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Part 1

Linear Algebra I





CHAPTER 1

Fields and complex numbers

1.1 Fields WEEK 1

A field K is roughly speaking a number system in which we can add, subtract, multiply
and divide numbers, so that the expected properties hold. We will only briefly state the
basic facts about fields. For a more detailed account, we refer to the algebra module.

Definition 1.1 (Field) A field consists of a set K containing distinguished elements
0K ̸= 1K, as well as two binary operations, addition +K : K×K → K and multiplic-
ation ·K : K×K → K, so that the following properties hold:
• Commutativity of addition

x +K y = y +K x for all x , y ∈ K.

• Commutativity of multiplication

(1.1) x ·K y = y ·K x for all x , y ∈ K.

• Associativity of addition

(1.2) (x +K y) +K z = x +K (y +K z) for all x , y , z ∈ K.

• Associativity of multiplication

(1.3) (x ·K y) ·K z = x ·K (y ·K z) for all x , y , z ∈ K.

• 0K is the identity element of addition

(1.4) x +K 0K = 0K +K x = x for all x ∈ K.

• 1K is the identity element of multiplication

(1.5) x ·K 1K = 1K ·K x = x for all x ∈ K.

• For any x ∈ K there exists a unique element, denoted by (−x) and called the
additive inverse of x , such that

(1.6) x +K (−x) = (−x) +K x = 0K.

• For any x ∈ K \ {0K} there exists a unique element, denoted by x−1 or 1
x and

called the multiplicative inverse of x , such that

(1.7) x ·K
1

x
=

1

x
·K x = 1K.

• Distributivity of multiplication over addition

(1.8) (x +K y) ·K z = x ·K z +K y ·K z for all x , y , z ∈ K.

Remark 1.2
(i) It is customary to simply speak of a fieldK, without explicitly mentioning 0K, 1K

and +K, ·K.
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

(ii) When K is clear from the context, we often simply write 0 and 1 instead of 0K
and 1K. Likewise, it is customary to write + instead of +K and · instead of ·K.
Often ·K is omitted entirely so that we write xy instead of x ·K y .

(iii) We refer to the elements of a field as scalars.
(iv) The set K \ {0K} is usually denoted by K∗.
(v) For all x , y ∈ K we write x − y = x +K (−y) and for all x ∈ K and y ∈ K∗ we

write x
y = x ·K 1

y = x ·K y−1.
(vi) A field K containing only finitely many elements is called finite. Algorithms in

cryptography are typically based on finite fields.

Example 1.3
(i) The rational numbers or quotients Q, the real numbers R and the complex

numbers C – that we will study more carefully below – equipped with the usual
addition and multiplication are examples of fields.

(ii) The integers Z (with usual addition and multiplication) are not a field, as only 1
and −1 admit a multiplicative inverse.

(iii) Considering a set F2 consisting of only two elements that we may denote by 0
and 1, we define +F2 and ·F2 via the following tables

+F2 0 1

0 0 1

1 1 0

and
·F2 0 1

0 0 0

1 0 1

For instance, we have 1 +F2 1 = 0 and 1 ·F2 1 = 1. Then, one can check that
F2 equipped with these operations is indeed a field. A way to remember these
tables is to think of 0 as representing the even numbers, while 1 represents the
odd numbers. So for instance, a sum of two odd numbers is even and a product
of two odd numbers is odd. Alternatively, we may think of 0 and 1 representing
the boolean values FALSE and TRUE. In doing so, +F2 corresponds to the logical
XOR and ·F2 corresponds to the logical AND.

(iv) Considering a set F4 consisting of four elements, say {0, 1, a, b}, we define +F4

and ·F4 via the following tables

+F4 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

and

·F4 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

Again one can check that F4 equipped with these operations is indeed a field.

Lemma 1.4 (Field properties) In a field K we have the following properties:
(i) 0K ·K x = 0K for all x ∈ K.

(ii) −x = (−1K) ·K x for all x ∈ K.
(iii) For all x , y ∈ K, if x ·K y = 0K, then x = 0K or y = 0K.
(iv) −0K = 0K.
(v) (1K)

−1 = 1K.
(vi) (−(−x)) = x for all x ∈ K.

(vii) (−x) ·K y = x ·K (−y) = −(x ·K y).
(viii) (x−1)−1 = x for all x ∈ K∗.
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1.2 — Complex numbers

Proof We will only prove some of the items, the rest are an exercise for the reader.

(i) Using (1.41.4), we obtain 0K +K 0K = 0K. Hence for all x ∈ K we have

x ·K 0K = x ·K (0K + 0K) = x ·K 0K +K x ·K 0K,

where the second equality uses (1.81.8). Adding the additive inverse of x ·K 0K, we get

x ·K 0K − x ·K 0K = (x ·K 0K +K x ·K 0K)− x ·K 0K

using the associativity of addition (1.21.2) and (1.61.6), this last equation is equivalent to

0K = x ·K 0K

as claimed.

(iii) Let x , y ∈ K such that x ·K y = 0K. If x = 0K then we are done, so suppose x ̸= 0K.
Using (1.71.7), we have 1K = x−1 ·K x . Multiplying this equation with y we obtain

y = y ·K 1K = y ·K (x ·K x−1) = (y ·K x) ·K x−1 = 0K ·K x−1 = 0K

where we have used (1.51.5), the commutativity (1.11.1) and associativity (1.31.3) of multiplication
as well as (i) from above.

(v) By (1.51.5), we have 1K ·K 1K = 1K, hence 1K is the multiplicative inverse of 1K and since
the multiplicative inverse is unique, it follows that (1K)−1 = 1K. □

For a positive integer n ∈ N and an element x of a field K, we write

nx = x +K x +K x +K · · ·+K x︸ ︷︷ ︸
n summands

.

The field F2 has the property that 2x = 0 for all x ∈ F2. In this case we say that F2 has
characteristic 2. More generally, the smallest positive integer p such that px = 0K for
all x ∈ K is called the characteristic of the field. In the case where no such integer exists
the field is said to have characteristic 0. So Q,R,C are fields of characteristic 0. It can be
shown that the characteristic of any field is either 0 or a prime number.

A subset F of a field K that is itself a field, when equipped with the multiplication and
addition of K, is called a subfield of K.

Example 1.5
(i) The rational numbers Q form a subfield of the real numbers R. Furthermore,

as we will see below, the real numbers R can be interpreted as a subfield of the
complex numbers C.

(ii) F2 may be thought of as the subfield of F4 consisting of {0, 1}.

1.2 Complex numbers

Video Complex numbersComplex numbers

Historically the complex numbers arose from an interest to make sense of the square root
of a negative number. We may picture the rational numbers Q as elements of an infinite
number line with an origin 0. Positive numbers extending to the right of the origin and
negative numbers to the left. Mathematicians have observed early on that this line of
numbers contains elements, such as π or

√
2, that are not quotients. Phrased differently,

the rational numbers do not fill out the whole number line, there are gaps consisting
of irrational numbers. In a sense to be made precise in the Analysis module, the real

9
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

numbers may be thought of as the union of the rational numbers and the gaps on the
number line, resulting in a gap less line of numbers, known as the complete field of real
numbers.

−1 0 1 2 3

FIGURE 1.1. The real number line.

The square x2 of a real number x is a non-negative real number, x2 ⩾ 0, hence if we want
to define what the square root of a negative number ought to be, we are in trouble, since
there are no numbers left on the line of numbers that we might use. The solution is to
consider pairs of real numbers instead. A complex number is an ordered pair (x , y) of
real numbers x , y ∈ R. We denote the set of complex numbers by C. We equip C with
the addition defined by the rule

(x1, y1) +C (x2, y2) = (x1 + x2, y1 + y2)

for all (x1, y1) and (x2, y2) ∈ C and where + on the right denotes the usual addition +R
of real numbers. Furthermore, we equip C with the multiplication defined by the rule

(1.9) (x1, y1) ·C (x2, y2) = (x1 · x2 − y1 · y2, x1 · y2 + y1 · x2).

for all (x1, y1) and (x2, y2) ∈ C and where · on the right denotes the usual multiplication
·R of real numbers.

Definition 1.6 (Complex numbers) The set C together with the operations +C, ·C
and 0C = (0, 0) and 1C = (1, 0) is called the field of complex numbers.

It is sometimes advantageous to think of the real numbers as a subfield of the complex
numbers. To make this precise we need the notion of a field embedding:

Definition 1.7 (Field embedding) Let F and K be fields. A field embedding is a
mapping χ : F → K satisfying χ(1F) = 1K, χ(0F) = 0K as well as

χ(x +F y) = χ(x) +K χ(y) and χ(x ·F y) = χ(x) ·K χ(y)

for all x , y ∈ F.

Remark 1.8
(i) It turns out that we don’t have to ask that χ(0F) = 0K in the definition of a field

embedding, it is automatically satisfied with the other properties asked for in
Definition 1.7Definition 1.7. Indeed, we have

χ(0F) = χ(0F +F 0F) = χ(0F) +K χ(0F).

Adding the additive inverse of χ(0F) in K, we conclude that 0K = χ(0F).
(ii) A field embedding is injective. Suppose x , y ∈ F satisfy χ(x) = χ(y) so that

χ(x − y) = 0K. Assume w = x − y ̸= 0F, then χ(w) ·K χ(w−1) = χ(1F) =

1K. Since by assumption χ(w) = 0K, we thus obtain 0K ·K χ(w−1) = 1K,
contradicting Lemma 1.4Lemma 1.4 (i). It follows that x = y and hence χ is injective.
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1.2 — Complex numbers

Example 1.9 (i) From the above tables we see that χ : F2 → F4 defined by
χ(1F2) = 1F4 and χ(0F2) = 0F4 is a field embedding.

(ii) The mapping χ : R → C, x 7→ (x , 0) is a field embedding. Indeed,
χ(x1 +R x2) = (x1 +R x2, 0) = (x1, 0) +C (x2, 0) = χ(x1) +C χ(x2),

χ(x1 ·R x2) = (x1 ·R x2, 0) = (x1, 0) ·C (x2, 0) = χ(x1) ·C χ(x2),

for all x1, x2 ∈ R and χ(1) = (1, 0) = 1C.

Item (ii) of the previous example allows to think of the real numbers R as the subfield
{(x , 0)|x ∈ R} of the complex numbers C. Because of the injectivity of χ, it is customary
to identify x with χ(x), hence abusing notation, we write (x , 0) = x .

Notice that (0, 1) satisfies (0, 1) ·C (0, 1) = (−1, 0) and hence is a square root of the real
number (−1, 0) = −1. The number (0, 1) is called the imaginary unit and usually denoted
by i. Sometimes the notation

√
−1 is also used. Every complex number (x , y) ∈ C can

now be written as

(x , y) = (x , 0) +C (0, y) = (x , 0) +C i ·C (y , 0) = x + iy ,

where we follow the usual custom of omitting ·C and writing + instead of +C on the right
hand side. With this convention, complex numbers can be manipulated as real numbers,
we just need to keep in mind that i satisfies i2 = −1. For instance, the multiplication of
complex numbers x1 + iy1 and x2 + iy2 gives

(x1 + iy1)(x2 + iy2) = x1x2 + i2y1y2 + i(x1y2 + y1x2) = x1x2 − y1y2 + i(x1y2 + y1x2)

in agreement with (1.91.9). Here we also follow the usual custom of omitting ·R on the right
hand side.

Definition 1.10 For a complex number z = x + iy ∈ C with x , y ∈ R we call
• Re(z) = x its real part;
• Im(z) = y its imaginary part;
• z̄ = x − iy the complex conjugate of z ;
• |z | =

√
zz =

√
x2 + y2 the absolute value or modulus of z .

The mapping z 7→ z̄ is called complex conjugation.

Remark 1.11
(i) For z ∈ C the following statements are equivalent

z ∈ R ⇐⇒ Re(z) = z ⇐⇒ Im(z) = 0 ⇐⇒ z = z .

(ii) We have |z | = 0 if and only if z = 0.

Example 1.12 Let z = 2+5i
6−i . Then

z =
(2 + 5i)(6− i)

(6− i)(6− i)
=

(2 + 5i)(6 + i)

|6− i|2
=

1

37
(7 + 32i),

so that Re(z) = 7
37 and Im(z) = 32

37 . Moreover,

|z | =

√(
7

37

)2

+

(
32

37

)2

=

√
29

37
.
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Remark 1.13
(i) We may think of a complex number z = a + ib as a point or a vector in the

plane R2 with x-coordinate a and y -coordinate b.
(ii) The real numbers form the horizontal coordinate axis (the real axis) and the

purely imaginary complex numbers {iy |y ∈ R} form the vertical coordinate
axis (the imaginary axis).

