if and only if λ is an eigenvalue of f ∗;

(iii) the eigenspaces of f are orthogonal. That is, for eigenvalues λ ̸= µ of f we have
⟨u, v⟩ = 0 for all u ∈ Eigf (λ) and for all v ∈ Eigf (µ);

(iv) if f is self-adjoint, then the eigenvalues of f are real;
(v) if f is unitary, then the eigenvalues of f are complex numbers of modulus 1.

Proof (i) By definition, v ∈ Ker f if and only if f (v) = 0V . This condition is equivalent to
∥f (v)∥ = 0, by the property (i) of norms, see Proposition 10.12Proposition 10.12. Since ∥f (v)∥ = ∥f ∗(v)∥
for all v ∈ V by the previous lemma, we conclude that Ker f = Ker f ∗.

(ii) Observe that if f is normal then f − sIdV is normal as well for all s ∈ C. Indeed, using
the normality of f , we compute

(sIdV − f ) ◦ (sIdV − f )∗ = (sIdV − f ) ◦ (sIdV − f ∗) = f ◦ f ∗ − sf − sf ∗ + |s|2IdV
= f ∗ ◦ f − sf ∗ − sf + |s|2IdV = (sIdV − f ∗) ◦ (sIdV − f )

= (sIdV − f )∗ ◦ (sIdV − f ).

Using (i), we conclude that for all s ∈ C we have

Eigf (s) = Ker(sIdV − f ) = Ker(sIdV − f )∗ = Ker(sIdV − f ∗) = Eigf ∗(s).

(iii) Let λ be an eigenvalue of f with eigenvector u and µ be an eigenvalue of f with
eigenvector v . Then, using (ii) and the conjugate linearity of ⟨·,·⟩ in the first argument,
we obtain

λ⟨u, v⟩ = ⟨λu, v⟩ = ⟨f ∗(u), v⟩ = ⟨u, f (v)⟩ = ⟨u,µv⟩ = µ⟨u, v⟩

If λ ̸= µ, it follows that ⟨u, v⟩ = 0, as claimed.

(iv) if there exists a non-zero vector v ∈ V and a scalar λ ∈ C such that f (v) = λv , then
we obtain

⟨v , f (v)⟩ = ⟨v ,λv⟩ = λ⟨v , v⟩ = ⟨f (v), v⟩ = ⟨λv , v⟩ = λ⟨v , v⟩.

Since ⟨v , v⟩ ≠ 0, this implies that λ = λ and hence λ is real.

(v) Suppose λ is an eigenvalue with non-zero eigenvector v of the unitary endomorphism
f , then

|λ|2⟨v , v⟩ = λλ⟨v , v⟩ = ⟨λv ,λv⟩ = ⟨f (v), f (v)⟩ = ⟨v , f ∗(f (v))⟩ = ⟨v , v⟩,

where we use the conjugate linearity of ⟨·,·⟩ in the first argument and that f ∗ = f −1 for a
unitary endomorphism. Since ⟨v , v⟩ ≠ 0, it follows that |λ2| = 1. □
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It turns out that an endomorphism of a unitary space is diagonalisable with a orthonormal
basis if and only if it is normal. This is a statement which is not true in the real setting.
For instance, a rotation around the origin in R2 is a normal endomorphism with respect
to the standard scalar product of R2, but rotations have in general no eigenvectors.

Theorem 11.33 (Spectral theorem for normal endomorphisms) Let (V , ⟨·,·⟩) be a
finite dimensional unitary space and f : V → V an endomorphism. Then there exists
a basis of V consisting of orthonormal eigenvectors of f if and only if f is normal.

We need the following lemma in order to prove Theorem 11.33Theorem 11.33.

Lemma 11.34 Let (V , ⟨·,·⟩) be a finite dimensional unitary space equipped with an
orthonormal ordered basis b and f : V → V an endomorphism. Then f is normal if
and only if AA∗ = A∗A, where A = M(f ,b,b).

Proof Let f : V → V be an endomorphism, then

M(f ◦ f ∗,b,b) = M(f ,b,b)M(f ∗,b,b) = AA∗

and likewise
M(f ∗ ◦ f ,b,b) = M(f ∗,b,b)M(f ,b,b) = A∗A,

where we use Corollary 3.100Corollary 3.100 and that M(f ∗,b,b) = M(f ,b,b)∗ by (11.111.1). Applying
Proposition 2.20Proposition 2.20, we conclude that f ◦ f ∗ = f ∗ ◦ f if and only if AA∗ = A∗A. □

Proof of Theorem 11.33Theorem 11.33 ⇒ Suppose there exists an ordered orthonormal basis b of
(V , ⟨·,·⟩) consisting of eigenvectors of f . Hence A = M(f ,b,b) is diagonal, that is,
A =

∑n
i=1 λiEi ,i , where λ1, ... ,λn denote the eigenvalues of f and {Ei ,j}1⩽i ,j⩽n the

standard basis of Mn,n(C). We thus have that A∗ =
∑n

j=1 λjEj ,j and

AA∗ =
n∑

i=1

λiEi ,i

n∑
j=1

λjEj ,j =
n∑

i=1

n∑
j=1

λiλjEi ,iEj ,j =
n∑

i=1

|λi |2Ei ,i ,

where we use Lemma 4.4Lemma 4.4. Likewise we compute that A∗A =
∑n

i=1 |λi |2Ei ,i and applying
Lemma 11.34Lemma 11.34 we conclude that f is normal.

⇐ We use induction. For n = 1 every endomorphism is diagonal, hence there is nothing
to show and the statement is anchored.

Inductive Step: Assume that n ⩾ 2 and that the statement is true for all unitary spaces
of dimension at most n − 1. Since we work over the complex numbers, we can apply
Theorem 6.49Theorem 6.49 to conclude that f : V → V admits an eigenvalueλ ∈ C. LetW = Eigf (λ).
We will argue next that the orthogonal complement W⊥ of W is stable under f . Let
w1 ∈ W⊥ and w2 ∈ W = Eigf (λ) = Eigf ∗(λ). Then, we have

⟨f (w1),w2⟩ = ⟨w1, f
∗(w2)⟩ = ⟨w1,λw2⟩ = λ⟨w1,w2⟩ = 0,

where the last equality follows since w1 ∈ W⊥ and w2 ∈ W . It follows that f (w1) ∈ W⊥,
hence W⊥ is stable under f . Let g = f |W⊥ : W⊥ → W⊥ denote the restriction of f
to W⊥. We want to show that g is normal with respect to the restriction of ⟨·,·⟩ to W⊥.
Using Lemma 11.30Lemma 11.30, we have for all w ∈ W⊥

∥g(w)∥ = ∥f (w)∥ = ∥f ∗(w)∥ = ∥g∗(w)∥

and hence g is normal. By the induction hypothesis, there exists an orthonormal basis
of W⊥ consisting of eigenvectors of g . As in the real case, we can complement this
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basis with an orthonormal basis of W = Eigf (λ) to obtain an orthonormal basis of
V = W ⊕W⊥ consisting of eigenvectors of f . □

Exercises

Exercise 11.35 Let n ∈ N and A ∈ Mn,n(C). Show that A is unitary if and only if
its column vectors form an orthonormal basis of Cn with respect to the standard
Hermitian scalar product ⟨·,·⟩.

Exercise 11.36 Verify that SU(V , ⟨·,·⟩) is a subgroup of U(V , ⟨·,·⟩) in the sense of
Definition 8.8Definition 8.8. In particular, SU(V , ⟨·,·⟩) is indeed a group and hence so is SU(n).

Exercise 11.37 Show that

SU(2) =

{(
z −w

w z

)
|z ,w ∈ C, |z |2 + |w |2 = 1

}
.
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The Jordan normal form

12.1 Generalised eigenvectors and eigenspaces WEEK 10

Let f : V → V be an endomorphism of a finite dimensional K-vector space V . Recall
from Proposition 6.46Proposition 6.46 that the eigenspaces of f are in direct sum. Denoting by λ1, ... ,λk

the eigenvalues of f , we have

(12.1) Eigf (λ1)⊕ Eigf (λ2)⊕ · · · ⊕ Eigf (λk) = V ⇐⇒ f is diagonalisable.

Not every endomorphism is diagonalisable, therefore the left hand side of (12.112.1) does
not hold in general. We would like to remedy this by replacing each eigenspace in (12.112.1)
with a suitable notion of generalised eigenspace. The idea is to consider “eigenvectors of
higher rank”. For an endomorphism f : V → V and k ∈ N, we write

f k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k−times

and define f 0 = IdV .

Definition 12.1 (Generalised eigenvector) Let f : V → V be an endomorphism of
a K-vector space V . A non-zero vector v ∈ V is called a generalised eigenvector of f
with eigenvalue λ ∈ K if

(f − λIdV )
m(v) = 0V

for some integerm ∈ N. If a generalised eigenvector v satisfies (f −λIdV )
m(v) = 0V

and (f − λIdV )
m−1(v) ̸= 0V , then v is said to have rank m.

Remark 12.2 Notice that a generalised eigenvector of f : V → V of rank 1 and
with eigenvalue λ satisfies

(f − λIdV )(v) = 0V and IdV (v) ̸= 0V .

Equivalently,
f (v) = λv and v ̸= 0V .

Generalised eigenvectors of rank 1 are thus precisely the usual eigenvectors.

The good definition of a generalised eigenspace is a bit trickier.

Definition 12.3 (Generalised eigenspace) Let f : V → V be an endomorphism of a
K-vector space V . For all λ ∈ K we define the generalised λ-eigenspace of f to be
the set

Ef (λ) =
∞⋃
k=0

Ker((f − λIdV )
k)
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The previous definition, while convenient for proofs, is not particularly handy for compu-
tations. Observe however that if g : V → V is a endomorphism of a K-vector space V ,
then

{0V } = Ker(g0) ⊂ Ker(g1) ⊂ Ker(g2) ⊂ Ker(g3) ⊂ · · ·

and correspondingly we have

0 ⩽ dimKer(g) ⩽ dimKer(g2) ⩽ dimKer(g3) ⩽ · · ·

If V is finite dimensional, then dimKer((f − λIdV )
k) can be at most dimV for all k ∈ N

and therefore there exists an integer m ∈ N so that the generalised λ-eigenspace of f
satisfies

Ef (λ) = Ker((f − λIdV )
m).