(iii) The point z is obtained by reflecting z along the real axis.
(iv) |z | is the distance of z to the origin 0C = (0, 0) ∈ C
(v) The addition of complex numbers corresponds to the usual vector addition.

(vi) For the geometric significance of the multiplication, we refer the reader to the
Analysis module.

i

z = a+ ibib

a |z |10

iR

R

z = a− ib−ib

FIGURE 1.2. The complex number plane C

We have the following elementary facts about complex numbers:

Proposition 1.14 For all z ,w ∈ C we have
(i) Re(z) = z+z

2 , Im(z) = z−z
2i ;

(ii) Re(z + w) = Re(z) + Re(w), Im(z + w) = Im(z) + Im(w);
(iii) z + w = z + w , zw = z w , z = z ;
(iv) |z |2 = |z |2 = zz = Re(z)2 + Im(z)2;
(v) |zw | = |z ||w |.

Proof Exercise. □

Exercises

Exercise 1.15 Check that C is indeed a field.
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CHAPTER 2

Matrices

2.1 Definitions WEEK 2

A matrix (plural matrices) is simply a rectangular block of numbers. As we will see below,
every matrix gives rise to a mapping sending a finite list of numbers to another finite list
of numbers. Mappings arising from matrices are called linear and linear mappings are
among the most fundamental objects in mathematics. In the Linear Algebra modules
we develop the theory of linear maps as well as the theory of vector spaces, the natural
habitat of linear maps. While this theory may come across as quite abstract, it is in fact at
the heart of many real world applications, including optics and quantum physics, radio
astronomy, MP3 and JPEG compression, X-ray crystallography, MRI scans and machine
learning, just to name a few.

Throughout the Linear Algebra modules, K stands for either the real numbers R or the
complex numbers C, but almost all statements are also valid over arbitrary fields.

We start with some definitions. In this chapter, m, n, m̃, ñ denote natural numbers.

Definition 2.1 (Matrix)
• A rectangular block of scalars Aij ∈ K, 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

(2.1) A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
. . .

...
Am1 Am2 · · · Amn


is called an m × n matrix with entries in K.

• We also say that A is an m-by-n matrix, that A has size m × n and that A has m
rows and n columns.

• The entry Aij of A is said to have row index i where 1 ⩽ i ⩽ m, column index j

where 1 ⩽ j ⩽ n and will be referred to as the (i , j)-th entry of A.
• A shorthand notation for (2.12.1) is A = (Aij)1⩽i⩽m,1⩽j⩽n.
• For matrices A = (Aij)1⩽i⩽m,1⩽j⩽n and B = (Bij)1⩽i⩽m,1⩽j⩽n we write A = B,

provided Aij = Bij for all 1 ⩽ i ⩽ m and all 1 ⩽ j ⩽ n.

Definition 2.2 (Set of matrices)
• The set of m-by-n matrices with entries in K will be denoted by Mm,n(K).
• The elements of the set Mm,1(K) are called column vectors of length m and the

elements of the set M1,n(K) are called row vectors of length n.

13



CHAPTER 2 — MATRICES

• We will use the Latin alphabet for column vectors and decorate them with an
arrow. For a column vector

x⃗ =


x1
x2
...
xm

 ∈ Mm,1(K)

we also use the shorthand notation x⃗ = (xi )1⩽i⩽m and we write [x⃗ ]i for the i -th
entry of x⃗ , so that [x⃗ ]i = xi for all 1 ⩽ i ⩽ m.

• We will use the Greek alphabet for row vectors and decorate them with an arrow.
For a row vector

ξ⃗ =
(
ξ1 ξ2 · · · ξn

)
∈ M1,n(K)

we also use the shorthand notation ξ⃗ = (ξi )1⩽i⩽n and we write [ξ⃗]i for the i -th
entry of ξ⃗, so that [ξ⃗]i = ξi for all 1 ⩽ i ⩽ n.

Remark 2.3 (Notation)
(i) A matrix is always denoted by a bold capital letter, such as A,B,C,D.

(ii) The entries of the matrix are denoted by Aij ,Bij ,Cij ,Dij , respectively.
(iii) We may think of an m × n matrix as consisting of n column vectors of length m.

The column vectors of the matrix are denoted by a⃗i , b⃗i , c⃗i , d⃗i , respectively.
(iv) We may think of an m× n matrix as consisting of m row vectors of length n. The

row vectors of the matrix are denoted by α⃗i , β⃗i , γ⃗i , δ⃗i , respectively.
(v) For a matrix A we also write [A]ij for the (i , j)-th entry of A. So for A =

(Aij)1⩽i⩽m,1⩽j⩽n, we have [A]ij = Aij for all 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n.

Example 2.4 For

A =

 π
√
2

−1 5/3

log 2 3

 ∈ M3,2(R),

we have for instance [A]32 = 3, [A]12 =
√
2, [A]21 = −1 and

a⃗1 =

 π

−1

log 2

 , a⃗2 =


√
2

5/3

3

 , α⃗2 =
(
−1 5/3

)
, α⃗3 =

(
log 2 3

)
.

Recall that for setsX andY we writeX ×Y for the Cartesian product ofX andY , defined
as the set of ordered pairs (x , y) with x ∈ X and y ∈ Y . Moreover, X × X is usually
denoted as X 2. Likewise, for a natural number n ∈ N, we write X n for the set of ordered
lists consisting of n elements of X . We will also refer to ordered lists consisting of n
elements as n-tuples. The elements of X n are denoted by (x1, x2, ... , xn) with xi ∈ X for
all 1 ⩽ i ⩽ n. In particular, for all n ∈ N we have a bijective map from Kn to Mn,1(K)

given by

(2.2) (x1, ... , xn) 7→

x1
...
xn

 .

For this reason, we also write Kn for the set of column vectors of length n with entries in
K. The set of row vectors of length n with entries in K will be denoted by Kn.

14



2.2 — Matrix operations

Definition 2.5 (Special matrices and vectors)
• The zero matrix 0m,n is the m × n matrix whose entries are all zero. We will also

write 0n for the n × n-matrix whose entries are all zero.
• Matrices with equal number n of rows and columns are known as square matrices.
• An entry Aij of a square matrix A ∈ Mn,n(K) is said to be a diagonal entry if i = j

and an off-diagonal entry otherwise. A matrix whose off-diagonal entries are all
zero is said to be diagonal.

• We write 1n for the diagonal n × n matrix whose diagonal entries are all equal to
1. Using the so-called Kronecker delta defined by the rule

δij =

{
1 i = j ,

0 i ̸= j ,

we have [1n]ij = δij for all 1 ⩽ i , j ⩽ n. The matrix 1n is called the unit matrix or
identity matrix of size n.

• The standard basis ofKn is the set {e⃗1, e⃗2, ... , e⃗n} consisting of the column vectors
of the identity matrix 1n of size n.

• The standard basis of Kn is the set {ε⃗1, ε⃗2, ... , ε⃗n} consisting of the row vectors of
the identity matrix 1n of size n.

Example 2.6
(i) Special matrices:

02,3 =

(
0 0 0

0 0 0

)
, 12 =

(
1 0

0 1

)
, 13 =

1 0 0

0 1 0

0 0 1

 .

(ii) The standard basis of K3 is {e⃗1, e⃗2, e⃗3}, where

e⃗1 =

1

0

0

 , e⃗2 =

0

1

0

 and e⃗3 =

0

0

1

 .

(iii) The standard basis of K3 is {ε⃗1, ε⃗2, ε⃗3}, where

ε⃗1 =
(
1 0 0

)
, ε⃗2 =

(
0 1 0

)
and ε⃗3 =

(
0 0 1

)
.

2.2 Matrix operations

We can multiply a matrix A ∈ Mm,n(K) with a scalar s ∈ K. This amounts to multiplying
each entry of A with s :

Definition 2.7 Scalar multiplication in Mm,n(K) is the map

·Mm,n(K) : K×Mm,n(K) → Mm,n(K), (s,A) 7→ s ·Mm,n(K) A

defined by the rule

(2.3) s ·Mm,n(K) A = (s ·K Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K),

where s ·K Aij denotes the field multiplication of scalars s,Aij ∈ K.

15



CHAPTER 2 — MATRICES

Remark 2.8 Here we multiply with s from the left. Likewise, we define A ·Mm,n(K)

s = (Aij ·K s)1⩽i⩽m,1⩽j⩽n, that is, we multiply from the right. Of course, since
multiplication of scalars is commutative, we have s ·Mm,n(K) A = A ·Mm,n(K) s , that is,
left multiplication and right multiplication gives the same matrix. Be aware that this
is not true in every number system. An example that you might encounter later on
are the so-called quaternions, where multiplication fails to be commutative.

The sum of matrices A and B of identical size is defined as follows:

Definition 2.9 Addition in Mm,n(K) is the map

+Mm,n(K) : Mm,n(K)×Mm,n(K) → Mm,n(K), (A,B) 7→ A+Mm,n(K) B

defined by the rule

(2.4) A+Mm,n(K) B = (Aij +K Bij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K),

where Aij +K Bij denotes the field addition of scalars Aij ,Bij ∈ K.

Remark 2.10 (Abusing notation)
• Field addition takes two scalars and produces another scalar, thus it is a map
K × K → K, whereas addition of matrices is a map Mm,n(K) × Mm,n(K) →
Mm,n(K). For this reason we wrote +Mm,n(K) above in order to distinguish matrix
addition from field addition of scalars. Of course, it is quite cumbersome to always
write +Mm,n(K) and +K, so we follow the usual custom of writing +, both for field
addition of scalars and for matrix addition, trusting that the reader is aware of
the difference.

• Likewise, we simply write · instead of ·Mm,n(K) or omit the dot entirely, so that
s · A = sA = s ·Mm,n(K) A for s ∈ K and A ∈ Mm,n(K).

Example 2.11
• Multiplication of a matrix by a scalar:

5

(
1 2

3 4

)
=

(
1 2

3 4

)
5 =

(
5 · 1 5 · 2
5 · 3 5 · 4

)
=

(
5 10

15 20

)
.

• Addition of matrices:(
3 −5

−2 8

)
+

(
−3 8

7 10

)
=

(
0 3

5 18

)
.

If the number of columns of a matrix A is equal to the number of rows of a matrix B, we
define the matrix product AB of A and B as follows:

Definition 2.12 (Matrix multiplication) Let A ∈ Mm,n(K) be an m-by-n matrix and
B ∈ Mn,m̃(K) be an n-by-m̃ matrix. The matrix product of A and B is the m-by-m̃

16
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matrix AB ∈ Mm,m̃(K) whose entries are defined by the rule

[AB]ik = Ai1B1k + Ai2B2k + · · ·+ AinBnk =
n∑

j=1

AijBjk =
n∑

j=1

[A]ij [B]jk .

for all 1 ⩽ i ⩽ m and all 1 ⩽ k ⩽ m̃.

Video Matrix MultiplicationMatrix Multiplication

Remark 2.13 (Pairing of row and column vectors) We may define a pairing Kn ×
Kn → K of a row vector of length n and a column vector of length n by the rule

(ξ⃗, x⃗) 7→ ξ⃗x⃗ = ξ1x1 + ξ2x2 + · · ·+ ξnxn

for all ξ⃗ = (ξi )1⩽i⩽n ∈ Kn and for all x⃗ = (xi )1⩽i⩽n ∈ Kn. So we multiply the first
entry of ξ⃗ with the first entry of x⃗ , add the product of the second entry of ξ⃗ and the
second entry of x⃗ and continue in this fashion until the last entry of ξ⃗ and x⃗ .

The (i , j)-th entry of the matrix product of A ∈ Mm,n(K) and B ∈ Mn,m̃(K) is then
given by the pairing

[AB]ij = α⃗i b⃗j

of the i -th row vector α⃗i of A and the j-th column vector b⃗j of B.

Remark 2.14 (Matrix multiplication is not commutative) If A is a m-by-n matrix and
B a n-by-m matrix, then both AB and BA are defined, but in general AB ̸= BA

since AB is an m-by-m matrix and BA is an n-by-n matrix. Even when n = m so that
both A and B are square matrices, it is false in general that AB = BA.