Lemma 12.4 Let f : V → V be an endomorphism of a K-vector space V . Then
Ef (λ) ̸= {0V } if and only if λ is an eigenvalue of f .

Proof Ifλ is an eigenvalue of f then there exists a non-zero vector v ∈ Ker(f −λIdV ) and
hence dim Ef (λ) > 0 so that Ef (λ) ̸= {0V }. Conversely, suppose Ef (λ) ̸= {0V } so that
there exists an integer m and a non-zero vector v ∈ V such that (f − λIdV )

m(v) = 0V .
We may assume m to be the smallest such integer. Then, by assumption, w = (f −
λIdV )

m−1(v) ̸= 0V and w satisfies f (w) = λw and hence is an eigenvector of f with
eigenvalue λ. □

By a generalised eigenvector or generalised eigenspace of a matrix A ∈ Mn,n(K) we
mean those of fA : Kn → Kn.

Example 12.5 Consider

A =

(
3 1

0 3

)
The characteristic polynomial of A is charA(λ) = (λ− 3)2, hence we have a single
eigenvalue 3 of algebraic multiplicity 2. A simple calculation gives that EigA(3) =
span{e⃗1}. Now

(A− 3 · 12)2 =
(
0 1

0 0

)2

=

(
0 0

0 0

)
,

hence e⃗2 satisfies (A − 3 · 12)2e⃗2 = 0K2 and (A − 3 · 12)e⃗2 ̸= 0K2 . Therefore,
e⃗2 is a generalised eigenvector of A of rank 2 with eigenvalue 3. We thus have
EA(3) = span{e⃗1, e⃗2}.

Recall that an eigenspace of an endomorphism f : V → V is a subspace of V that is
stable under f . The same holds true for generalised eigenspaces.

Lemma 12.6 Let f : V → V be an endomorphism of a K-vector space V and λ ∈ K.
Then Ef (λ) is a subspace of V that is stable under f .

Proof By definition, the zero vector 0V is an element of Ef (λ), hence Ef (λ) is non-empty.
Let t1, t2 ∈ K and v1, v2 ∈ Ef (λ). Then there exist k1, k2 such that (f −λIdV )

k1(v1) = 0V
and (f − λIdV )

k2(v2) = 0V . Take k to be the maximum of {k1, k2}. Then, using the
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linearity of f − λIdV and its powers, we compute

0V = t1(f − λIdV )
k−k1(0V ) + t2(f − λIdV )

k−k2(0V )

= t1(f − λIdV )
k−k1((f − λIdV )

k1(v1)) + t2(f − λIdV )
k−k2((f − λIdV )

k2(v2))

= t1(f − λIdV )
k(v1) + t2(f − λIdV )

k(v2) = (f − λIdV )
k(t1v1 + t2v2)

so that t1v1 + t2v2 ∈ Ker((f − λIdV )
k) ⊂ Ef (λ) and hence Ef (λ) is a subspace by

Definition 3.21Definition 3.21.

We now show that Ef (λ) is stable under f . Let v ∈ Ef (λ) so that there exists k ⩾ 0 with
(f − λIdV )

k(v) = 0V . Write w = f (v). Then we obtain

(f − λIdV )
k(w) = (f − λIdV )

k(f (v)− λv + λv)

= (f − λIdV )
k(f (v)− λv) + λ(f − λIdV )

k(v)

= (f − λIdV )
k+1(v) + λ(f − λIdV )

k(v) = 0V .

Therefore w = f (v) ∈ Ef (λ) and hence Ef (λ) is stable under f . □

As for usual eigenspaces, generalised eigenspaces are also in direct sum:

Lemma 12.7 Let f : V → V be an endomorphism of a finite dimensional K-vector
space V . Then the generalised eigenspaces of f are in direct sum.

Proof Let λ1, ... ,λk be distinct eigenvalues of f and let ni for 1 ⩽ i ⩽ k be such that
Ef (λi ) = Ker((f − λi IdV )

ni ). For 1 ⩽ i ⩽ k let vi , v̂i ∈ Ef (λi ) be such that

(12.2) v1 + v2 + · · ·+ vk = v̂1 + v̂2 + · · ·+ v̂k

We want to show that wi = vi − v̂i = 0V for all 1 ⩽ i ⩽ k . For 1 ⩽ i ⩽ k consider the
endomorphism

gi = (f − λ1IdV )
n1 ◦ · · · ◦ (f − λi−1IdV )

ni−1 ◦ (f − λi+1IdV )
ni+1 ◦ · · · ◦ (f − λk IdV )

nk .

Notice that gi does not contain the mapping (f − λi IdV )
ni . For i ̸= j the mapping gi

contains (f − λj IdV )
nj . Rearranging the mappings in gi if necessary, we can assume that

gi = h ◦ (f − λj IdV )
nj for some endomorphism h. Rearranging does not change gi since

for all µ1,µ2 ∈ K we have

(f − µ1IdV ) ◦ (f − µ2IdV ) = (f − µ2IdV ) ◦ (f − µ1IdV ).

Since wj ∈ Ef (λj) = Ker((f − λj IdV )
nj ) we thus conclude that gi (wj) = 0V .

By Lemma 12.6Lemma 12.6 the subspace Ef (λi ) is stable under f and hence it is also stable under
f − µIdV for all µ ∈ K. This implies that Ef (λi ) is also stable under gi . Write (12.212.2) as

w1 + w2 + · · ·+ wk = 0V .

Applying the endomorphism gi to the previous equation and using that gi (wj) = 0V
for i ̸= j , we obtain that gi (wi ) = 0V . Since for j ̸= i none of the λj is a generalised
eigenvalue of f |Ef (λi ), the restriction of gi to Ef (λi ) is invertible as an endomorphism
of Ef (λi ). Since gi (wi ) = 0V , this implies that wi = 0. Since i is arbitrary, we have
w1 = w2 = · · · = wk = 0V , as desired. □

We now obtain the desired improvement of (12.112.1) which holds true without the diagonal-
isability assumption of f .
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Proposition 12.8 Let f : V → V be an endomorphism of a finite dimensional C-
vector space V of dimension n ⩾ 1 and let λ1, ... ,λk denote the distinct eigenvalues
of f . Then we have

Ef (λ1)⊕ Ef (λ2)⊕ · · · ⊕ Ef (λk) = V .

Proof Let U = Ef (λ1) ⊕ Ef (λ2) ⊕ · · · ⊕ Ef (λk) and suppose that U ̸= V . Then, by
Corollary 6.11Corollary 6.11 there exists a complement U ′ of U with dimU ′ ⩾ 1. Let Π : V → U ′

denote the projection onto U ′ with kernel U and consider the endomorphism f̂ = Π ◦
f |U′ : U ′ → U ′. Since we work over the complex numbers and since dimU ′ ⩾ 1,
Theorem 6.49Theorem 6.49 implies that f̂ admits an eigenvalue µ. Let v ∈ U ′ be a corresponding
eigenvector of f̂ . Since U = Ker Π is a complement of U ′, we obtain

f (v) = µv + u

for some vector u ∈ U . We can write u =
∑k

i=1 ui with ui ∈ Ef (λi ). Now define
g = f − µIdV : V → V so that

g(v) =
k∑

i=1

ui .

Suppose 1 ⩽ i ⩽ k is such that λi ̸= µ. By definition, Eigf (λi ) ⊂ Ef (λi ), hence the
restriction of g = f −µIdV to Ef (λi ) is invertible as an endomorphism of Ef (λi ), so there
exists a vector vi ∈ Ef (λi ) such that g(vi ) = ui . If λi ̸= µ for all 1 ⩽ i ⩽ k , then we
obtain

g

(
v −

k∑
i=1

vi

)
= 0V

so that v −
∑k

i=1 vi is an element of Ker g = Ker(f − µIdV ) = {0V }, where the last
equality follows sinceµ is not an eigenvalue of f . We can therefore write v =

∑k
i=1 vi ∈ U ,

but this contradicts the assumption that v ∈ U ′.

We conclude that we can find an integer i with 1 ⩽ i ⩽ k such that λi = µ. After possibly
renumbering the eigenvalues we can assume that λ1 = µ and hence that λi ̸= µ for
2 ⩽ i ⩽ k , since the eigenvalues are distinct. So again for 2 ⩽ i ⩽ k we have vectors
vi ∈ Ef (λi ) such that g(vi ) = ui . We thus have

g

(
v −

k∑
i=2

vi

)
= u1.

Since Ef (λ1) = Ker((f − λ1IdV )
n1) for some integer n1 and g = f − λ1IdV , applying gn1 ,

we obtain

gn1+1

(
v −

k∑
i=2

vi

)
= gn1(u1) = 0V ,

where the last equality uses that u1 ∈ Ef (λ1). It follows that v −
∑k

i=2 vi ∈ Ef (λ1) and
hence that v ∈ U which is again a contradiction to the assumption that v ∈ U ′. □

Each generalised eigenspace Ef (λi ) is stable under f . Therefore, if we fix an ordered
basis bi of Ef (λi ), then we obtain matrices Ai = M(f |Ef (λi ),bi ,bi ) and the matrix rep-
resentation of f : V → V with respect to the ordered basis b of V obtained by joining
the ordered bases b1, ... ,bk takes the block diagonal form (where unprinted entries are
understood to be zero) 

A1

A2

. . .
Ak


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We write diag(A1,A2, ... ,Ak) for such a block diagonal matrix.

Example 12.9 Let

A1 =
(
2
)
, A2 =

(
1 −3

4 8

)
, A3 =

7 −5 2

0 1 −1

9 2 0

 ,

then we have

diag(A1,A2,A3) =



2 0 0 0 0 0

0 1 −3 0 0 0

0 4 8 0 0 0

0 0 0 7 −5 2

0 0 0 0 1 −1

0 0 0 9 2 0


.
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12.2 Jordan blocks WEEK 11

The Proposition 12.8Proposition 12.8 thus tells us that for an endomorphism f : V → V of a finite
dimensional C-vector space V , we can always find an ordered basis of V so that the
matrix representation of f takes block diagonal form diag(A1,A2, ... ,Ak). This is already
a nice statement, but it turns out that we can say more about how the individual blocks
Ai look like. For a precise statement, we need the notion of a Jordan block. For m ∈ N
and λ ∈ K let Jm(λ) ∈ Mm,m(K) denote the m ×m-matrix

Jm(λ) =



λ 1

λ 1
. . . . . .

. . . 1

λ 1

λ


=

{ ∑m
i=1(λEi ,i ) +

∑m−1
i=1 Ei ,i+1 m > 1

(λ) m = 1
,

where {Ei ,j}1⩽i ,j⩽m denotes the standard basis of Mm,m(K). A matrix of the form Jm(λ)

is known as a Jordan block of size m.

Example 12.10 (Jordan blocks)

J1(λ) = (λ), J2(3) =

(
3 1

0 3

)
, J3(0) =

0 1 0

0 0 1

0 0 0

 ,

We can now state precisely how the individual matrix blocks look like:

Proposition 12.11 Let f : V → V be an endomorphism of a finite dimensional
K-vector space V and λ ∈ K an eigenvalue of f . Then there exists an integer ℓ ∈ N,
integers m1, ... ,mℓ and an ordered basis b of Ef (λ) such that

M(f |Ef (λ),b,b) = diag(Jm1(λ), Jm2(λ), ... , Jmℓ
(λ)).

By Proposition 12.8Proposition 12.8, the vector space V is a direct sum of the generalised eigenspaces of
f and by the previous proposition we can find an ordered basis of each eigenspace so
that the matrix representation of the restriction of f onto each eigenspace is a sum of
Jordan blocks. Combining these two statements, we have thus shown:

Theorem 12.12 (Jordan normal form) Let f : V → V be an endomorphism of a finite
dimensional C-vector space V of dimension n ⩾ 1. Then there exists an ordered basis
b of V , an integer k ⩾ 1, integers n1, ... , nk with n = n1 + n2 + · · ·+ nk and complex
numbers λ1, ... ,λk such that M(f ,b,b) = diag(Jn1(λ1), Jn2(λ2), ... , Jnk (λk)), that
is,

M(f ,b,b) =


Jn1(λ1)

Jn2(λ2)
. . .

Jnk (λk)

 .
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Remark 12.13 The ordered basis b of V provided by the Jordan normal form the-
orem is called a Jordan basis for f .

Before we prove Proposition 12.11Proposition 12.11, we first relate Jordan blocks to the notion of general-
ised eigenvectors. To this end we first show:

Lemma 12.14 Let m ∈ N and λ ∈ K. The only eigenvalue of Jm(λ) is λ. Its algebraic
multiplicity is m and its geometric multiplicity is 1.

Proof Recall from Proposition 5.24Proposition 5.24 that the determinant of an upper triangular matrix
is the product of its diagonal entries, hence the characteristic polynomial of the Jordan
block Jm(λ) is

charJm(λ)(x) = (x − λ)m,

where here we denote the variable of the characteristic polynomial by x . It follows that λ
is the only eigenvalue of Jm(λ) and that its algebraic multiplicity is m. An eigenvector
v⃗ = (vi )1⩽i⩽m of Jm(λ) with eigenvalue λ satisfies Jm(λ)v⃗ = λv⃗ , that is,

λv1 + v2 = λv1, λv2 + v3 = λv2, · · · λvm−1 + vm = λvm−1, λvm = λvm.

Hence v2 = v3 = · · · = vm = 0 while v1 is arbitrary. It follows that the geometric
multiplicity of λ is 1. □

The relation between generalised eigenvectors and Jordan blocks is explained by the
following two lemmas:

Lemma 12.15 Let m ∈ N and λ ∈ K. Then e⃗m is a generalised eigenvector of rank m
and with eigenvalue λ of the endomorphism fJm(λ) : Km → Km.

Proof We assume m > 1 since for m = 1 the statement is trivial. By definition, we need
to show that

(fJm(λ) − λIdKm)m(e⃗m) = 0Km and (fJm(λ) − λIdKm)m−1(e⃗m) ̸= 0Km .

By definition, we have Jm(λ)− λ1m = Jm(0) =
∑m−1

i=1 Ei ,i+1. We use induction to show
that for 1 ⩽ k ⩽ m − 1, we have

(12.3) (Jm(0))
k =

m−k∑
i=1

Ei ,i+k .

For k = 1 the statement is obviously correct and hence anchored.

Inductive step: Suppose the statement is correct for k ⩾ 1. We want to show that it is
correct for k + 1 ⩽ m − 1. Using the induction hypothesis, we compute

(Jm(0))
k+1 = Jm(0)(Jm(0))

k =
m−1∑
j=1

Ej ,j+1

m−k∑
i=1

Ei ,i+k =
m−k∑
i=2

Ei−1,i+k ,

where the last equality uses Lemma 4.4Lemma 4.4. Since
m−k∑
i=2

Ei−1,i+k =
m−k−1∑

i=1

Ei ,i+k+1,

(12.312.3) follows. Now we obtain

(fJm(λ) − λIdKm)m−1(e⃗m) = (Jm(0))
m−1e⃗m = E1,me⃗m = e⃗1 ̸= 0Km ,
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where the last equality uses that

(12.4) Ei ,j e⃗k = δjk e⃗i ,

for all 1 ⩽ i , j , k ⩽ m, as can be verified by direct computation. Moreover, using
Lemma 4.4Lemma 4.4 again, we have

(12.5) (Jm(0))
m = (Jm(0))

m−1Jm(0) = E1,m

m−1∑
i=1

Ei ,i+1 = 0m,m

and hence (f − λIdKm)m(v) = 0Km for all v ∈ V . In particular e⃗m is a generalised
eigenvector of rank m and with eigenvalue λ. □

Using the identities (12.312.3) and (12.412.4), we compute for 1 ⩽ k ⩽ m − 1

(Jm(0))
k e⃗m =

m−k∑
i=1

Ei ,i+k e⃗m =
m−k∑
i=1

δi+k,me⃗i = e⃗m−k

so that

((Jm(0))
m−1e⃗m, (Jm(0))

m−2e⃗m, ... , Jm(0)e⃗m, e⃗m) = (e⃗1, e⃗2, ... , e⃗m−1, e⃗m).

Applying Jm(λ)−λ1m repeatedly to the generalised eigenvector e⃗m thus gives an ordered
basis of V . In general we have:

Lemma 12.16 LetV be aK-vector space and f : V → V an endomorphism. Suppose
v ∈ V is a generalised eigenvector of f of rank m ∈ N with eigenvalue λ ∈ K and
define ui = (f − λIdV )

m−i (v) for 1 ⩽ i ⩽ m. Then
(i) b = (u1, ... , um) is an ordered basis of the subspace Z (gλ, v) =

span{u1, ... , um};
(ii) the subspace Z (gλ, v) is stable under f ;

(iii) let f̂ denote the restriction of f to Z (gλ, v), then we have M(f̂ ,b,b) = Jm(λ).

Proof (i) We only need to show that the vectors {u1, ... , um} are linearly independent as
by definition, {u1, ... , um} is a generating set for Z (gλ, v). Write gλ = f − λIdV then

(u1, ... , um) = (gm−1
λ (v), gm−2

λ (v), ... , gλ(v), v).

Suppose we have scalars µ1, ... ,µm such that

(12.6) 0V = µ1u1+ · · ·+µmum = µ1g
m−1
λ (v)+µ2g

m−2
λ (v)+ · · ·+µm−1gλ(v)+µmv .

Since by assumption gm
λ (v) = 0V we have gk

λ(v) = 0V for all k ⩾ m. Applying gλ
(m − 1)-times to (12.612.6) thus gives

µ1g
2m−2
λ (v) + µ2g

2m−3
λ (v) + · · ·+ µm−1g

m
λ (v) + µmg

m−1
λ (v) = µmg

m−1
λ (v) = 0V .

By assumption gm−1
λ (v) ̸= 0V , hence we conclude that µm = 0. Therefore, (12.612.6)

becomes

µ1u1 + · · ·+ µmum = µ1g
m−1
λ (v) + µ2g

m−2
λ (v) + · · ·+ µm−1gλ(v) = 0V .

Applying gλ (m − 2)-times to the previous equation we conclude that µm−1 = 0 as well.
Continuing in this fashion it follows that µ1 = µ2 = · · · = µm = 0, hence the vectors
{u1, ... , um} are linearly independent, as claimed.
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(ii) Since {u1, ... , um} is a basis of Z (gλ, v), it is sufficient to show that for all 1 ⩽ i ⩽ m

the vector f (ui ) is a linear combination of {u1, ... , um}. By construction, we have
(f − λIdV )(u1) = gm

λ (v) = 0V ,

(f − λIdV )(u2) = gm−1
λ (v) = u1,

(f − λIdV )(u3) = gm−2
λ (v) = u2,

...

(f − λIdV )(um) = gλ(v) = um−1

Equivalently, we have

f (u1) = λu1, f (u2) = u1 + λu2, f (u3) = u2 + λu3, ... f (um) = um−1 + λum,

which shows the claim.

(iii) Previously we showed that f (u1) = λu1, hence the first column vector of M(f̂ ,b,b)

is λe⃗1. For 2 ⩽ i ⩽ m, we have f (ui ) = 1ui−1 + λui and hence the i -th column vector of
M(f̂ ,b,b) is given by e⃗i−1 + λe⃗i . This shows that M(f̂ ,b,b) = Jm(λ). □

12.3 Nilpotent endomorphisms

We will prove Proposition 12.11Proposition 12.11 as a consequence of a statement about so-called nilpo-
tent endomorphisms.