Video Matrix multiplication is not commutativeMatrix multiplication is not commutative

The matrix operations have the following properties:

Proposition 2.15 (Properties of matrix operations)
• 0m,n + A = A for all A ∈ Mm,n(K);
• 1mA = A and A1n = A for all A ∈ Mm,n(K);
• 0m̃,mA = 0m̃,n and A0n,m̃ = 0m,m̃ for all A ∈ Mm,n(K);
• A+ B = B+ A and (A+ B) + C = A+ (B+ C) for all A,B,C ∈ Mm,n(K);

• 0 · A = 0m,n for all A ∈ Mm,n(K);
• (s1s2)A = s1(s2A) for all A ∈ Mm,n(K) and all s1, s2 ∈ K;
• A(sB) = s(AB) = (sA)B for all A ∈ Mm,n(K) and all B ∈ Mn,m̃(K) and all
s ∈ K;

• s(A+ B) = sA+ sB for all A,B ∈ Mm,n(K) and s ∈ K;
• (s1 + s2)A = s1A+ s2A for all A ∈ Mm,n(K) and for all s1, s2 ∈ K;
• (B+ C)A = BA+ CA for all B,C ∈ Mm̃,m(K) and for all A ∈ Mm,n(K);
• A(B+ C) = AB+ AC for all A ∈ Mm̃,m(K) and for all B,C ∈ Mm,n(K).

Proof We only show the second and the last property. The proofs of the remaining
ones are similar and/or elementary consequences of the properties of addition and
multiplication of scalars.
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CHAPTER 2 — MATRICES

To show the second property consider A ∈ Mm,n(K). Then, by definition, we have for all
1 ⩽ k ⩽ m and all 1 ⩽ j ⩽ n

[1mA]kj =
m∑
i=1

[1m]ki [A]ij =
m∑
i=1

δkiAij = Akj = [A]kj ,

where the second last equality uses that δki is 0 unless i = k , in which case δkk = 1. We
conclude that 1mA = A. Likewise, we obtain for all 1 ⩽ i ⩽ m and all 1 ⩽ k ⩽ n

[A1n]ik =
n∑

j=1

[A]ij [1n]jk =
n∑

j=1

Aijδjk = Aik = [A]ik

so that A1n = A. The identities

m∑
i=1

δkiAij = Akj and
n∑

j=1

Aijδjk = Aik

are used repeatedly in Linear Algebra, so make sure you understand them.

For the last property, applying the definition of matrix multiplication gives

AB =

(
m∑
i=1

AkiBij

)
1⩽k⩽m̃,1⩽j⩽n

and AC =

(
m∑
i=1

AkiCij

)
1⩽k⩽m̃,1⩽j⩽n

,

so that

AB+ AC =

(
m∑
i=1

AkiBij +
m∑
i=1

AkiCij

)
1⩽k⩽m̃,1⩽j⩽n

=

(
m∑
i=1

Aki (Bij + Cij)

)
1⩽k⩽m̃,1⩽j⩽n

= A(B+ C),

where we use that

B+ C = (Bij + Cij)1⩽i⩽m,1⩽j⩽n .

□

Finally, we may flip a matrix along its “diagonal entries”, that is, we interchange the role
of rows and columns. More precisely:

Definition 2.16 (Transpose of a matrix)
• The transpose of a matrix A ∈ Mm,n(K) is the matrix AT ∈ Mn,m(K) satisfying[

AT
]
ij
= [A]ji

for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m.
• A square matrix A ∈ Mn,n(K) that satisfies A = AT is called symmetric.
• A square matrix A ∈ Mn,n(K) that satisfies A = −AT is called anti-symmetric.

Example 2.17 If

A =

1 2

3 4

5 6

 , then AT =

(
1 3 5

2 4 6

)
.
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Remark 2.18 (Properties of the transpose)
(i) For A ∈ Mm,n(K) we have by definition (AT )T = A.

(ii) For A ∈ Mm,n(K) and B ∈ Mn,m̃(K), we have

(AB)T = BTAT .

Indeed, by definition we have for all 1 ⩽ i ⩽ m̃ and all 1 ⩽ j ⩽ m[
(AB)T

]
ij
= [AB]ji =

n∑
k=1

[A]jk [B]ki =
n∑

k=1

[
BT
]
ik

[
AT
]
kj
=
[
BTAT

]
ij
.

2.3 Mappings associated to matrices

Definition 2.19 (Mapping associated to a matrix) For an (m × n)-matrix A =

(Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K) with column vectors a⃗1, ... , a⃗n ∈ Km we define a
mapping

fA : Kn → Km, x⃗ 7→ Ax⃗ ,

where the column vectorAx⃗ ∈ Km is obtained by matrix multiplication of the matrix
A ∈ Mm,n(K) and the column vector x⃗ = (xi )1⩽i⩽n ∈ Kn

Ax⃗ = a⃗1x1 + a⃗2x2 + · · ·+ a⃗nxn =


A11x1 + A12x2 + · · ·+ A1nxn
A21x1 + A22x2 + · · ·+ A2nxn

...
Am1x1 + Am2x2 + · · ·+ Amnxn

 .

Recall that if f : X → Y and g : X → Y are mappings from a set X into a set Y , then we
write f = g if f (x) = g(x) for all elements x ∈ X .

The matrix A ∈ Mm,n(K) uniquely determines the mapping fA:

Proposition 2.20 Let A,B ∈ Mm,n(K). Then fA = fB if and only if A = B.

Proof If A = B, then Aij = Bij for all 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, hence we conclude
that fA = fB. In order to show the converse direction we consider the standard basis
e⃗i = (δij)1⩽j⩽n, i = 1, ... , n of Kn. Now by assumption

fA(e⃗i ) =


A1i

A2i

...
Ami

 = fB(e⃗i ) =


B1i

B2i

...
Bmi

 .

Since this holds for all i = 1, ... , n, we conclude Aij = Bij for all j = 1, ... ,m and
i = 1, ... , n. Therefore, we have A = B, as claimed. □

Recall that if f : X → Y is a mapping from a setX into a setY and g : Y → Z a mapping
from Y into a set Z , we can consider the composition of g and f

g ◦ f : X → Z, x 7→ g(f (x)).
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The motivation for the Definition 2.12Definition 2.12 of matrix multiplication is given by the following
theorem which states that the mapping fAB associated to the matrix product AB is the
composition of the mapping fA associated to the matrixA and the mapping fB associated
to the matrix B. More precisely:

Theorem 2.21 Let A ∈ Mm,n(K) and B ∈ Mn,m̃(K) so that fA : Kn → Km and
fB : Km̃ → Kn and fAB : Km̃ → Km. Then fAB = fA ◦ fB.

Proof For x⃗ = (xk)1⩽k⩽m̃ ∈ Km̃ we write y⃗ = fB(x⃗). Then, by definition, y⃗ = Bx⃗ =

(yj)1⩽j⩽n where

(2.5) yj = Bj1x1 + Bj2x2 + · · ·+ Bjm̃xm̃ =
m̃∑

k=1

Bjkxk .

Hence writing z⃗ = fA(y⃗) = Ay⃗ , we have z⃗ = (zi )1⩽i⩽m, where

zi = Ai1y1 + Ai2y2 + · · ·+ Ainyn =
n∑

j=1

Aijyj =
n∑

j=1

Aij

m̃∑
k=1

Bjkxk

=
m̃∑

k=1

 n∑
j=1

AijBjk

 xk

and where have used (2.52.5). Since AB = (Cik)1⩽i⩽m,1⩽k⩽m̃ with

Cik =
n∑

j=1

AijBjk ,

we conclude that z⃗ = fAB(x⃗), as claimed. □

Combining Theorem 2.21Theorem 2.21 and Proposition 2.20Proposition 2.20, we also obtain:

Corollary 2.22 Let A ∈ Mm,n(K), B ∈ Mn,m̃(K) and C ∈ Mm̃,ñ(K). Then

(AB)C = A(BC),

that is, the matrix product is associative.

Proof Using Proposition 2.20Proposition 2.20 it is enough to show that

fAB ◦ fC = fA ◦ fBC.

Using Theorem 2.21Theorem 2.21, we get for all x⃗ ∈ Kñ

(fAB ◦ fC) (x⃗) = fAB(fC(x⃗)) = fA(fB(fC(x⃗))) = fA(fBC(x⃗)) = (fA ◦ fBC) (x⃗).

□

Remark 2.23 For all A ∈ Mm,n(K), the mapping fA : Kn → Km satisfies the
following two very important properties

(2.6)
fA(x⃗ + y⃗) = fA(x⃗) + fA(y⃗), (additivity),

fA(s · x⃗) = s · fA(x⃗), (1-homogeneity),

for all x⃗ , y⃗ ∈ Kn and s ∈ K. Indeed, using Proposition 2.15Proposition 2.15 we have

fA(x⃗ + y⃗) = A(x⃗ + y⃗) = Ax⃗ + Ay⃗ = fA(x⃗) + fA(y⃗)

and
fA(s · x⃗) = A(sx⃗) = s · (Ax⃗) = s · fA(x⃗).
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Mappings satisfying (2.62.6) are called linear.

Example 2.24 Notice that “most” functions R → R are neither additive nor 1-
homogeneous. As an example, consider a mapping f : R → R which satisfies the
1-homogeneity property. Let a = f (1) ∈ R. Then the 1-homogeneity implies that
for all x ∈ R = R1 we have

f (x) = f (x · 1) = x · f (1) = a · x ,

showing that the only 1-homogeneous mappings from R → R are of the form
x 7→ ax , where a is a real number. In particular, sin, cos, tan, log, exp,

√
and all

polynomials of degree higher than one are not linear.
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Vector spaces and linear maps

3.1 Vector spaces WEEK 3

We have seen that to every matrix A ∈ Mm,n(K) we can associate a mapping fA : Kn →
Km which is additive and 1-homogeneous. Another example of a mapping which is
additive and 1-homogeneous is the derivative. Consider P(R), the set of polynomial
functions in one real variable, which we denote by x , with real coefficients. That is, an
element p ∈ P(R) is a function

p : R → R, x 7→ anx
n + an−1x

n−1 + · · ·+ a1x + a0 =
n∑

k=0

akx
k ,

where n ∈ N and the coefficients ak ∈ R for k = 0, 1, ... , n. The largest m ∈ N∪{0} such
that am ̸= 0 is called the degree of p. Notice that we consider polynomials of arbitrary,
but finite degree. A power series x 7→

∑∞
k=0 akx

k , that you encounter in the Analysis
module, is not a polynomial, unless only finitely many of its coefficients are different
from zero.

Clearly, we can multiply p with a real number s ∈ R to obtain a new polynomial s ·P(R) p

(3.1) s ·P(R) p : R → R, x 7→ s · p(x)

so that (s ·P(R) p)(x) =
∑n

k=0 sakx
k for all x ∈ R. Here s ·p(x) is the usual multiplication

of the real numbers s and p(x). If we consider another polynomial

q : R → R, x 7→
n∑

k=0

bkx
k

with bk ∈ R for k = 0, 1, ... , n, the sum of the polynomials p and q is the polynomial

(3.2) p +P(R) q : R → R, x 7→ p(x) + q(x)

so that (p +P(R) q)(x) =
∑n

k=0(ak + bk)x
k for all x ∈ R. Here p(x) + q(x) is the usual

addition of the real numbers p(x) and q(x). We will henceforth omit writing +P(R) and
·P(R) and simply write + and ·.

We may think of the derivative with respect to the variable x as a mapping
d

dx
: P(R) → P(R).

Now recall that the derivative satisfies

(3.3)

d

dx
(p + q) =

d

dx
(p) +

d

dx
(q) (additivity),

d

dx
(s · p) = s · d

dx
(p) (1-homogeneity).

Comparing (2.62.6) with (3.33.3) we notice that the polynomials p, q take the role of the vectors
x⃗ , y⃗ and the derivative takes the role of the mapping fA. This suggests that the mental
image of a vector being an arrow in Kn is too narrow and that we ought to come up with
a generalisation of the space Kn whose elements are abstract vectors.
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Video Vector spacesVector spaces

In order to define the notion of a space of abstract vectors, we may ask what key structure
the set of (column) vectors Kn carries. On Kn, we have two fundamental operations,

+ : Kn ×Kn → Kn (x⃗ , y⃗) 7→ x⃗ + y⃗ , (vector addition),

· : K×Kn → Kn, (s, x⃗) 7→ s · x⃗ , (scalar multiplication).