Definition 12.17 (Nilpotent endomorphism) An endomorphism g : V → V of
a K-vector space V is called nilpotent if there exists an integer m ∈ N such that
gm = o, where o : V → V denotes the zero endomorphism defined by the rule
o(v) = 0V for all v ∈ V . A matrix A ∈ Mn,n(K) is called nilpotent if fA : Kn → Kn

is nilpotent.

Lemma 12.18 LetV be a finite dimensionalK-vector space andλ ∈ K an eigenvalue
of the endomorphism f : V → V . Then the restrictiong = (f−λIdV )|Ef (λ) of f−λIdV
to the generalised eigenspace Ef (λ) is a nilpotent endomorphism.

Proof There exists an integerm ∈ N such that Ef (λ) = Ker((f −λIdV )
m). Therefore, for

all v ∈ Ef (λ) we have (f − λIdV )
m(v) = 0V which shows that gm = o, as claimed. □

For nilpotent endomorphisms, we can always find a natural ordered basis of V :

Theorem 12.19 Let V be a finite dimensional K-vector space and g : V → V a
nilpotent endomorphism. Then there exists an integer ℓ ∈ N, integers m1, ... ,mℓ ∈ N
and vectors v1, ... , vℓ ∈ V such that

b = (gm1−1(v1), g
m1−2(v1), ... , g(v1), v1, g

m2−1(v2), g
m2−2(v2), ... , g(v2), v2, ...

... , gmℓ−1(vℓ), g
mℓ−2(vℓ), ... , g(vℓ), vℓ)

is an ordered basis of V and such that gm1(v1) = gm2(v2) = · · · = gmℓ(vℓ) = 0V . In
particular, we have

M(g ,b,b) = diag(Jm1(0), Jm2(0), ... , Jmℓ
(0)).
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Proof We use induction on the dimension of the vector space V . For dimV = 1 the only
nilpotent endomorphism is the zero endomorphism o : V → V and we can take ℓ = 1,
m1 = 1 and b = (v) for any non-zero vector v ∈ V . The statement is thus anchored.

Inductive step: Suppose dimV > 1 and that the statement is true for all vector spaces
of dimension at most dim(V ) − 1. Since g is nilpotent, we must have det g = 0 and
hence g cannot be surjective by Proposition 6.22Proposition 6.22. Therefore U = Im(g) is a subspace of
V whose dimension is at most dim(V )− 1. Observe that U is stable under g and hence
h = g |U : U → U is a nilpotent endomorphism of U . The induction hypothesis implies
that there exists an integer k , integers n1, ... , nk and vectors u1, ... , uk ∈ U such that

c = (hn1−1(u1), h
n1−2(u1), ... , h(u1), u1, h

n2−1(u2), h
n2−2(u2), ... , h(u2), u2, ...

... , hnk−1(uk), h
nk−2(uk), ... , h(uk), uk)

is an ordered basis of U and such that hn1(u1) = hn2(u2) = · · · = hnk (uk) = 0U .

Since u1, ... , uk ∈ U = Im(g), there exist vectors v1, ... , vk such that ui = g(vi ) for all
1 ⩽ i ⩽ k . Set mi = ni + 1 for 1 ⩽ i ⩽ k and consider the set

S = {gm1−1(v1), g
m1−2(v1), ... , g(v1), v1, g

m2−1(v2), g
m2−2(v2), ... , g(v2), v2, ...

... , gmk−1(vk), g
mk−2(vk), ... , g(vk), vk}.

We claim S is linearly independent. Suppose we can find a linear combination w of the
elements of S that gives the zero vector. Applying g to this linear combination, we obtain
a linear combination of the elements of

{gm1(v1), g
m1−1(v1), ... , g

2(v1), g(v1), g
m2(v2), g

m2−1(v2), ... , g
2(v2), g(v2), ...

... , gmk (vk), g
mk−1(vk), ... , g

2(vk), g(vk)}

that gives the zero vector. Equivalently, we obtain a linear combination of the elements
of

{gm1−1(u1), g
m1−2(u1), ... , g(u1), u1, g

m2−1(u2), g
m2−2(u2), ... , g(u2), u2, ...

... , gmk−1(uk), g
mk−2(uk), ... , g(uk), uk}

that gives the zero vector. Equivalently, we obtain a linear combination of the elements
of

{hn1(u1), hn1−1(u1), ... , h(u1), u1, h
n2(u2), h

n2−1(u2), ... , h(u2), u2, ...

... , hnk (uk), h
nk−1(uk), ... , h(uk), uk}

that gives the zero vector. Here we use that mi = ni + 1 for 1 ⩽ i ⩽ k and that
h = g on Im(g). The tuple c is an ordered basis of U , hence all the coefficients in this
linear combination must vanish, except the coefficients before each vector hni (ui ), since
hni (ui ) = 0V for all 1 ⩽ i ⩽ k . The initial linear combination w thus simplifies to become

µ1g
m1−1(v1) + µ2g

m2−1(v2) + · · ·+ µkg
mk−1(vk) = 0V .

for some scalarsµ1, ... ,µk . It remains to argue that these scalars are all zero. The previous
equation is equivalent to

µ1h
n1−1(u1) + µ2h

n2−2(u2) + · · ·+ µkh
nk−1(uk) = 0V .

Using the linear independence of the elements of c again, we conclude that µ1 = · · · =
µk = 0, as desired.

Observe that by construction, the vectors v1, ... , vk satisfy gm1(v1) = gm2(v2) = · · · =
gmk (vk) = 0V .
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By Theorem 3.64Theorem 3.64 we can an integer ℓ ⩾ k + 1 and vectors T = {v̂k+1, ... , v̂ℓ} ⊂ V such
that S ∪T is a basis of V . For each k +1 ⩽ i ⩽ ℓ, the vector g(v̂i ) is an element of Im(g)

and hence a linear combination of the elements of c. By construction, the elements of c
arise by applying g to the elements of S . It follows that for each k+1 ⩽ i ⩽ ℓ there exists
a vector zi ∈ span(S) such that g(zi ) = g(v̂i ). For k + 1 ⩽ i ⩽ ℓ, define vi = v̂i − zi and
consider the tuple

b = (gm1−1(v1), g
m1−2(v1), ... , g(v1), v1, g

m2−1(v2), g
m2−2(v2), ... , g(v2), v2, ...

... , gmk−1(vk), g
mk−2(vk), ... , g(vk), vk , vk+1, ... , vℓ)

Observe that by construction we have g(vi ) = 0V for k + 1 ⩽ i ⩽ ℓ so that mi = 1 for
k + 1 ⩽ i ⩽ ℓ. Furthermore, the tuple b has the same number of elements as S ∪ T it
must thus be the desired ordered basis of V , provided the elements of b span all of V .
Since each vi arises from v̂i by subtracting an element in the span of S and since S ∪ T

generates V , the elements of b must also generate V .

Finally, the first m1 vectors of b are yi = gm1−i (v1) for 1 ⩽ i ⩽ m1 and we have g(y1) =

0V and g(yi ) = yi−1 for 2 ⩽ i ⩽ m1. This contributes the Jordan block Jm1(0) to the
matrix representation of g with respect to b. The remaining blocks arise by considering
the vectors gmk−i (vk) for 2 ⩽ k ⩽ ℓ and where 1 ⩽ i ⩽ mk . □

As an application, we obtain:

Proof of Proposition 12.11Proposition 12.11 Let f : V → V be an endomorphism of the finite dimen-
sional K-vector space V and λ an eigenvalue of f . By Lemma 12.18Lemma 12.18, the restriction of
g = f − λIdV to the generalised eigenspace W = Ef (λ) is nilpotent. By Theorem 12.19Theorem 12.19,
there exists an integer ℓ ∈ N, integers m1, ... ,mℓ ∈ N and vectors v1, ... , vℓ such that

b = (gm1−1(v1), g
m1−2(v1), ... , g(v1), v1, g

m2−1(v2), g
m2−2(v2), ... , g(v2), v2, ...

... , gmℓ−1(vℓ), g
mℓ−2(vℓ), ... , g(vℓ), vℓ)

is an ordered basis ofW and such that gm1(v1) = gm2(v2) = · · · = gmℓ(vℓ) = 0V . Notice
that this implies that for all 1 ⩽ i ⩽ ℓ, the vector vi is a generalised eigenvector of rank
mi with eigenvalue λ of f and moreover that we have

Ef (λ) =
ℓ⊕

i=1

Z (gλ, vi ).

With respect to this basis we obtain

M(g |Ef (λ),b,b) = diag(Jm1(0), Jm2(0), ... , Jmℓ
(0))

Since f = g + λIdV , it follows that

M(f |Ef (λ),b,b) = diag(Jm1(λ), Jm2(λ), ... , Jmℓ
(λ)),

as claimed. □

Exercises

Exercise 12.20 Show that A ∈ Mn,n(K) is nilpotent if and only if there exists an
integer m ∈ N such that Am = 0n.
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12.4 Calculations WEEK 12

Let f : V → V be an endomorphism of the finite dimensional K-vector space V . A
generalised eigenvector of rank m ∈ N with eigenvalue λ ∈ K of f is an element of
Um = Ker gm

λ , where gλ = f − λIdV . Therefore, we have at most dimKer gm
λ linearly

independent generalised eigenvectors of rank m. However the subspace Ker gm
λ also

contains generalised eigenvectors of rank j for 1 ⩽ j ⩽ m − 1 and those are elements of
Um−1 = Ker gm−1

λ ⊂ Um. The number ρm(λ) of generalised eigenvectors of rank m with
eigenvalue λ of f in a Jordan basis of f is thus given by the dimension of the quotient
vector space Um/Um−1. For λ ∈ K and m ∈ N we define

ρm(λ) = dim(Um/Um−1) = dimKer(gm
λ )− dimKer(gm−1

λ ),

where the second equality uses Proposition 7.10Proposition 7.10. Using the rank-nullity Theorem 3.76Theorem 3.76,
we obtain

ρm(λ) = dimV − rank gm
λ − (dimV − rank gm−1

λ ) = rank gm−1
λ − rank gm

λ .

There are only finitely many integers m for which ρm(λ) ⩾ 0 is non-zero. This follows
from the following observation:

Lemma 12.21 Let g : V → V be an endomorphism of the K-vector space V and
suppose there exists m ∈ N such that

Ker(gm+1) = Ker(gm).

Then we have

Ker(gm) = Ker(gm+1) = Ker(gm+2) = Ker(gm+3) = Ker(gm+4) = · · ·

Proof Let k ∈ N be arbitrary. We want to show that Ker(gm+k) = Ker(gm+k+1). Since
Ker(gm+k) ⊂ Ker(gm+k+1) we only need to show that Ker(gm+k+1) ⊂ Ker(gm+k). Let
v ∈ Ker(gm+k+1). Then

gm+1(gk(v)) = gm+k+1(v) = 0V

and hence gk(v) ∈ Ker(gm+1) = Ker(gm). This implies that gm(gk(v)) = gm+k(v) =

0V , therefore v ∈ Ker(gm+k) which shows that Ker(gm+k+1) ⊂ Ker(gm+k). □

Example 12.22 Let

A =



2 1 −1 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 4


.

Since A is an upper triangular matrix we see immediately that its eigenvalues are
λ1 = 2 and λ2 = 4. We compute

A− 2 · 16 =



0 1 −1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2


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and

(A− 2 ·16)2 =



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 2

0 0 0 0 0 4


, (A− 2 ·16)3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 4

0 0 0 0 0 8


From the expression for (A− 2 · 16)3 we conclude that rank((A− 2 · 16)k) = 1 for
k ⩾ 3. We thus obtain

ρ1(2) = rank 16 − rank(A− 2 · 16) = 6− 4 = 2,

ρ2(2) = rank(A− 2 · 16)− rank((A− 2 · 16)2) = 4− 2 = 2,

ρ3(2) = rank((A− 2 · 16)2)− rank((A− 2 · 16)3) = 2− 1 = 1,

ρk(2) = 0, k ⩾ 4.

A Jordan basis of fA thus contains 1 = ρ3(2) generalised eigenvector of rank 3 with
eigenvalue 2. Since

Ker((A− 2 · 16)3) = span{e⃗1, e⃗2, e⃗3, e⃗4, e⃗5}

and (A−2 ·16)2e⃗i = 0K6 for i ̸= 3, 6we conclude that e⃗3 is a generalised eigenvector
of rank 3 with eigenvalue 2. The first three vectors of a Jordan basis of fA are thus
given by

(A− 2 · 16)2e⃗3 = e⃗1, (A− 2 · 16)e⃗3 = −e⃗1 + e⃗2, e⃗3

By construction, −e⃗1 + e⃗2 is a generalised eigenvector of rank 2 and since ρ2(2) = 2,
there must be one more generalised eigenvector of rank 2 in a Jordan basis of fA.
We compute

Ker((A− 2 · 16)2) = span{e⃗1, e⃗2, e⃗4, e⃗5}
and that (A − 2 · 16)e⃗2 ̸= 0K6 and (A − 2 · 16)e⃗5 ̸= 0K6 . While e⃗2 is a generalised
eigenvector of rank 2 with eigenvalue 2, it is not linearly independent from our
first three Jordan basis vectors {e⃗1,−e⃗1 + e⃗2, e⃗3}. The vector e⃗5 is however linearly
independent from the previous Jordan basis vectors and we obtain (A−2·16)e⃗5 = e⃗4.
The linearly independent vectors e⃗1,−e⃗1 + e⃗2, e⃗3, e⃗4, e⃗5 thus span EA(2).
The eigenvalue λ2 = 4 has algebraic multiplicity 1 and hence also geometric multi-
plicity 1. We compute

EA(4) = EigA(4) = span{e⃗4 + 2e⃗5 + 4e⃗6}.

Summarising, an ordered Jordan basis of fA is given by

b = (e⃗1,−e⃗1 + e⃗2, e⃗3, e⃗4, e⃗5, e⃗4 + 2e⃗5 + 4e⃗6).

and by construction, we have

M(fA,b,b) = diag(J3(2), J2(2), J1(4)),

as can also be verified by direct computation.

Example 12.23 Let

A =


1 1 0 −1

0 1 0 0

0 0 1 1

0 0 0 1

 .

191



CHAPTER 12 — THE JORDAN NORMAL FORM

Here we have a single eigenvalue 1 of algebraic multiplicity 4. We obtain

A− 1 · 14 =


0 1 0 −1

0 0 0 0

0 0 0 1

0 0 0 0

 and (A− 1 · 14)2 = 04.

Correspondingly, we compute ρ2(1) = 2 and ρ1(1) = 2. A Jordan basis thus
contains 2 = ρ2(1) generalised eigenvectors of rank 2 with eigenvalue 1 and those
can be chosen to be e⃗2 and e⃗4. We obtain (A− 1 · 14)e⃗2 = e⃗1 and (A− 1 · 14)e⃗4 =
−e⃗1 + e⃗3. Summarising, an ordered Jordan basis of fA is given by

b = (e⃗1, e⃗2,−e⃗1 + e⃗3, e⃗4).

and by construction, we have

M(fA,b,b) = diag(J2(1), J2(1))

as can also be verified by direct computation.

Example 12.24 Let

A =


4 0 1 0

2 2 3 0

−1 0 2 0

4 0 1 2


Here the characteristic polynomial is charA(x) = (x − 3)2(x − 2)2 so that we have
eigenvalues λ1 = 3 and λ2 = 2, both with algebraic multiplicity 2. As before,
we compute that ρ2(3) = 1 and ρ1(3) = 1 so that a Jordan basis for fA contains
1 = ρ2(3) generalised eigenvector of rank 2 and 1 = ρ1(3) generalised eigenvector
of rank 1, both with eigenvalue 3. The generalised eigenvector of rank 2 can be
chosen to be e⃗1+3e⃗2+ e⃗4 and hence (A−3 ·14)(e⃗1+3e⃗2+ e⃗4) = e⃗1− e⃗2− e⃗3+3e⃗4
is the corresponding generalised eigenvector of rank 1.
Likewise, we obtain ρ1(2) = 2 so that a Jordan basis contains two eigenvectors (of
rank 1) with eigenvalue 2. These can be chosen to be e⃗2 and e⃗4.
Summarising, an ordered Jordan basis of fA is given by

b = (e⃗1 − e⃗2 − e⃗3 + 3e⃗4, e⃗1 + 3e⃗2 + e⃗4, e⃗2, e⃗4).

and by construction, we have

M(fA,b,b) = diag(J2(3), J1(2), J1(2))

as can also be verified by direct computation.

12.5 Applications

12.5.1 The Cayley–Hamilton theorem

Recall that the K-vector space Mn,n(K) of n × n-matrices has dimension n2. Therefore,
for a matrix B ∈ Mn,n(K) the sequence of vectors in Mn,n(K) given by the powers of B

1n,B,B
2,B3,B4, ...
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must become linearly dependent. That is, there must exist coefficients ai ∈ K for 0 ⩽
i ⩽ n2, not all zero such that

an2B
n2 + an2−1B

n2−1 + · · ·+ a2B
2 + a1B+ a01n = 0n.

Remark 12.25 (Notation) Let an, an−1, ... , a1, a0 ∈ K. For a polynomial p : K → K
defined by the rule p(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 for all x ∈ K and a

matrix B ∈ Mn,n(K), we define

p(B) = anB
n + an−1B

n−1 + · · ·+ a1B+ a01n.

We say a matrix B ∈ Mn,n(K) is a zero of the polynomial p if p(B) = 0n.

Above we have seen that every matrix B ∈ Mn,n(K) is a zero of a polynomial of degree
at most n2. One might wonder whether there exists a positive integer d that is strictly
smaller than n2 so that every n × n-matrix is a zero of a polynomial of degree d .

It turns out that such an integer d must be at least as big as n. For scalars λ1,λ2, ... ,λn

consider the diagonal matrix

D =


λ1

λ2

. . .
λn

 with Dk =


λk
1

λk
2

. . .
λk
n


for all k ∈ N. Say we can find a polynomial p of degree n − 1 such that p(D) = 0n.
Write p(x) = an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0 for coefficients an−1, ... , a0. All

off-diagonal entries of p(D) are zero and for the i -th diagonal entry of p(D) we obtain
[p(D)]ii = an−1λ

n−1
i +an−2λ

n−2
i + · · ·+a1λi +a0. The equation p(D) = 0n is equivalent

to the linear system of equations [p(D)]11 = [p(D)]22 = · · · = [p(D)]nn = 0 for the
coefficients a0, a1, ... , an−1 and it can be written as

1 λ1 (λ1)
2 · · · (λ1)

n−1

1 λ2 (λ2)
2 · · · (λ2)

n−1

1 λ3 (λ3)
2 · · · (λ3)

n−1

...
...

...
. . .

...
1 λn (λn)

2 · · · (λn)
n−1




a0
a1
a2
...

an−1

 = 0Kn

The matrix on the left hand side is the Vandermonde matrix Vλ⃗ for the vector λ⃗ =

(λi )1⩽i⩽n. Unless det(Vλ⃗) = 0, we cannot find a non-zero solution of coefficients
an−1, ... , a0 such that p(D) = 0n. By, Example 5.42Example 5.42, we have

det(Vλ) =
∏

1⩽i<j⩽n

(λj − λi )

and hence if all eigenvalues of D are distinct, then det(Vλ) ̸= 0. It follows that the
smallest positive integer d , so that every n × n-matrix is a zero of a polynomial of degree
d , must be at least n.