A vector space is roughly speaking a set where these two operations are defined and obey
the expected properties. More precisely:

Definition 3.1 (Vector space) A K-vector space, or vector space over K is a set V
with a distinguished element 0V (called the zero vector) and two operations

+V : V × V → V (v1, v2) 7→ v1 +V v2 (vector addition)

and
·V : K× V → V (s, v) 7→ s ·V v (scalar multiplication),

so that the following properties hold:
• Commutativity of vector addition

v1 +V v2 = v2 +V v1 (for all v1, v2 ∈ V );

• Associativity of vector addition

v1 +V (v2 +V v3) = (v1 +V v2) +V v3 (for all v1, v2, v3 ∈ V );

• Identity element of vector addition

(3.4) 0V +V v = v +V 0V = v (for all v ∈ V );

• Identity element of scalar multiplication

1 ·V v = v (for all v ∈ V );

• Scalar multiplication by zero

(3.5) 0 ·V v = 0V (for all v ∈ V );

• Compatibility of scalar multiplication with field multiplication

(s1s2) ·V v = s1 ·V (s2 ·V v) (for all s1, s2 ∈ K, v ∈ V );

• Distributivity of scalar multiplication with respect to vector addition

s ·V (v1 +V v2) = s ·V v1 +V s ·V v2 (for all s ∈ K, v1, v2 ∈ V );

• Distributivity of scalar multiplication with respect to field addition

(s1 + s2) ·V v = s1 ·V v +V s2 ·V v (for all s1, s2 ∈ K, v ∈ V ).

The elements of V are called vectors.

Example 3.2 (Field) A field K is a K-vector space. We may take V = K, 0V = 0K
and equip V with addition +V = +K and scalar multiplication ·V = ·K. Then the
properties of a field imply that V = K is a K-vector space.

Example 3.3 (Vector space of matrices) Let V = Mm,n(K) denote the set of m ×
n-matrices with entries in K and 0V = 0m,n denote the zero vector. It follows
from Proposition 2.15Proposition 2.15 that V equipped with addition +V : V × V → V defined
by (2.42.4) and scalar multiplication ·V : K × V → V defined by (2.32.3) is a K-vector
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space. In particular, the set of column vectors Kn = Mn,1(K) is a K-vector space as
well.

Example 3.4 (Vector space of polynomials) The set P(R) of polynomials in one
real variable and with real coefficients is an R-vector space, when equipped with
addition and scalar multiplication as defined in (3.13.1) and (3.23.2) and when the zero
vector 0P(R) is defined to be the zero polynomial o : R → R, that is, the polynomial
satisfying o(x) = 0 for all x ∈ R.

More generally, functions form a vector space:

Example 3.5 (Vector space of functions) We follow the convention of calling a
mapping with values in K a function. Let I ⊂ R be an interval and let o : I → K
denote the zero function defined by o(x) = 0 for all x ∈ I . We consider V = F(I ,K),
the set of functions from I to K with zero vector 0V = o given by the zero function
and define addition +V : V × V → V as in (3.23.2) and scalar multiplication ·V :

K× V → V as in (3.13.1). It now is a consequence of the properties of addition and
multiplication of scalars that F(I ,K) is a K-vector space. (The reader is invited to
check this assertion!)

Example 3.6 (Vector space of sequences) A mapping x : N → K from the natural
numbers into a field K called a sequence in K (or simply a sequence, when K is clear
from the context). It is common to write xn instead of x(n) for n ∈ N and to denote a
sequence by (xn)n∈N = (x1, x2, x3, ...). We write K∞ for the set of sequences in K.
For instance, taking K = R, we may consider the sequence(

1

n

)
n∈N

=

(
1,

1

2
,
1

3
,
1

4
,
1

5
, ...

)
or the sequence (√

n
)
n∈N =

(
1,
√
2,
√
3, 2,

√
5, ...

)
.

If we equip K∞ with the zero vector given by the zero sequence (0, 0, 0, 0, 0, ...),
addition given by (xn)n∈N + (yn)n∈N = (xn + yn)n∈N and scalar multiplication given
by s · (xn)n∈N = (sxn)n∈N for s ∈ K, then K∞ is a K-vector space.

Example 3.7 (Zero vector space) Consider a set V = {x} consisting of a single
element. We define 0V = x , addition by x +V x = x and scalar multiplication by
s ·V x = x . Then all the properties of Definition 3.1Definition 3.1 are satisfied. We writeV = {0V }
or simply V = {0} and call V the zero vector space (over K).

The notion of a vector space is an example of an abstract space. Later in your studies you
will encounter further examples, like topological spaces, metric spaces and manifolds.

Remark 3.8 (Notation & Definition) Let V be a K-vector space.
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• For v ∈ V we write −v = (−1) ·V v and for v1, v2 ∈ V we write v1 − v2 =

v1+V (−v2). In particular, using the properties from Definition 3.1Definition 3.1 we have (check
which properties we do use!)

v − v = v +V (−v) = v +V (−1) ·V v = (1− 1) ·V v = 0 ·V v = 0V

For this reason we call −v the additive inverse of v .
• Again, it is too cumbersome to always write +V , for this reason we often write
v1 + v2 instead of v1 +V v2.

• Likewise, we will often write s · v or sv instead of s ·V v .
• It is also customary to write 0 instead of 0V .

Lemma 3.9 (Elementary properties of vector spaces) Let V be a K-vector space.
Then we have:

(i) The zero vector is unique, that is, if 0′V is another vector such that 0′V + v =

v + 0′V = v for all v ∈ V , then 0′V = 0V .
(ii) The additive inverse of every v ∈ V is unique, that is, if w ∈ V satisfies v +w =

0V , then w = −v .
(iii) For all s ∈ K we have s0V = 0V .
(iv) For s ∈ K and v ∈ V we have sv = 0V if and only if either s = 0 or v = 0V .

Proof (The reader is invited to check which property of Definition 3.1Definition 3.1 is used in each of
the equality signs below)

(i) We have 0′V = 0′V + 0V = 0V .
(ii) Since v + w = 0V , adding −v , we obtain (−v) + v + w = 0V + (−v) = −v = w .

(iii) We compute s0V = s(0V + 0V ) = s0V + s0V so that s0V − s0V = 0V = s0V .
(iv) ⇐ If v = 0V , then sv = 0V by (iii). If s = 0, then sv = 0V by (3.53.5).

⇒ Let s ∈ K and v ∈ V such that sv = 0V . It is sufficient to show that if s ̸= 0, then
v = 0V . Since s ̸= 0 we can multiply sv = 0V with 1/s so that

1

s
(sv) =

(
1

s
s

)
v = v =

1

s
0V = 0V .

□

3.2 Linear maps

Throughout this section, V ,W denote K-vector spaces.

Previously we saw that the mapping fA : Kn → Km associated to a matrix Mm,n(K) is
additive and 1-homogeneous. These notions also make sense for mappings between
vector spaces.

Definition 3.10 (Linear map) A mapping f : V → W is called linear if it is additive
and 1-homogeneous, that is, if it satisfies

(3.6) f (s1v1 + s2v2) = s1f (v1) + s2f (v2)

for all s1, s2 ∈ K and for all v1, v2 ∈ V .
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The reader is invited to check that the condition (3.63.6) is indeed equivalent to f being
additive and 1-homogeneous.

Example 3.11 As we have seen in Remark 2.23Remark 2.23, the mapping fA : Kn → Km associ-
ated to a matrix A ∈ Mm,n(K) is linear. In Lemma 3.18Lemma 3.18 below we will see that in fact
any linear map Kn → Km is of this form.

Example 3.12 The derivative d
dx : P(R) → P(R) is linear, see (3.33.3).

Example 3.13 The matrix transpose is a map Mm,n(K) → Mn,m(K) and this map is
linear. Indeed, for all s, t ∈ K and A,B ∈ Mm,n(K), we have

(sA+ tB)T = (sAji + tBji )1⩽j⩽n,1⩽i⩽m = s(Aji )1⩽j⩽n,1⩽i⩽m+

t(Bji )1⩽j⩽n,1⩽i⩽m = sAT + tBT .

Example 3.14 IfX is set, the mapping IdX : X → X which returns its input is called
the identity mapping. Let V be a K-vector space and IdV : V → V the identity
mapping so that IdV (v) = v for all v ∈ V . The identity mapping is linear since for
all s1, s2 ∈ K and v1, v2 ∈ V we have

IdV (s1v1 + s2v2) = s1v1 + s2v2 = s1IdV (v1) + s2IdV (v2).

A necessary condition for linearity of a mapping is that it maps the zero vector onto the
zero vector:

Lemma 3.15 Let f : V → W be a linear map, then f (0V ) = 0W .

Proof Since f : V → W is linear, we have

f (0V ) = f (0 · 0V ) = 0 · f (0V ) = 0W .

□

Proposition 3.16 Let V1,V2,V3 be K-vector spaces and f : V1 → V2 and g : V2 →
V3 be linear maps. Then the composition g ◦ f : V1 → V3 is linear. Furthermore,
if f : V1 → V2 is bijective, then the inverse function f −1 : V2 → V1 (satisfying
f −1 ◦ f = f ◦ f −1 = IdV1) is linear.

Proof Let s, t ∈ K and v ,w ∈ V1. Then

(g ◦ f ) (sv + tw) = g(f (sv + tw)) = g(sf (v) + tf (w))

= sg(f (v)) + tg(f (w)) = s(g ◦ f )(v) + t(g ◦ f )(w),

where we first use the linearity of f and then the linearity of g . It follows that g ◦ f is
linear.
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Now suppose f : V1 → V2 is bijective with inverse function f −1 : V2 → V1. Let s, t ∈ K
and v ,w ∈ V2. Since f is bijective there exist unique vectors v ′,w ′ ∈ V1 with f (v ′) = v

and f (w ′) = w . Hence we can write

f −1(sv + tw) = f −1(sf (v ′) + tf (w ′)) = f −1 (f (sv ′ + tw ′))

= (f −1 ◦ f )(sv ′ + tw ′) = sv ′ + tw ′,

where we use the linearity of f . Since we also have v ′ = f −1(v) and w ′ = f −1(w), we
obtain

f −1(sv + tw) = sf −1(v) + tf −1(w),

thus showing that f −1 : V2 → V1 is linear. □

We also have:

Proposition 3.17 Let A ∈ Mm,n(K) and fA : Kn → Km the associated linear map.
Then fA is bijective if and only if there exists a matrixB ∈ Mn,m(K) satisfyingBA = 1n
and AB = 1m. In this case, the matrix B is unique and will be denoted by A−1. We
refer to A−1 as the inverse of A and call A invertible.

In order to prove Proposition 3.17Proposition 3.17 we need the following lemma:

Lemma 3.18 A mapping g : Km → Kn is linear if and only if there exists a matrix
B ∈ Mn,m(K) so that g = fB.

Proof Let B ∈ Mn,m(K), then fB is linear by Remark 2.23Remark 2.23. Conversely, let g : Km → Kn

be linear. Let {e⃗1, ... , e⃗m} denote the standard basis of Km. Write

g(e⃗i ) =

B1i

...
Bni

 for i = 1, ... ,m

and consider the matrix

B =

B11 · · · B1m

...
. . .

...
Bn1 · · · Bnm

 ∈ Mn,m(K).

For i = 1, ... ,m we obtain

(3.7) fB(e⃗i ) = Be⃗i = g(e⃗i ).

Any vector v⃗ = (vi )1⩽i⩽m ∈ Km can be written as

v⃗ = v1e⃗1 + · · ·+ vme⃗m

for (unique) scalars vi , i = 1, ... ,m. Hence using the linearity of g and fB, we compute
g(v⃗)− fB(v⃗) = g(v1e⃗1 + · · ·+ vme⃗m)− fB(v1e⃗1 + · · ·+ vme⃗m)

= v1 (g(e⃗1)− fB(e⃗1)) + · · ·+ vm (g(e⃗m)− fB(e⃗m)) = 0Kn ,

where the last equality uses (3.73.7). Since the vector v⃗ is arbitrary, it follows that g = fB, as
claimed. □

Proof of Proposition 3.17Proposition 3.17 First, notice that the mapping f1n : Kn → Kn associated to
the unit matrix is the identity mapping on Kn, that is, for all n ∈ N, we have f1n = IdKn .

Let A ∈ Mm,n(K) and suppose that fA : Kn → Km is bijective with inverse function
(fA)

−1 : Km → Kn. By Proposition 3.16Proposition 3.16, the mapping (fA)
−1 is linear and hence of
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the form (fA)
−1 = fB for some matrix B ∈ Mn,m(K) by the previous Lemma 3.18Lemma 3.18. Us-

ing Theorem 2.21Theorem 2.21, we obtain

(fA)
−1 ◦ fA = IdKn = fB ◦ fA = fBA = f1n

hence Proposition 2.20Proposition 2.20 implies that BA = 1n. Likewise we have

fA ◦ (fA)−1 = IdKm = fA ◦ fB = fAB = f1m

so that AB = 1m.