For every n × n-matrix A we can indeed always find a polynomial p of degree n, so that
p(A) = 0n:

Theorem 12.26 (Cayley–Hamilton theorem) Every matrix A ∈ Mn,n(K) is a zero of
its characteristic polynomial charA : K → K

charA(A) = 0n.
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Example 12.27 Recall from Remark 6.42Remark 6.42 that for A ∈ M2,2(K) we have charA(λ) =
λ2 − Tr(A)λ + det(A). Thus, Theorem 12.26Theorem 12.26 implies that for all A ∈ M2,2(K) we
have

A2 − Tr(A)A+ det(A)12 = 02.

For an invertible 2× 2-matrix A we may write 12 = AA−1 so that

A(A− Tr(A)12 + det(A)A−1) = 02

and hence
A−1 =

1

detA
(Tr(A)12 − A)

which can of course also be verified by direct computation.

Remark 12.28 It is tempting to argue that

charA(A) = det(A1n − A) = 0.

Notice however that charA(A) is an n × n-matrix, whereas det(A1n − A) is a scalar,
so the previous equation makes no sense if n > 1.
That this incorrect calculation gives the correct answer is an accident. To see this
observe that for any function h : Mn,n(K) → K and to everyA ∈ Mn,n(K)we obtain
a function

q : K → K, x 7→ h(x1n − A).

If h is polynomial in the entries of the input matrix, the function q is a polynomial
pA : K → K depending on A, so that q(x) = pA(x) for all x ∈ K. Arguing (wrongly!)
as before we would expect that pA(A) = 0n. This is however not true in general.
Consider for instance

h : M2,2(K) → K,

(
a b

c d

)
7→ bd

so that for

A =

(
A11 A12

A21 A22

)
we have

q(x) = pA(x) = −A12(x − A22)

and hence
pA(A) = −A12A+ A12A2212.

For

A =

(
0 1

0 0

)
we thus obtain

pA(A) = −1

(
0 1

0 0

)
+ 1 · 0

(
1 0

0 1

)
=

(
0 −1

0 0

)
̸= 02.

Proof of Theorem 12.26Theorem 12.26 Let B ∈ Mn,n(K). Recall that charB(x) = det(x1n − B) for all
x ∈ K. Using the product rule Proposition 5.21Proposition 5.21, for an invertible n × n-matrix C we thus
obtain

det(C(x1n − B)C−1) = det(C) det((x1n − B)C−1) = det(C) det(x1n − B) det(C−1)

= det(x1n − B) = det(x1n − CBC−1)

and hence conjugate matrices have the same characteristic polynomial, that is

(12.7) charB(x) = charCBC−1(x)
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for all x ∈ K.

We first consider the case K = C. Let A ∈ Mn,n(C) be an n × n-matrix with complex
entries. By Theorem 12.12Theorem 12.12, there exists an ordered basis b of Cn, an integer k ⩾ 1,
integers n1, ... , nk and complex numbers λ1, ... ,λk such that M(fA,b,b) = B, where we
write

B = diag(Jn1(λ1), Jn2(λ2), ... , Jnk (λk)).

Let edenote the standard ordered basis ofCn so thatM(fA, e, e) = A and letC = C(b, e)

denote the change of basis matrix. By Theorem 3.106Theorem 3.106 we have A = CBC−1.

We want to show that

0n = charA(A) = charCBC−1(CBC−1) = charB(CBC
−1),

where the third equality uses (12.712.7). By induction one shows that (CBC−1)k = CBkC−1

for all k ∈ N ∪ {0}. Therefore, we obtain

charB(CBC
−1) = C charB(B)C

−1

and hence – since C is invertible – we have

0n = charA(A) ⇐⇒ 0n = charB(B).

It is thus sufficient to show that charB(B) = 0n. A Jordan block is an upper triangu-
lar matrix and hence a block diagonal matrix consisting of Jordan blocks is an upper
triangular matrix as well. The Proposition 5.24Proposition 5.24 thus shows that

charB(x) = (x − λ1)
n1(x − λ2)

n2 · · · (x − λk)
nk

for all x ∈ C and hence

charB(B) = (B− λ11n)
n1(B− λ21n)

n2 · · · (B− λk1n)
nk .

Since B1n = 1nB, we can rearrange factors in the expression for charB(B) so that for
each 1 ⩽ i ⩽ k ,

charB(B) = (B− λ11n)
n1 · · · (B− λni−11n)

ni−1(B− λni+11n)
ni+1 · · ·

· · · (B− λk1n)
nk (B− λi1n)

ni .

Now observe that

B− λi1n = diag(Jn1(λ1 − λi ), ... , Jni−1(λi−1 − λi ), Jni (0), Jni+1(λi+1 − λi ), ...

... , Jnk (λk − λi )).

By (12.512.5), we have (Jni (0))
ni = 0ni and hence

(B− λi1n)
ni = diag(... , (Jni (0))

ni , ...) = diag(... , 0ni , ...).

Therefore, the matrix (B− λi1n)ni contains a zero block of size ni after a diagonal block
of size n1 + n2 + · · ·+ ni−1. This shows that charB(B)e⃗j = 0Cn for

n1 + n2 + · · ·+ ni−1 < j ⩽ n1 + n2 + · · ·+ ni−1 + ni .

Since charB(B)e⃗j equals the j-th column vector of charB(B), it follows that charB(B) =
0n.

Finally, for K = R (or in fact any subfield of C) the claim follows by interpreting the
entries of A ∈ Mn,n(K) as complex numbers. □

195



CHAPTER 12 — THE JORDAN NORMAL FORM

12.5.2 A matrix is similar to its transpose

Let λ ∈ K and n ∈ N. Observe that the matrix representation of fJn(λ) : Kn → Kn with
respect to the ordered basis b′ = (e⃗n, e⃗n−1, ... , e⃗2, e⃗1) of Kn satisfies M(fJn(λ),b

′,b′) =

(Jn(λ))T . This shows that a Jordan block is similar to its transpose, that is,

(Jn(λ))
T = C(b,b′)Jn(λ)C(b,b

′)−1

by Theorem 3.106Theorem 3.106. Using the Jordan normal form, we obtain:

Corollary 12.29 Let n ∈ N and A ∈ Mn,n(C). Then A and AT are similar, that is,
there exists an invertible matrix X ∈ Mn,n(C) such that AT = XAX−1.

Proof By the Jordan normal form theorem there exists an integer ℓ ∈ N, integers
n1, ... , nℓ and complex numbers λ1, ... ,λℓ such that A is similar to the matrix

B = diag(Jn1(λ1), Jn2(λ2), ... , Jnℓ(λℓ)).

That is, there exists an invertible matrix C ∈ Mn,n(C) such that A = CBC−1. Each
Jordan block is similar to its transpose, for 1 ⩽ i ⩽ ℓ we can thus find invertible matrices
Yi ∈ Mni ,ni (C) such that

(Jni (λi ))
T = YiJni (λi )Y

−1
i .

The invertible block diagonal matrix Y = diag(Y1, ... ,Yℓ) thus satsfies

YBY−1 = diag((Jn1(λ1))
T , (Jn2(λ1))

T , ... , (Jnℓ(λ1))
T ) = BT .

Since A = CBC−1, we obtain
AT = (C−1)TBTCT = (C−1)TYBY−1CT = (C−1)TYC−1CBC−1CY−1CT

= XAX−1,

where X = (C−1)TYC−1. □
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Duality

13.1 The dual vector space WEEK 13

An important class of vector spaces arises from considering the set of linear maps between
two given vector spaces. This set can be turned into a vector space itself in a natural way.

Definition 13.1 (Homomorphism between vector spaces) Let V ,W be K-vector
spaces. A linear map f : V → W is also called a homomorphism between the
vector spaces V and W . The set of linear maps between V and W is denoted by
Hom(V ,W ).

We define addition for f , g ∈ Hom(V ,W ) by the rule(
f +Hom(V ,W ) g

)
(v) = f (v) +W g(v)

for all v ∈ V . Here +W denotes the addition of vectors in W . We define scalar multiplic-
ation for f ∈ Hom(V ,W ) and s ∈ K by the rule

(s ·Hom(V ,W ) f )(v) = s ·W f (v)

for all v ∈ V . Here ·W denotes the scalar multiplication in W . Furthermore, we define
the zero vector 0Hom(V ,W ) to be the function o : V → W defined by the rule o(v) = 0W
for all v ∈ V . With these definitions, Hom(V ,W ) is a K-vector space, as can be checked
without difficulty.

Proposition 13.2 Let V ,W be finite dimensional K-vector spaces and b an ordered
basis of V and c an ordered basis of W . Then the mapping

Θ : Hom(V ,W ) → Mm,n(K), f 7→ M(f ,b, c)

is an isomorphism. In particular dimHom(V ,W ) = dim(V ) dim(W ).

Proof Suppose dimV = n, dimW = m and write b = (v1, ... , vn) and c = (w1, ... ,wm).

We first show that Θ is linear. Let s1, s2 ∈ K and f1, f2 ∈ Hom(V ,W ). By definition

Θ(s1f1 + s2f2) = M(s1f1 + s2f2,b, c),

where we omit writing ·Hom(V ,W ) and where we write + instead of +Hom(V ,W ). Linearity
means that

Θ(s1f1 + s2f2) = s1M(f1,b, c) + s2M(f2,b, c).

Hence we need to show that

M(s1f1 + s2f2,b, c) = s1M(f1,b, c) + s2M(f2,b, c).

Write

M(f1,b, c) = (Aij)1⩽i⩽m,1⩽j⩽n and M(f2,b, c) = (Bij)1⩽i⩽m,1⩽j⩽n.
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Recall from Proposition 3.92Proposition 3.92 that this means that for all 1 ⩽ j ⩽ n, we have

f1(vj) =
m∑
i=1

Aijwi and f2(vj) =
m∑
i=1

Bijwi .