Conversely, let A ∈ Mm,n(K) and suppose the matrix B ∈ Mn,m(K) satisfies AB = 1m
and BA = 1n. Then, as before, we have

fAB = f1m = IdKm = fA ◦ fB and fBA = f1n = IdKn = fB ◦ fA
showing that fA : Kn → Km is bijective with inverse function fB : Km → Kn.

Finally, to verify the uniqueness of B, we assume that there exists B′ ∈ Mn,m(K) with
AB′ = 1m and B′A = 1n. Then

B′ = B′1m = B′AB = (B′A)B = 1nB = B,

showing that B′ = B, hence B is unique. □

Exercises

Exercise 3.19 Let f : V → W be a linear map, k ⩾ 2 a natural number and
s1, ... , sk ∈ K and v1, ... , vk ∈ V . Then f : V → W satisfies

f (s1v1 + · · ·+ skvk) = s1f (v1) + · · ·+ sk f (vk)

or written with the sum symbol

f

(
k∑

i=1

sivi

)
=

k∑
i=1

si f (vi ).

This identity is used frequently in Linear Algebra, so make sure you understand it.

Exercise 3.20 Let a, b, c, d ∈ K and

A =

(
a b

c d

)
∈ M2,2(K).

Show thatA has an inverseA−1 if and only if ad−bc ̸= 0. For ad−bc ̸= 0, compute
the inverse A−1.
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3.3 Vector subspaces and isomorphisms WEEK 4

3.3.1 Vector subspaces

A vector subspace of a vector space is a subset that is itself a vector space, more precisely:

Definition 3.21 (Vector subspace) Let V be a K-vector space. A subset U ⊂ V is
called a vector subspace of V if U is non-empty and if

(3.8) s1 ·V v1 +V s2 ·V v2 ∈ U for all s1, s2 ∈ K and all v1, v2 ∈ U.

Video SubspacesSubspaces

Remark 3.22
(i) Observe that sinceU is non-empty, it contains an element, say u. Since 0 ·V u =

0V ∈ U it follows that the zero vector 0V lies in U . A vector subspace U is
itself a vector space when we take 0U = 0V and borrow vector addition and
scalar multiplication from V . Indeed, all of the properties in Definition 3.1Definition 3.1 of
+V and ·V hold for all elements of V and all scalars, hence also for all elements
of U ⊂ V and all scalars. We only need to verify that we cannot fall out of
U by vector addition and scalar multiplication, but this is precisely what the
condition (3.83.8) states.

(ii) A vector subspace is also called a linear subspace or simply a subspace.

The prototypical examples of vector subspaces are lines and planes through the origin in
R3:

Example 3.23 (Lines through the origin) Let w⃗ ̸= 0R3 , then the line

U = {sw⃗ | s ∈ R} ⊂ R3

is a vector subspace. Indeed, taking s = 0 it follows that 0R3 ∈ U so that U is
non-empty. Let u⃗1, u⃗2 be vectors in U so that u⃗1 = t1w⃗ and u⃗2 = t2w⃗ for scalars
t1, t2 ∈ R. Let s1, s2 ∈ R, then

s1u⃗1 + s2u⃗2 = s1t1w⃗ + s2t2w⃗ = (s1t1 + s2t2) w⃗ ∈ U

so that U ⊂ R3 is a subspace.

Example 3.24 (Zero vector space) Let V be a K-vector space and U = {0V } the
zero vector space arising from 0V . Then, by Definition 3.21Definition 3.21 and the properties of
Definition 3.1Definition 3.1, it follows that U is a vector subspace of V .

Example 3.25 (Periodic functions) Taking I = R and K = R in Example 3.5Example 3.5, we see
that the functions f : R → R form an R-vector space V = F(R,R). Consider the
subset

U = {f ∈ F(R,R) | f is periodic with period 2π}
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consisting of 2π-periodic functions, that is, an element f ∈ U satisfies f (x + 2π) =

f (x) for all x ∈ R. Notice that U is not empty, as cos : R → R and sin : R → R are
elements of U . Suppose f1, f2 ∈ U and s1, s2 ∈ R. Then, we have for all x ∈ R

(s1f1 + s2f2)(x + 2π) = s1f1(x + 2π) + s2f2(x + 2π) = s1f1(x) + s2f2(x)

= (s1f1 + s2f2)(x)

showing that s1f1 + s2f2 is periodic with period 2π. By Definition 3.21Definition 3.21, it follows that
U is a vector subspace of F(R,R).

Recall, if X ,W are sets, Y ⊂ X , Z ⊂ W subsets and f : X → W a mapping, then the
image of Y under f is the set

f (Y) = {w ∈ W | there exists an element y ∈ Y with f (y) = w}

consisting of all the elements in W which are hit by an element of Y under the mapping
f . In the special case where Y is all of X , that is, Y = X , it is also customary to write
Im(f ) instead of f (X ) and simply speak of the image of f . Similarly, the preimage of Z
under f is the set

f −1(Z) = {x ∈ X | f (x) ∈ Z}

consisting of all the elements in X which are mapped onto elements of Z under f . Notice
that f is not assumed to be bijective, hence the inverse mapping f −1 : W → X does
not need to exist (and in fact the definition of the preimage does not involve the inverse
mapping). Nonetheless the notation f −1(Z) is customary.

It is natural to ask how the image and preimage of subspaces look like under a linear
map:

Proposition 3.26 Let V ,W be K-vector spaces, U ⊂ V and Z ⊂ W be vector
subspaces and f : V → W a linear map. Then the image f (U) is a vector subspace
of W and the preimage f −1(Z ) is a vector subspace of V .

Proof Since U is a vector subspace, we have 0V ∈ U . By Lemma 3.15Lemma 3.15, f (0V ) = 0W ,
hence 0W ∈ f (U). For all w1,w2 ∈ f (U) there exist u1, u2 ∈ U with f (u1) = w1 and
f (u2) = w2. Hence for all s1, s2 ∈ K we obtain

s1w1 + s2w2 = s1f (u1) + s2f (u2) = f (s1u1 + s2u2),

where we use the linearity of f . Since U is a subspace, s1u1 + s2u2 is an element of U
as well. It follows that s1w1 + s2w2 ∈ f (U) and hence applying Definition 3.21Definition 3.21 again,
we conclude that f (U) is a subspace of W . The second claim is left to the reader as an
exercise. □

Vector subspaces are stable under intersection in the following sense:

Proposition 3.27 Let V be a K-vector space, n ⩾ 2 a natural number and U1, ... ,Un

vector subspaces of V . Then the intersection

U ′ =
n⋂

j=1

Uj = {v ∈ V | v ∈ Uj for all j = 1, ... , n}

is a vector subspace of V as well.
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Proof Since Uj is a vector subspace, 0V ∈ Uj for all j = 1, ... , n. Therefore, 0V ∈ U ′,
hence U ′ is not empty. Let u1, u2 ∈ U ′ and s1, s2 ∈ K. By assumption, u1, u2 ∈ Uj for all
j = 1, ... , n. SinceUj is a vector subspace for all j = 1, ... , n it follows that s1u1+s2u2 ∈ Uj

for all j = 1, ... , n and hence s1u1 + s2u2 ∈ U ′. By Definition 3.21Definition 3.21, it follows that U ′ is a
vector subspace of V . □

Remark 3.28 Notice that the union of subspaces need not be a subspace. Let
V = R2, {e⃗1, e⃗2} its standard basis and

U1 = {se⃗1 | s ∈ R} and U2 = {se⃗2 | s ∈ R} .

Then e⃗1 ∈ U1 ∪ U2 and e⃗2 ∈ U1 ∪ U2, but e⃗1 + e⃗2 /∈ U1 ∪ U2.

The kernel of a linear map f : V → W consists of those vectors in V that are mapped
onto the zero vector of W :

Definition 3.29 (Kernel) The kernel of a linear map f : V → W is the preimage of
{0W } under f , that is,

Ker(f ) = {v ∈ V | f (v) = 0W } = f −1({0W }).

Example 3.30 The kernel of the linear map d
dx : Pn(R) → Pn−1(R) consists of the

constant polynomials satisfying f (x) = c for all x ∈ R and where c ∈ R is some
constant.

We can characterise the injectivity of a linear map f : V → W in terms of its kernel:

Lemma 3.31 A linear map f : V → W is injective if and only if Ker(f ) = {0V }.

Proof Let f : V → W be injective. Suppose f (v) = 0W . Since f (0V ) = 0W by
Lemma 3.15Lemma 3.15, we have f (v) = f (0V ), hence v = 0V by the injectivity assumption. It
follows that Ker(f ) = {0V }. Conversely, suppose Ker(f ) = {0V } and let v1, v2 ∈ V be
such that f (v1) = f (v2). Then by the linearity we have f (v1)− f (v2) = 0W = f (v1 − v2).
Hence v1 − v2 is in the kernel of f so that v1 − v2 = 0V or v1 = v2. □

An immediate consequence of Proposition 3.26Proposition 3.26 is:

Corollary 3.32 Let f : V → W be a linear map, then its image Im(f ) is a vector
subspace of W and its kernel Ker(f ) is a vector subspace of V .

3.3.2 Isomorphisms

Definition 3.33 (Vector space isomorphism) A bijective linear map f : V → W is
called a (vector space) isomorphism. If an isomorphism f : V → W exists, then the
K-vector spaces V and W are called isomorphic.
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By the definition of surjectivity, a map f : V → W is surjective if and only if Im(f ) = W .
Combining this with Lemma 3.31Lemma 3.31 gives:

Proposition 3.34 A linear map f : V → W is an isomorphism if and only ifKer(f ) =
{0V } and Im(f ) = W .

3.4 Generating sets

Definition 3.35 (Linear combination) Let V be a K-vector space, k ∈ N and
{v1, ... , vk} a set of vectors from V . A linear combination of the vectors {v1, ... , vk}
is a vector of the form

w = s1v1 + · · ·+ skvk =
k∑

i=1

sivi

for some s1, ... , sk ∈ K.

Example 3.36 For n ∈ N with n ⩾ 2 consider V = Pn(R) and the polynomials
p1, p2, p3 ∈ Pn(R) defined by the rules p1(x) = 1, p2(x) = x , p3(x) = x2 for all
x ∈ R. A linear combination of {p1, p2, p3} is a polynomial of the form p(x) =

ax2 + bx + c where a, b, c ∈ R.

Definition 3.37 (Subspace generated by a set) LetV be aK-vector space andS ⊂ V

be a non-empty subset. The subspace generated by S is the set span(S) whose
elements are linear combinations of finitely many vectors in S. The set span(S) is
called the span of S. Formally, we have

span(S) =

{
v ∈ V

∣∣∣ v =
k∑

i=1

sivi , k ∈ N, s1, ... , sk ∈ K, v1, ... , vk ∈ S

}
.

Remark 3.38 The notation ⟨S⟩ for the span of S is also in use.

Proposition 3.39 Let V be a K-vector space and S ⊂ V be a non-empty subset.
Then span(S) is a vector subspace of V .

Proof Since S is non-empty it contains some element, say u. Since u itself is a linear
combination of {u}, it follows that span(S) is non-empty. Let k ∈ N and v1 = t1w1 +

· · · + tkwk for t1, ... tk ∈ K and w1, ... ,wk ∈ S be a linear combination of vectors in S.
Furthermore, let j ∈ N and v2 = t̂1ŵ1 + · · · + t̂j ŵj for t̂1, ... , t̂j and ŵ1, ... , ŵj ∈ S be
another linear combination of vectors in S . By Definition 3.21Definition 3.21, it suffices to show that for
all s1, s2 ∈ K the vector s1v1 + s2v2 is a linear combination of vectors in S. Since

s1v1 + s2v2 = s1(t1w1 + · · ·+ tkwk) + s2(t̂1ŵ1 + · · ·+ t̂j ŵj)

= s1t1w1 + · · ·+ s1tkwk + s2t̂1ŵ1 + · · ·+ s2t̂j ŵj

33



CHAPTER 3 — VECTOR SPACES AND LINEAR MAPS

is a linear combination of the vectors {w1, ... ,wk , ŵ1, ... , ŵj} in S , the claim follows. □

Remark 3.40 For a subset S ⊂ V , we may alternatively define span(S) to be the
smallest vector subspace of V that contains S. This has the advantage of S being
allowed to be empty, in which case span(∅) = {0V }, that is, the empty set is a
generating set for the zero vector space.

Definition 3.41 (Generating set) LetV be aK-vector space. A subsetS ⊂ V is called
a generating set if span(S) = V . The vector space V is called finite dimensional if
V admits a generating set with finitely many elements (also called a finite set). A
vector space that is not finite dimensional will be call infinite dimensional.

Example 3.42 Thinking of a fieldK as aK-vector space, the setS = {1K} consisting
of the identity element of multiplication is a generating set for V = K. Indeed, for
every x ∈ K we have x = x ·V 1K.

Example 3.43 The standard basis S = {e⃗1, ... , e⃗n} is a generating set for Kn, since
for all x⃗ = (xi )1⩽i⩽n ∈ Kn, we can write x⃗ = x1e⃗1 + · · ·+ xne⃗n so that x⃗ is a linear
combination of elements of S.

Example 3.44 Let Ek,l ∈ Mm,n(K) for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n denote the m-by-n
matrix satisfying Ek,l = (δkiδlj)1⩽i⩽m,1⩽j⩽n. For example, for m = 2 and n = 3 we
have

E1,1 =

(
1 0 0

0 0 0

)
, E1,2 =

(
0 1 0

0 0 0

)
, E1,3 =

(
0 0 1

0 0 0

)
and

E2,1 =

(
0 0 0

1 0 0

)
, E2,2 =

(
0 0 0

0 1 0

)
, E2,3 =

(
0 0 0

0 0 1

)
.

Then S = {Ek,l}1⩽k⩽m,1⩽l⩽n is a generating set for Mm,n(K), since a matrix A ∈
Mm,n(K) can be written as

A =
m∑

k=1

n∑
l=1

AklEk,l

so that A is a linear combination of the elements of S.

Example 3.45 The vector space P(R) of polynomials is infinite dimensional. In
order to see this, consider a finite set of polynomials {p1, ... , pn}, n ∈ N and let di
denote the degree of the polynomial pi for i = 1, ... , n. We set D = max{d1, ... , dn}.
Since a linear combination of the polynomials {p1, ... , pn} has degree at mostD , any
polynomial q whose degree is strictly larger than D will satisfy q /∈ span{p1, ... , pn}.
It follows that P(R) cannot be generated by a finite set of polynomials.
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Lemma 3.46 Let f : V → W be linear and S ⊂ V a generating set. If f is surjective,
then f (S) is a generating set for W . Furthermore, if f is bijective, then V is finite
dimensional if and only if W is finite dimensional.

Proof Let w ∈ W . Since f is surjective there exists v ∈ V such that f (v) = w . Since
span(S) = V , there exists k ∈ N, as well as elements v1, ... , vk ∈ S and scalars s1, ... , sk
such that v =

∑k
i=1 sivi and hencew =

∑k
i=1 si f (vi ), where we use the linearity of f . We

conclude that w ∈ span(f (S)) and since w is arbitrary, it follows that W = span(f (S)).

For the second claim suppose V is finite dimensional, hence we have a finite set S
with span(S) = V . The set f (S) is finite as well and satisfies span(f (S)) = W by the
previous argument, hence W is finite dimensional as well. Conversely suppose W is
finite dimensional with generating set T ⊂ W . Since f is bijective there exists an inverse
mapping f −1 : W → V which is surjective, hence V = span(f −1(T )) so that V is finite
dimensional as well. □

3.5 Linear independence and bases

A set of vectors where no vector can be expressed as a linear combination of the other
vectors is called linearly independent. More precisely:

Definition 3.47 (Linear independence) Let S ⊂ V be a non-empty finite subset so
that S = {v1, ... , vk} for distinct vectors vi ∈ V , i = 1, ... , k . We say S is linearly
independent if

s1v1 + · · ·+ skvk = 0V ⇐⇒ s1 = · · · = sk = 0,

where s1, ... , sk ∈ K. If S is not linearly independent, then S is called linearly
dependent. Furthermore, we call a subset S ⊂ V linearly independent if every finite
subset of S is linearly independent. We will call distinct vectors v1, ... , vk linearly
independent/dependent if the set {v1, ... , vk} is linearly independent/dependent.

Remark 3.48 Instead of distinct, many authors write pairwise distinct, which means
that all pairs of vectors vi , vj with i ̸= j satisfy vi ̸= vj . Of course, this simply means
that the list v1, ... , vk of vectors is not allowed to contain a vector more than once.

Notice that if the vectors v1, ... , vk ∈ V are linearly dependent, then there exist scalars
s1, ... , sk , not all zero, so that

∑k
i=1 sivi = 0V . After possibly changing the numbering of

the vectors and scalars, we can assume that s1 ̸= 0. Therefore, we can write

v1 = −
k∑

i=2

(
si
s1

)
vi ,

so that v1 is a linear combination of the vectors v2, ... , vk .

Also, observe that a subset T of a linearly independent setS is itself linearly independent.
(Why?)
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Example 3.49 We consider the polynomials p1, p2, p3 ∈ P(R) defined by the rules
p1(x) = 1, p2(x) = x , p3(x) = x2 for all x ∈ R. Then {p1, p2, p3} is linearly inde-
pendent. In order to see this, consider the condition

(3.9) s1p1 + s2p2 + s3p3 = 0P(R) = o

where o : R → R denotes the zero polynomial. Since (3.93.9) means that

s1p1(x) + s2p2(x) + s3p3(x) = o(x),

for all x ∈ R, we can evaluate this condition for any choice of real number x . Taking
x = 0 gives

s1p1(0) + s2p2(0) + s3p3(0) = o(0) = 0 = s1.

Taking x = 1 and x = −1 gives
0 = s2p2(1) + s3p3(1) = s2 + s3,

0 = s2p2(−1) + s3p3(−1) = −s2 + s3,

so that s2 = s3 = 0 as well. It follows that {p1, p2, p3} is linearly independent.

Remark 3.50 By convention, the empty set is linearly independent.

Definition 3.51 (Basis) A subset S ⊂ V which is a generating set of V and also
linearly independent is called a basis of V .

Video BasisBasis

Example 3.52 Thinking of a field K as a K-vector space, the set {1K} is linearly
independent, since 1K ̸= 0K. Example 3.42Example 3.42 implies that {1K} is a basis of K.

Example 3.53 Clearly, the standard basis {e⃗1, ... , e⃗n} of Kn is linearly independent
since

s1e⃗1 + · · ·+ sne⃗n =

s1
...
sn

 = 0Kn =

0
...
0

 ⇐⇒ s1 = · · · = sn = 0.

It follows together with Example 3.43Example 3.43 that the standard basis of Kn is indeed a basis
in the sense of Definition 3.51Definition 3.51.

Example 3.54 The matrices Ek,l ∈ Mm,n(K) for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n are
linearly independent. Suppose we have scalars skl ∈ K such that

m∑
k=1

n∑
l=1

sklEk,l = 0m,n =

 s11 · · · s1n
...

. . .
...

sm1 · · · smn

 =

0 · · · 0
...

. . .
...

0 · · · 0


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so skl = 0 for all 1 ⩽ k ⩽ m and all 1 ⩽ l ⩽ n. It follows together with Example 3.44Example 3.44
that {Ek,l}1⩽k⩽m,1⩽l⩽n is a basis of Mm,n(K). We refer to {Ek,l}1⩽k⩽m,1⩽l⩽n as the
standard basis of Mm,n(K).

Example 3.55 Combining Remark 3.40Remark 3.40 and Remark 3.50Remark 3.50 we conclude that the
empty set is a basis for the zero vector space {0}.

Lemma 3.56 Let f : V → W be an injective linear map. Suppose S ⊂ V is linearly
independent, then f (S) ⊂ W is also linearly independent.

Proof Let {w1, ... ,wk} ⊂ f (S) be a finite subset for some k ∈ N and distinct vectors
wi ∈ W , where 1 ⩽ i ⩽ k . Then there exist vectors v1, ... , vk with f (vi ) = wi for
1 ⩽ i ⩽ k . Suppose there exist scalars s1, ... , sk such that s1w1+ · · ·+ skwk = 0W . Using
the linearity of f , this implies

0W = s1w1 + · · ·+ skwk = s1f (v1) + · · ·+ sk f (vk) = f (s1v1 + · · ·+ skvk).

Since f is injective we have Ker(f ) = {0V } by Lemma 3.31Lemma 3.31. Since s1v1 + · · · + skvk ∈
Ker(f ) it follows that s1v1 + · · · + skvk = 0V , hence s1 = · · · = sk = 0 by the linear
independence of S. It follows that f (S) is linearly independent as well. □

Exercises

Exercise 3.57 Let U ⊂ V be a vector subspace and k ∈ N with k ⩾ 2. Show that
for u1, ... , uk ∈ U and s1, ... , sk ∈ K, we have s1u1 + · · ·+ skuk ∈ U .

Exercise 3.58 (Planes through the origin) Let w⃗1, w⃗2 ̸= 0R3 and w⃗1 ̸= sw⃗2 for all
s ∈ R. Show that the plane

U = {s1w⃗1 + s2w⃗2 | s1, s2 ∈ R}

is a vector subspace of R3.

Exercise 3.59 (Polynomials) Let n ∈ N ∪ {0} and Pn(R) denote the subset of P(R)
consisting of polynomials of degree at most n. Show that Pn(R) is a subspace of
P(R) for all n ∈ N ∪ {0}.

Exercise 3.60 Show that the K-vector space Kn of column vectors with n entries is
isomorphic to the K-vector space Kn of row vectors with n entries.
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Exercise 3.61 Show that the R-vector spaces Pn(R) and Rn+1 are isomorphic for
all n ∈ N ∪ {0}.

Exercise 3.62 Show that for a non-empty subset S of a K-vector space V , the
set span(S) as defined in Definition 3.37Definition 3.37 is the same as the set span(S) as defined
in Remark 3.40Remark 3.40. In particular, Proposition 3.39Proposition 3.39 remains true when removing the
assumption that S is non-empty.

Exercise 3.63 Show that a subset {v} consisting of a single vector v ∈ V is linearly
independent if and only if v ̸= 0V .
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3.6 The dimension WEEK 5

3.6.1 Definition of the dimension

Intuitively, we might define the dimension of a finite dimensional vector space V to be
the number of elements of any basis of V , so that a line is 1-dimensional, a plane is 2-
dimensional and so on. Of course, this definition only makes sense if we know that there
always exists a basis of V and that the number of elements in the basis is independent of
the chosen basis. Perhaps surprisingly, these facts take quite a bit of work to prove.

Theorem 3.64 Let V be a K-vector space.
(i) Any subset S ⊂ V generating V admits a subset T ⊂ S that is a basis of V .

(ii) Any subset S ⊂ V that is linearly independent in V is contained in a subset
T ⊂ V that is a basis of V .

(iii) If S1,S2 are bases of V , then there exists a bijective map f : S1 → S2.
(iv) If V is finite dimensional, then any basis of V is a finite set and the number of

elements in the basis is independent of the choice of the basis.

Corollary 3.65 Every K-vector space V admits at least one basis.

Proof Since V is a generating set for V , we can apply (i) from Theorem 3.64Theorem 3.64 to S = V to
obtain a basis of V . □

Remark 3.66 Let X be a set with finitely many elements. We write Card(X ) – for
cardinality – for the number of elements of X .

Definition 3.67 (Dimension) The dimension of a finite dimensional K-vector space
V , denoted by dim(V ) or dimK(V ), is the number of elements of any basis of V .

Example 3.68
(i) The zero vector space {0} has the empty set as a basis and hence is 0-

dimensional.
(ii) A field K – thought of as a K-vector space – has {1K} as a basis and hence is

1-dimensional.
(iii) The vector space Kn has {e⃗1, ... , e⃗n} as a basis and hence is n-dimensional.
(iv) The vector space Mm,n(K) has {Ek,l}1⩽k⩽m,1⩽l⩽n as a basis, hence it is mn-

dimensional.

3.6.2 Existence of a basis

Section 3.6.2Section 3.6.2, which contains the proof of Theorem 3.64Theorem 3.64 for finite dimensional vector
spaces is not examinable. We will prove Theorem 3.64Theorem 3.64 with the help of three lemmas.
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Lemma 3.69 Let V be a K-vector space, S ⊂ V linearly independent and v0 ∈ V .
Suppose v0 /∈ span(S), then S ∪ {v0} is linearly independent.

Proof Let T be a finite subset of S ∪ {v0}. If v0 /∈ T , then T is linearly independent, as
S is linearly independent. So suppose v0 ∈ T . There exist distinct elements v1, ... , vn of
S so that T = {v0, v1, ... , vn}. Suppose s0v0 + s1v1 + · · ·+ snvn = 0V for some scalars
s0, s1, ... , sn ∈ K. If s0 ̸= 0, then we can write

v0 = −
n∑

i=1

si
s0
vi ,

contradicting the assumption that v0 /∈ span(S). Hence we must have s0 = 0. Since
s0 = 0 it follows that s1v1 + · · · + snvn = 0V so that s1 = · · · = sn = 0 by the linear
independence of S. We conclude that S ∪ {v0} is linearly independent. □

Lemma 3.70 LetV be aK-vector space andS ⊂ V a generating set. If v0 ∈ span(S\
{v0}), then S \ {v0} is a generating set.