Therefore, for all 1 ⩽ j ⩽ n, we obtain

(s1f1 + s2f2)(vj) = s1f1(vj) + s2f2(vj) =
m∑
i=1

(s1Aij + s2Bij)wi

so that
M(s1f1 + s2f2,b, c) = s1M(f1,b, c) + s2M(f2,b, c)

as claimed.

We next show that Θ is surjective. Let A = (Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K) and define
f : V → W as follows. For v ∈ V there exist unique scalars s1, ... , sn such that v =∑n

i=1 sivi (since b is an ordered basis of V ). We define

f (v) =
n∑

j=1

m∑
i=1

Aijsjwi .

Then f satisfies f (vj) =
∑m

i=1 Aijwi for all 1 ⩽ j ⩽ n. Hence Θ(f ) = M(f ,b, c) = A and
Θ is surjective.

If mappings f , g ∈ Hom(V ,W ) satisfy Θ(f ) = M(f ,b, c) = Θ(g) = M(g ,b, c), then
they agree in particular on the ordered basis b and hence agree by Lemma 3.87Lemma 3.87. It follows
that Θ is injective as well and hence bijective and thus an isomorphism. Since Θ is an
isomorphism we have dimHom(V ,W ) = dimMm,n(K) = mn = dim(V ) dim(W ). □

A case of particular interest is when W = K.

Definition 13.3 (Dual vector space) Let V be a K-vector space. The K-vector space
Hom(V ,K) is called the dual vector space of V and denoted by V ∗.

Remark 13.4 Notice that if V is finite dimensional, then

dim(V ∗) = dim(Hom(V ,K)) = dim(V ) dim(K) = dim(V ),

since dimK = 1. Therefore, V and V ∗ have the same dimension and are thus
isomorphic vector spaces by Proposition 3.80Proposition 3.80.

Remark 13.5 (Notation) For ν ∈ V ∗ and v ∈ V we will sometimes write v ⌟ ν for
“plugging v into ν”, that is

v ⌟ ν = ν(v).

Example 13.6
(i) For V = Kn we consider the map which sends a vector x⃗ = (xi )1⩽i⩽n to its i -th

entry, x⃗ 7→ xi . This map is linear and hence an element of (Kn)∗.
(ii) Recall that the trace of a matrix is a linear map Tr : Mn,n(K) → K and hence

we may think of the trace as an element of (Mn,n(K))∗.
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(iii) For V = P(K) and x0 ∈ K, we can consider the evaluation map

evx0 : P(K) → K, p 7→ p(x0).

The map evx0 is linear and hence an element of V ∗.
(iv) Let (V , ⟨·,·⟩) be a finite dimensional Euclidean and let u ∈ V . Then we obtain

a map
φu : V → R, v 7→ ⟨u, v⟩.

The bilinearity of ⟨·,·⟩ implies that φu is linear and hence an element of V ∗. We
thus obtain a map Φ⟨·,·⟩ : V → V ∗ defined by the rule

u 7→ φu = ⟨u, ·⟩

for all u ∈ V . This map is linear an moreover an isomorphism. The linearity
is a consequence of the bilinearity of ⟨·,·⟩ and since dimV = dimV ∗, it is
sufficient to show that Ker Φ⟨·,·⟩ = {0V }. So suppose that φu = 0V ∗ so that
φu(v) = ⟨u, v⟩ = 0 for all v ∈ V . Since ⟨·,·⟩ is non-degenerate, this implies
that u = 0V , hence Φ is injective and an isomorphism.

Recall that if V is a K-vector space of dimension n ∈ N, then a linear coordinate system
on V is an injective (and hence bijective) linear map β : V → Kn. For a linear coordinate
system β and 1 ⩽ i ⩽ n, we may define

νi : V → K, v 7→ [β(v)]i ,

where [β(v)]i denotes the i -th entry of the vector β(v) ∈ Kn. Both β and taking the
i -th entry of a vector in Kn are linear maps, hence νi : V → K is linear as well and
thus an element of V ∗. We will argue next that if β : V → Kn is a linear coordinate
system, then (ν1, ... , νn) is an ordered basis of V ∗. Since dimV ∗ = n, we only need to
show that {ν1, ... , νn} is linearly independent. Suppose therefore that there are scalars
s1, ... , sn ∈ K such that

(13.1) s1ν1 + · · ·+ snνn = 0V ∗ = o,

where o : V → K denotes the zero function, that is, o(v) = 0 for all v ∈ V . Let
b = (v1, ... , vn) denote the ordered basis of V corresponding to the linear coordinate
system β so that β(vj) = e⃗j for all 1 ⩽ j ⩽ n. This is equivalent to

νi (vj) = [β(vj)]i = [e⃗j ]i = δij

for all 1 ⩽ i , j ⩽ n. The Equation (13.113.1) needs to hold for all choices of v ∈ V , choosing
vk for 1 ⩽ k ⩽ n gives

s1ν1(vk) + · · ·+ snνn(vk) = sk = o(vk) = 0

so that s1 = · · · = sn = 0 and {ν1, ... , νn} are linearly independent and hence (ν1, ... , νn)
is indeed an ordered basis of V ∗. We may write

β = (ν1, ... , νn)

and think of a linear coordinate system β on V as an ordered basis (ν1, ... , νn) of V ∗.

Definition 13.7 (Dual basis) Let V be a finite dimensional K-vector space and
b = (v1, ... , vn) an ordered basis of V . The ordered basis β = (ν1, ... , νn) of V ∗

satisfying νi (vj) = δij for all 1 ⩽ i , j ⩽ n is called the ordered dual basis of b.
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13.2 The transpose map

We now come to an important application of the theory of dual vector spaces which leads
to a deeper understanding of the matrix transpose.

Definition 13.8 (The transpose map) Let V ,W be K-vector spaces and f : V → W

a linear map. The map f T : W ∗ → V ∗ defined by the rule

f T (ω) = ω ◦ f

for all ω ∈ W ∗ is called the transpose of f . Notice that for all ω ∈ W ∗ and for all
v ∈ V we have

v ⌟ f T (ω) = f (v) ⌟ω = ω(f (v)).

The transpose map is linear as well.

Lemma 13.9 The transpose f T : W ∗ → V ∗ of a linear map f : V → W is linear.

Proof We need to show that for all s1, s2 ∈ K and ω1,ω2 ∈ W ∗, we have

f T (s1ω1 + s2ω2) = s1f
T (ω2) + s2f

T (ω2).

This is a condition that needs to hold for all v ∈ V and indeed, by definition, we have for
all v ∈ V

v ⌟ f T (s1ω1 + s2ω2) = f (v) ⌟ (s1ω1 + s2ω2) = s1ω1(f (v)) + s2ω2(f (v))

= s1(v ⌟ f
T (ω1)) + s2(v ⌟ f

T (ω2)),

as claimed. □

The relation between the matrix transpose and the transpose mapping is given by the
following proposition which states that the matrix representation of the transpose of a
linear map is the transpose of the matrix representation of the linear map.

Proposition 13.10 Let V ,W be finite dimensional K-vector spaces equipped with
ordered basesb, cand corresponding ordered dual basesβ,γ ofV ∗,W ∗, respectively.
If f : V → W is a linear map, then

M(f T ,γ,β) = M(f ,b, c)T .

Proof Let b = (v1, ... , vn), c = (w1, ... ,wm) and β = (ν1, ... , νn), γ = (ω1, ... ,ωm).
Then, by definition, we have for all 1 ⩽ j ⩽ m

f T (ωj) =
n∑

i=1

[M(f T ,γ,β)]ijνi .

Hence for all 1 ⩽ k ⩽ n, we obtain

vk ⌟ f
T (ωj) = vk ⌟

n∑
i=1

[M(f T ,γ,β)]ijνi =
n∑

i=1

[M(f T ,γ,β)]ij(vk ⌟ νi )

=
n∑

i=1

[M(f T ,γ,β)]ijνi (vk) = [M(f T ,γ,β)]kj ,
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where the last equality uses that νi (vk) = δik . By definition, we also have

vk ⌟ f
T (ωj) = f (vk) ⌟ωj =

(
m∑
i=1

[M(f ,b, c)]ikwi

)
⌟ωj

=
m∑
i=1

[M(f ,b, c)]ikωj(wi ) = [M(f ,b, c)]jk = [M(f ,b, c)T ]kj ,

where the second last equality uses ωj(wi ) = δji . □

Corollary 13.11 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then det(f T ) = det(f ) and Tr(f T ) = Tr(f ).

Proof The proof is an exercise. □

Remark 13.12 Recall that for matrices A ∈ Mm,n(K) and B ∈ Mn,p(K), we have
(AB)T = BTAT . Correspondingly, let V ,W ,Z be finite dimensional vector spaces
and f : V → W and g : W → Z be linear maps. Then we obtain (g ◦f )T = f T ◦gT .
Indeed, for all ζ ∈ Z∗ we have

(g ◦ f )T (ζ) = ζ ◦ g ◦ f = f T (ζ ◦ g) = f T (gT (ζ)) = (f T ◦ gT )(ζ).

13.3 Properties of the transpose

For a subspace U ⊂ V we can consider those elements of V ∗ that map all vectors of U
to 0.

Definition 13.13 (Annihilator) Let V be a K-vector space and U ⊂ V a subspace.
The annihilator of U is the subspace

U0 = {ν ∈ V ∗ | ν(u) = 0 ∀ u ∈ U} .

Remark 13.14 The annihilator is indeed a subspace. The zero mapping o : V → K
is clearly an element of U0, hence U0 is non-empty. If ν1, ν2 ∈ U , then we have for
all s1, s2 ∈ K and all u ∈ U

(s1ν1 + s2ν2)(u) = s1ν1(u) + s2ν2(u) = 0,

hence by Definition 3.21Definition 3.21 it follows that U0 is a subspace of V ∗.