Proof Since v0 ∈ span(S \ {v0}), there exist vectors v1, ... , vn ∈ S with vi ̸= v0 and
scalars s1, ... , sn so that v0 = s1v1 + · · ·+ snvn. Suppose v ∈ V . Since S is a generating
set, there exist vectors w1, ... ,wk ∈ S and scalars t1, ... , tk so that v = t1w1 + · · · +
tkwk . If {w1, ... ,wk} does not contain v0, then v ∈ span(S \ {v0}), so assume that
v0 ∈ {w1, ... ,wk}. After possibly relabelling the elements of {w1, ... ,wk} we can assume
that v0 = w1. Hence we have

v = t1 (s1v1 + · · ·+ snvn) + t2w2 + · · ·+ tkwk

with v0 ̸= vi for 1 ⩽ i ⩽ n and v0 ̸= wj for 2 ⩽ j ⩽ k . It follows that v ∈ span(S \ {v0}),
as claimed. □

Lemma 3.71 Let V be a finite dimensional K-vector space and S ⊂ V a finite set
with n elements which generates V . If T ⊂ V has more than n elements, then T is
linearly dependent.

Proof We show that if T has exactly n+ 1 elements, then it is linearly dependent. In the
other cases, T contains a subset with exactly n + 1 elements and if this subset is linearly
dependent, then so is T .

We prove the claim by induction on n ⩾ 0. Let A(n) be the following statement: “For any
K-vector space V , if there exists a generating subset S ⊂ V with n elements, then all
subsets of V with n + 1 elements are linearly dependent.”

We first show that A(0) is true. A subset with zero elements is the empty set ∅. Hence
V = span(∅) = {0V } is the zero vector space. The only subset of V with 1 element is
{0V }. Since s0V = 0V for all s ∈ K, the set {0V } is linearly dependent, thus showing
that A(0) is correct.

Suppose n ⩾ 1 and that A(n− 1) is true. We want to argue that A(n) is true as well. Sup-
pose V is generated by the set S = {v1, ... , vn} with n elements. Let T = {w1, ... ,wn+1}
be a subset with n + 1 elements. We need to show that T is linearly dependent. Since S
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is generating, we have scalars sij ∈ K with 1 ⩽ i ⩽ n + 1 and 1 ⩽ j ⩽ n so that

(3.10) wi =
n∑

j=1

sijvj

for all 1 ⩽ i ⩽ n + 1. We now consider two cases:

Case 1. If s11 = · · · = sn+1,1 = 0, then (3.103.10) gives for all 1 ⩽ i ⩽ n + 1

wi =
n∑

j=2

sijvj .

Notice that the summation now starts at j = 2. This implies that T ⊂ W , where
W = span{v2, ... , vn}. We can now applyA(n−1) to the vector spaceW , the generating
set S1 = {v2, ... , vn} and the subset with n elements being T1 = {w1, ... ,wn}. It follows
that T1 is linearly dependent and hence so is T , as it contains T1.

Case 2. Suppose there exists i so that si1 ̸= 0. Then, after possibly relabelling the vectors,
we can assume that s11 ̸= 0. For 2 ⩽ i ⩽ n + 1 we thus obtain from (3.103.10)

wi −
si1
s11

w1 = wi −
si1
s11

 n∑
j=1

s1jvj

 =
n∑

j=1

sijvj −
si1
s11

 n∑
j=1

s1jvj


=

n∑
j=1

(
sij −

si1
s11

s1j

)
vj

=

(
si1 −

si1
s11

s11

)
︸ ︷︷ ︸

=0

v1 +
n∑

j=2

(
sij −

si1
s11

s1j

)
vj

=
n∑

j=2

(
sij −

si1
s11

s1j

)
vj .

Hence, setting

(3.11) ŵi = wi −
si1
s11

w1

for 2 ⩽ i ⩽ n + 1 and ŝij = sij − si1
s11
s1j for 2 ⩽ i ⩽ n + 1 and 2 ⩽ j ⩽ n, we obtain the

relations

ŵi =
n∑

j=2

ŝijvj

for all 2 ⩽ i ⩽ n+1. Therefore, the set T̂ = {ŵ2, ... , ŵn+1} with n elements is contained
in W which is generated by n − 1 elements. Applying A(n − 1), we conclude that T̂ is
linearly dependent. It follows that we have scalars t2, ... , tn+1 not all zero so that

t2ŵ2 + · · ·+ tn+1ŵn+1 = 0V .

Using (3.113.11), we get
n+1∑
i=2

ti

(
wi −

si1
s11

w1

)
= −

(
n+1∑
i=2

ti
si1
s11

)
w1 + t2w2 + · · ·+ tn+1wn+1 = 0V .

Since not all scalars t2, ... , tn+1 are zero, it follows that w1, ... ,wn+1 are linearly depend-
ent and hence so is T . □

Proof of Theorem 3.64Theorem 3.64 We restrict to the case where V is finite dimensional. Hence
there exists an integer n ⩾ 0 so that V has a generating set S0 with n elements.

(i) LetS ⊂ V be a subset generatingV . We consider the setX consisting of those integers
d ⩾ 0 for which there exists a linearly independent subset T ⊂ S with d elements. Since
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∅ ⊂ S, we have 0 ∈ X , so X is non-empty. Furthermore, X is a finite set, as it cannot
contain any integer greater than n by Lemma 3.71Lemma 3.71. Let m ∈ X be the largest integer and
T ⊂ S a set with m elements. We want to argue that T is a basis of V . Suppose T is not
a basis of V . Then there exists an element v0 ∈ S so that v0 /∈ span(T ), since if no such
element exists, we have S ⊂ span(T ) and hence V = span(S) ⊂ span(T ) contradicting
the assumption that T is not a basis of V . Applying Lemma 3.69Lemma 3.69, we conclude that
T̂ = {v0} ∪ T ⊂ S is linearly independent. Since T̂ has m + 1 elements, we have
m + 1 ∈ X , contradicting the fact that m is the largest integer in X . It follows that T
must be a basis of V .

(ii) Let S ⊂ V be a subset that is linearly independent in V . Let X̂ denote the set
consisting of those integers d ⩾ 0 for which there exists a subset T ⊂ V with d elements,
which contains S and which is a generating set of V . Notice that S ∪ S0 is such a set,
hence X̂ is not empty. Let m denote the smallest element of X̂ and T be a generating
subset of V containing S and with m elements. We want to argue that T is basis for V .
By assumption, T generates V , hence we need to check that T is linearly independent in
V . Suppose T is linearly dependent and write T = {v1, ... , vm} for distinct elements of
V . Suppose S = {v1, ... , vk} for some k ⩽ m. This holds true since S ⊂ T . Since T is
linearly dependent we have scalars s1, ... , sm so that

s1v1 + · · ·+ smvm = 0V .

There must exist a scalar si with i > k such that si ̸= 0. Otherwise S would be linearly
dependent. After possibly relabelling the vectors, we can assume that sk+1 ̸= 0 so that

(3.12) vk+1 = − 1

sk+1
(s1v1 + · · ·+ skvk + sk+2vk+2 + · · ·+ smvm) .

Let T̂ = {v1, ... , vk , vk+2, ... , vm}. Then S ⊂ T̂ and (3.123.12) shows that vk+1 ∈ span(T̂ ).
Lemma 3.70Lemma 3.70 shows that T̂ generatesV , containsS and hasm−1 elements, contradicting
the minimality of m.

(iii) Suppose S1 is a basis of V with n1 elements and S2 is a basis of V with n2 elements.
Since S2 is linearly independent and S1 generates V , Lemma 3.71Lemma 3.71 implies that n2 ⩽ n1.
Likewise, we conclude that n2 ⩾ n1. It follows that n1 = n2 and hence there exists a
bijective mapping fromS1 toS2 as these are finite sets with the same number of elements.

(iv) is an immediate consequence of (iii). □

3.6.3 Properties of the dimension

Lemma 3.72 Isomorphic finite dimensional vector spaces have the same dimension.

Proof Let V ,W be finite dimensional K-vector spaces and f : V → W an isomorphism.
LetS ⊂ V be a basis ofV , then f (S) ⊂ W is a basis ofW , by combining Lemma 3.46Lemma 3.46 and
Lemma 3.56Lemma 3.56. Since S and f (S) have the same number of elements, we have dim(V ) =

dim(W ). □

Lemma 3.73 A subspace of a finite dimensional K-vector space is finite dimensional
as well.

Proof Let V be a finite dimensional K-vector space and U ⊂ V a subspace. Let S =

{v1, ... , vn} be a basis of V . For 1 ⩽ i ⩽ n, we define Ui = U ∩ span{v1, ... , vi}. By
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construction, each Ui is a subspace and U1 ⊂ U2 ⊂ · · · ⊂ Un = U , since S is a basis of
V .

We will show inductively that all Ui are finite dimensional. Notice that U1 is a subspace
of span{v1}. The only subspaces of span{v1} are {0V } and {tv1 | t ∈ R}, both are finite
dimensional, hence U1 is finite dimensional.

Assume i ⩾ 2. We will show next that ifUi−1 is finite dimensional, then so isUi . LetTi−1 be
a basis of Ui−1. If Ui = Ui−1, then Ui is finite dimensional as well, so assume there exists
a non-zero vector w ∈ Ui \ Ui−1. Since S is a basis of V and since w ∈ span{v1, ... , vi},
there exist scalars s1, ... , si so thatw = s1v1+ · · ·+sivi . By assumption,w /∈ Ui−1, hence
si ̸= 0. Any vector v ∈ Ui can be written as v = t1v1 + · · ·+ tivi for scalars t1, ... , ti . We
now compute

v − ti
si
w =

i∑
k=1

tkvk −
ti
si

(
i∑

k=1

skvk

)
=

i∑
k=1

(
tk −

ti
si
sk

)
vk

=
i−1∑
k=1

(
tk −

ti
si
sk

)
vk

so that v − (ti/si )w can be written as a linear combination of the vectors v1, ... , vi−1,
hence is an element of Ui−1. Recall that Ti−1 is a basis of Ui−1, hence v − (ti/si )w is
a linear combination of elements of Ti−1. It follows that any vector v ∈ Ui is a linear
combination of elements ofTi−1∪{w}, that is, Ti−1∪{w} generatesUi . SinceTi−1∪{w}
contains finitely many vectors, it follows that Ui is finite dimensional. □

Proposition 3.74 Let V be a finite dimensional K-vector space. Then for any sub-
space U ⊂ V

0 ⩽ dim(U) ⩽ dim(V ).

Furthermore dim(U) = 0 if and only if U = {0V } and dim(U) = dim(V ) if and only
if V = U .

Proof By Lemma 3.73Lemma 3.73,U is finite dimensional and hence by Corollary 3.65Corollary 3.65 admits a basis
S. By Theorem 3.64Theorem 3.64 (ii), there is a basis T of V which contains S. Therefore

0 ⩽ dim(U) = Card(S) ⩽ Card(T ) = dim(V ).

Suppose dim(V ) = dim(U), then Card(S) = Card(T ) and hence S = T since every ele-
ment of S is an element of T and S and T have the same number of elements. Therefore,
we get U = span(S) = span(T ) = V . Since dimU = 0 if and only if the empty set is a
basis for U we have dimU = 0 if and only if U = {0V }. □

Definition 3.75 (Rank of a linear map and matrix) Let V ,W be K-vector spaces
with W finite dimensional. The rank of a linear map f : V → W is defined as

rank(f ) = dim Im(f ).

If A ∈ Mm,n(K) is a matrix, then we define

rank(A) = rank(fA).

The nullity of a linear map f : V → W is the dimension of its kernel, nullity(f ) =

dimKer(f ). The following important theorem establishes a relation between the nullity
and the rank of a linear map. It states something that is intuitively not surprising, namely
that the dimension of the image of a linear map f : V → W is the dimension of the
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vector space V minus the dimension of the subspace of vectors that we “lose”, that is,
those that are mapped onto the zero vector of W . More precisely:

Theorem 3.76 (Rank–nullity theorem) Let V ,W be finite dimensional K-vector
spaces and f : V → W a linear map. Then we have

dim(V ) = dimKer(f ) + dim Im(f ) = nullity(f ) + rank(f ).