Example 13.15
(i) Consider V = P(R) and U to be the subspace of polynomials which contain x2

as a factor

U =
{
p ∈ P(R) | there exists q ∈ P(R) such that p(x) = x2q(x)∀ x ∈ R

}
.

Define a linear map φ : P(R) → R by the rule

φ(p) = p′(0)

201



CHAPTER 13 — DUALITY

for all p ∈ P(R) and where p′ denotes the derivative of p with respect to x .
Then φ ∈ U0.

(ii) Let (V , ⟨·,·⟩) be a finite dimensional Euclidean space and U ⊂ V a subspace.
Recall that ⟨·,·⟩ gives us an isomorphism Φ⟨·,·⟩ : V → V ∗, u 7→ ⟨u, ·⟩. Observe
that Φ⟨·,·⟩(U

⊥) ⊂ U0. Indeed, let v ∈ U⊥, then

φv (u) = ⟨v , u⟩ = 0

for all u ∈ U . In fact, Φ⟨·,·⟩(U
⊥) = U0. To see this consider an element ν ∈ U0.

Since Φ⟨·,·⟩ is surjective it can be written as ν = φv for some vector v ∈ V . Now
for all u ∈ U we have

ν(u) = 0 = ⟨v , u⟩
which shows that v ∈ U⊥. The restriction ofΦ⟨·,·⟩ toU⊥ is thus an isomorphism
from U⊥ to U0.

Previously we saw that for a finite dimensional Euclidean space (V , ⟨·,·⟩) and a subspace
U ⊂ V we have that U0 is isomorphic to U⊥. Since V = U ⊕ U⊥, this implies that
dimV = dimU + dimU0. We will give a proof of this fact which also holds over the
complex numbers (and in fact over an arbitrary field).

Proposition 13.16 For a finite dimensionalK-vector spaceV and a subspaceU ⊂ V

we have
dimV = dimU + dimU0.

For the proof we need the following lemma which shows that we can always extend
K-valued linear mappings from subspaces to the whole vector space:

Lemma 13.17 Let V be a finite dimensional K-vector space and U ⊂ V a subspace.
Then for every ω ∈ U∗ there exists an Ω ∈ V ∗ such that Ω(u) = ω(u) for all u ∈ U .

Proof Choose a complement U ′ of U in V so that V = U ⊕ U ′. Recall that such a
complement exists by Corollary 6.11Corollary 6.11. Consequently, every vector v ∈ V can be written
uniquely as v = u + u′. We then define Ω(v) = ω(u). □

Proof of Proposition 13.16Proposition 13.16 We use the rank-nullity Theorem 3.76Theorem 3.76. Recall that the iden-
tity mapping of U is the linear mapping from U to U which returns its input IdU(u) = u

for all u ∈ U . Since U ⊂ V , we can also think of the identity mapping on U as a mapping
intoV , IdU : U → V . Applying the rank-nullity theorem to the transpose IdTU : V ∗ → U∗,
we obtain

dimV = dimV ∗ = dimKer(IdTU ) + dim Im(IdTU ),

where the first equality uses Remark 13.4Remark 13.4. By definition we have

Ker(IdTU ) =
{
ν ∈ V ∗ | IdTU (ν) = ν ◦ IdU = 0U∗

}
.

Again by definition 0U∗ is the linear map o : U → K which satisfies o(u) = 0 for all
u ∈ U . Therefore we have

Ker(IdTU ) = {ν ∈ V ∗ | ν(u) = 0 ∀ u ∈ U} = U0.

We want to show next that IdTU : V ∗ → U∗ is surjective. Let ω ∈ U∗, by the previous
lemma we have Ω ∈ V ∗ so that Ω(u) = ω(u) for all u ∈ U . Now notice that for all u ∈ U
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we have
u ⌟ IdTU (Ω) = u ⌟ (Ω ◦ IdU) = Ω(u) = ω(u) = u ⌟ω

and hence IdTU is surjective. It follows that dim Im(IdTU ) = dimU∗ = dimU . Putting all
together, we obtain

dimV = dimU + dimU0,

as claimed. □

The kernel of the transpose of a linear map is related to the image of the map:

Proposition 13.18 Let V ,W be finite dimensional K-vector spaces and f : V → W

a linear map. Then we have
(i) Ker f T = (Im f )0;

(ii) dimKer f T = dimKer f + dimW − dimV .

Proof (i) An element ω ∈ W ∗ lies in the kernel of f T : W ∗ → V ∗ if and only if

v ⌟ f T (ω) = 0 = f (v) ⌟ω

for all v ∈ V . Equivalently, w ⌟ω = 0 for all elements w in the image of f , that is,
ω ∈ (Im f )0.

(ii) We have

dimKer f T = dim(Im f )0 = dimW − dim Im f = dimKer f + dimW − dimV .

The first equality uses (i), the second equality uses Proposition 13.16Proposition 13.16 and the last equality
uses the rank-nullity Theorem 3.76Theorem 3.76. □

Surjectivity of a linear map corresponds to injectivity of its transpose:

Proposition 13.19 Let V ,W be finite dimensional K-vector spaces and f : V → W

a linear map. Then f is surjective if and only if f T is injective.

Proof The linear map f : V → W is surjective if and only if Im(f ) = W , equivalently
Im(f )0 = {0W ∗} = Ker(f T ), where the second equality uses the previous proposition.
By the characterisation of injectivity of a linear map, Lemma 3.31Lemma 3.31, we have {0W ∗} =

Ker(f T ) if and only if f T is injective. □

Similar to Proposition 13.18Proposition 13.18 we obtain:

Proposition 13.20 Let V ,W be finite dimensional K-vector spaces and f : V → W

a linear map. Then we have
(i) dim Im(f T ) = dim Im(f );

(ii) Im(f T ) = (Ker f )0.

Proof (i) We have

dim Im(f T ) = dimW ∗ − dimKer(f T ) = dimW ∗ − dim Im(f )0 = dim Im(f ),

where the first equality uses the rank-nullity Theorem 3.76Theorem 3.76, the second equality uses
Proposition 13.18Proposition 13.18 and the third equality uses Proposition 13.16Proposition 13.16.
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(ii) First suppose ν ∈ Im(f T ). Then there exists ω ∈ W ∗ with f T (ω) = ν. We want to
argue that ν ∈ (Ker f )0. By definition

(Ker f )0 = {ν ∈ V ∗|ν(v) = 0 ∀v ∈ Ker f } .

Let v ∈ Ker f , then

ν(v) = v ⌟ ν = v ⌟ f T (ω) = f (v) ⌟ω = 0W ⌟ω = 0.

It follows that Im(f T ) ⊂ (Ker f )0. We complete the proof by showing that Im(f T ) and
(Ker f )0 have the same dimension. We compute

dim Im(f T ) = dim Im(f ) = dimV − dimKer(f ) = dimKer(f )0,

where the first equality uses (i), the second equality uses the rank-nullity Theorem 3.76Theorem 3.76
and the last equality uses Proposition 13.16Proposition 13.16. □

Again, similar to Proposition 13.19Proposition 13.19 we obtain:

Proposition 13.21 Let V ,W be finite dimensional K-vector spaces and f : V → W

a linear map. Then f is injective if and only if f T is surjective.

Proof Recall that surjectivity of f T means that Im(f T ) = V ∗. By the characterisation of
injectivity, Lemma 3.31Lemma 3.31, f is injective if and only ifKer f = {0V }, equivalently, (Ker f )0 =
V ∗ = Im(f T ), by the previous proposition. □

13.3.1 The rank of a matrix

Recall that for A ∈ Mm,n(K) we have defined rank(A) = dim Im(fA) (c.f. Definition 3.75Definition 3.75).
By Lemma 4.13Lemma 4.13, we have

Im(fA) = span{Ae⃗1, ... ,Ae⃗n},

where {e⃗1, ... , e⃗n} denotes the standard basis of Kn. If we think of the matrix A as con-
sisting of n column vectors a⃗1 = Ae⃗1, ... , a⃗n = Ae⃗n, then we obtain

Im(fA) = span{a⃗1, ... , a⃗n}

and hence the rank of A equals the number of linearly independent column vectors of A,
the so-called column rank ofA. Likewise, we may think ofA as consisting ofm row vectors
α⃗1, ... , α⃗m and we can define the row rank of A to be the number of linearly independent
row vectors of A. The row rank of a matrix and the column rank are always the same (and
hence we simply speak of the rank of the matrix):

Proposition 13.22 The row rank of every matrix A ∈ Mm,n(K) equals its column
rank.

Proof The column rank of A equals dim Im(fA). Now

dim Im(fA) = dim Im((fA)
T ) = dim Im(fAT ),

where we first use Proposition 13.20Proposition 13.20 and then Proposition 13.10Proposition 13.10. Since the matrix trans-
pose interchanges the role of rows and columns, dim Im(fAT ) is equal to the number of
linearly independent row vectors of A. □
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Exercises

Exercise 13.23 Show that the dual basis is indeed uniquely defined by the condition
νi (vj) = δij for all 1 ⩽ i , j ⩽ n.

Exercise 13.24 For a finite dimensional K-vector space V , we may consider the
dual of the dual space, that is (V ∗)∗. So an element of (V ∗)∗ is a linear map which
takes an element of V ∗ as its input and produces a scalar as its output. Consider
the map Ξ : V → (V ∗)∗ defined by the rule

ν ⌟Ξ(v) = v ⌟ ν = ν(v)

for all v ∈ V and all ν ∈ V ∗. That is, the map Ξ(v) ∈ (V ∗)∗ applied to ν ∈ V ∗ is
given by the application of ν to v . Show that Ξ is an isomorphism.

Exercise 13.25 Consider V = R5 equipped with the ordered standard basis e =

(e⃗1, ... , e⃗5) and let U = span{e⃗1, e⃗2}. Show that

U0 = span{ε⃗3, ε⃗4, ε⃗5},

where ε = (ε⃗1, ... , ε⃗5) denotes the ordered dual basis of e.
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