Proof Let d = dimKer(f ) and n = dimV , so that d ⩽ n by Proposition 3.74Proposition 3.74. Let
{v1, ... , vd} be a basis of S = Ker(f ). By Theorem 3.64Theorem 3.64 (ii) we can find linearly independ-
ent vectors Ŝ = {vd+1, ... , vn} so that T = S ∪ Ŝ is a basis of V . Now U = span(Ŝ) is a
subspace of V of dimension n − d . We consider the linear map

g : U → Im(f ), v 7→ f (v).

We want to show that g is an isomorphism, since then dim Im(f ) = dim(U) = n − d , so
that

dim Im(f ) = n − d = dim(V )− dimKer(f ),

as claimed.

We first show that g is injective. Assume g(v) = 0W . Since v ∈ U , we can write v =

sd+1vd+1 + · · · + snvn for scalars sd+1, ... , sn. Since g(v) = 0W we have v ∈ Ker(f ),
hence we can also write v = s1v1 + · · ·+ sdvd for scalars s1, ... , sd , subtracting the two
expressions for v , we get

0V = s1v1 + · · ·+ sdvd − sd+1vd+1 − · · · − snvn.

Since {v1, ... , vn} is a basis, it follows that all the coefficients si vanish, where 1 ⩽ i ⩽ n.
Therefore we have v = 0V and g is injective.

Second, we show that g is surjective. Suppose w ∈ Im(f ) so that w = f (v) for some
vector v ∈ V . We write v =

∑n
i=1 sivi for scalars s1, ... , sn. Using the linearity of f , we

compute

w = f (v) = f

(
n∑

i=1

sivi

)
= f
( n∑

i=d+1

sivi︸ ︷︷ ︸
=v̂

)
= f (v̂)

where v̂ ∈ U . We thus have an element v̂ with g(v̂) = w . Since w was arbitrary, we
conclude that g is surjective. □

Corollary 3.77 Let V ,W be finite dimensional K-vector spaces with dim(V ) =

dim(W ) and f : V → W a linear map. Then the following statements are equivalent:
(i) f is injective;

(ii) f is surjective;
(iii) f is bijective.

Proof (i)⇒ (ii) By Lemma 3.31Lemma 3.31, the map f is injective if and only ifKer(f ) = {0V } so that
dimKer(f ) = 0 by Example 3.68Example 3.68 (i). Theorem 3.76Theorem 3.76 implies that dim Im(f ) = dim(V ) =

dim(W ) and hence Proposition 3.74Proposition 3.74 implies that Im(f ) = W , that is, f is surjective.

(ii) ⇒ (iii) Since f is surjective Im(f ) = W and hence dim Im(f ) = dim(W ) = dim(V ).
Theorem 3.76Theorem 3.76 implies that dimKer(f ) = 0 so that Ker(f ) = {0V } by Proposition 3.74Proposition 3.74.
Applying Lemma 3.31Lemma 3.31 again shows that f is injective and hence bijective.

(iii) ⇒ (i) Since f is bijective, it is also injective. □
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Corollary 3.78 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then rank(f ) ⩽ min{dim(V ), dim(W )} and

rank(f ) = dim(V ) ⇐⇒ f is injective,
rank(f ) = dim(W ) ⇐⇒ f is surjective.

Proof For the first claim it is sufficient to show that rank(f ) ⩽ dim(V ) and rank(f ) ⩽
dim(W ). By definition, rank(f ) = dim Im(f ) and since Im(f ) ⊂ W , we have rank(f ) =

dim Im(f ) ⩽ dim(W ) with equality if and only if f is surjective, by Proposition 3.74Proposition 3.74.

Theorem 3.76Theorem 3.76 implies that rank(f ) = dim Im(f ) = dim(V )−dimKer(f ) ⩽ dim(V ) with
equality if and only if dimKer(f ) = 0, that is, when f is injective (as we have just seen in
the proof of the previous corollary). □

Corollary 3.79 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then we have

(i) If dim(V ) < dim(W ), then f is not surjective;
(ii) If dim(V ) > dim(W ), then f is not injective. In particular, there exist non-zero

vectors v ∈ V with f (v) = 0W .

Proof (i) Suppose dim(V ) < dim(W ), then by Theorem 3.76Theorem 3.76

rank(f ) = dim(V )− dimKer(f ) ⩽ dim(V ) < dim(W )

and the claim follows from Corollary 3.78Corollary 3.78.

(ii) Suppose dim(V ) > dim(W ), then

rank(f ) ⩽ dim(W ) < dim(V )

and the claim follows from Corollary 3.78Corollary 3.78. □

Proposition 3.80 Let V ,W be finite dimensional K-vector spaces. Then there exists
an isomorphism Θ : V → W if and only if dim(V ) = dim(W ).

Proof ⇒ This was already proved in Lemma 3.72Lemma 3.72.

⇐ Let dim(V ) = dim(W ) = n ∈ N. Choose a basis T = {w1, ... ,wn} of W and consider
the linear map

Θ : Kn → W , x⃗ 7→ x1w1 + · · ·+ xnwn,

where x⃗ = (xi )1⩽i⩽n. Notice thatΘ is injective. Indeed, ifΘ(x⃗) = x1w1+· · ·+xnwn = 0W ,
then x1 = · · · = xn = 0, since {w1, ... ,wn} are linearly independent. We thus conclude
KerΘ = {0V } and hence Lemma 3.31Lemma 3.31 implies that Θ is injective and therefore bijective
by Corollary 3.77Corollary 3.77. The map Θ is linear and bijective, thus an isomorphism. Likewise, for a
choice of basis S = {v1, ... , vn} of V , we obtain an isomorphism Φ : Kn → V . Since the
composition of bijective maps is again bijective, the map Θ ◦ Φ−1 : V → W is bijective
and since by Proposition 3.16Proposition 3.16 the composition of linear maps is again linear, the map
Θ ◦ Φ−1 : V → W is an isomorphism. □
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3.6.4 The inverse of a matrix

The previous results allow to draw some important consequences for matrices:

Corollary 3.81 Suppose A ∈ Mm,n(K) is invertible with inverse A−1 ∈ Mn,m(K).
Then n = m, hence A is a square matrix.

Proof Consider fA : Kn → Km. By Proposition 3.17Proposition 3.17, fA is bijective and hence an iso-
morphism. Proposition 3.80Proposition 3.80 implies that n = m. □

Remark 3.82 (Properties of mappings)
(i) Recall that a mapping f : X → Y between sets X ,Y is said to admit a left

inverse if there exists a mapping g : Y → X such that g ◦ f = IdX . Likewise, a
right inverse is a mapping h : Y → X such that f ◦ h = IdY .

(ii) Recall also that f : X → Y admits a left inverse if and only if f is injective and
that f : X → Y admits a right inverse if and only if f is surjective.

We also have:

Proposition 3.83 Let n ∈ N and A ∈ Mn,n(K) a square matrix. Then the following
statements are equivalent:

(i) The matrix A admits a left inverse, that is, a matrix B ∈ Mn,n(K) such that
BA = 1n;

(ii) The matrix A admits a right inverse, that is, a matrix B ∈ Mn,n(K) such that
AB = 1n;

(iii) The matrix A is invertible.

Proof By the definition of the invertibility of a matrix, (iii) implies both (i) and (ii).

(i) ⇒ (iii) Since BA = 1n we have fB ◦ fA = f1n = IdKn by Theorem 2.21Theorem 2.21 and hence fB is a
left inverse for fA. Therefore, by the above remark, fA is injective. Corollary 3.77Corollary 3.77 implies
that fA is also bijective. By Proposition 3.17Proposition 3.17 it follows that A is invertible.

(ii) ⇒ (iii) is completely analogous to (i) ⇒ (iii). □

Exercises

Exercise 3.84 Show that f : X → Y admits a left inverse if and only if f is injective
and that f : X → Y admits a right inverse if and only if f is surjective.
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3.7 Matrix representation of linear maps WEEK 6

Notice that Proposition 3.80Proposition 3.80 implies that every finite dimensional K-vector space V is
isomorphic to Kn, where n = dim(V ). Choosing an isomorphism from V to Kn allows to
uniquely describe each vector of V in terms of n scalars, its coordinates.

Definition 3.85 (Linear coordinate system) Let V be a K-vector space of dimension
n ∈ N. A linear coordinate system is an injective linear map β : V → Kn. The entries
of the vector β(v) ∈ Kn are called the coordinates of the vector v ∈ V with respect
to the coordinate system β.

We only request that β is injective, but the mapping β is automatically bijective by
Corollary 3.77Corollary 3.77.

Example 3.86 (Standard coordinates) On the vector space Kn we have a linear
coordinate system defined by the identity mapping, that is, we define β(v⃗) = v⃗ for
all v⃗ ∈ Kn. We call this coordinate system the standard coordinate system of Kn.

Example 3.87 (Linear coordinate system on matrices) Recall that M2,2(K) has di-
mension 4. As a linear coordinate system we may choose

β : M2,2(K) → K4,

(
A11 A12

A21 A22

)
7→


A11

A12

A21

A22

 .

Example 3.88 (Linear coordinate system on polynomials) Recall that P2(R) has
dimension 3. As a linear coordinate system we may choose

β : P2(R) → R3, a2x
2 + a1x + a0 7→

a2
a1
a0

 .

Example 3.89 (Non-linear coordinates) In Linear Algebra we only consider linear
coordinate systems, but in other areas of mathematics non-linear coordinate systems
are also used. An example are the so-called polar coordinates

ρ : R2 \ {0R2} → (0,∞)× (−π,π] ⊂ R2, x⃗ 7→
(
r

ϕ

)
=

(√
(x1)2 + (x2)2

arg(x⃗)

)
,

where arg(x⃗) = arccos(x1/r) for x2 ⩾ 0 and arg(x⃗) = − arccos(x1/r) for x2 < 0.
Notice that the polar coordinates are only defined on R2 \ {0R2}. For further details
we refer to the Analysis module.

A convenient way to visualise a linear coordinate system β : R2 → R2 is to consider the
preimage β−1(C) of the standard coordinate grid

(3.13) C = {se⃗1 + ke⃗2|s ∈ R, k ∈ Z} ∪ {ke⃗1 + se⃗2|s ∈ R, k ∈ Z}
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under β. The first set in the union (3.133.13) of sets are the horizontal coordinate lines and
the second set the vertical coordinate lines.

Example 3.90 The vector v⃗ = ( 21 ) has coordinates ( 21 ) with respect to the standard
coordinate system of R2. The same vector has coordinates β(v⃗) =

(
4
−1

)
with

respect to the coordinate system (see Figure 3.1Figure 3.1)

β : R2 → R2, v⃗ =

(
v1
v2

)
7→
(
v1 + 2v2
−v1 + v2

)
=

(
1 2

−1 1

)
v⃗ .

FIGURE 3.1. The coordinates of the vector ( 21 ) with respect to the stand-
ard coordinate system of R2 (on the left) and with respect to the co-
ordinate system β defined in the previous example (on the right).

While Kn is equipped with the standard coordinate system, in an abstract vector space V

there is no preferred linear coordinate system and a choice of linear coordinate system
corresponds to choosing a so-called ordered basis of V .

Definition 3.91 (Ordered basis) Let V be a finite dimensional K-vector space. An
(ordered) n-tuple b = (v1, ... , vn) of vectors from V is called an ordered basis of V if
the set {v1, ... , vn} is a basis of V .

Ordered bases correspond to linear coordinate systems in the following sense:

Proposition 3.92 On a finite dimensional K-vector space V there is a bijective cor-
respondence between the set of linear coordinate systems and the set of ordered
bases.

For the proof of Proposition 3.92Proposition 3.92 we need the following important lemma which states
in particular that two linear maps f , g : V → W are the same if and only if they agree on
an ordered basis of V .

Lemma 3.93 Let V ,W be finite dimensional K-vector spaces.
(i) Suppose f , g : V → W are linear maps and b = (v1, ... , vn) is an ordered basis

of V . Then f = g if and only if f (vi ) = g(vi ) for all 1 ⩽ i ⩽ n.
(ii) If dimV = dimW and b = (v1, ... , vn) is an ordered basis of V and c =

(w1, ... ,wn) an ordered basis of W , then there exists a unique isomorphism
f : V → W such that f (vi ) = wi for all 1 ⩽ i ⩽ n.
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Proof (i) ⇒ If f = g then f (vi ) = g(vi ) for all 1 ⩽ i ⩽ n. ⇐ Let v ∈ V . Since b is
an ordered basis of V there exist unique scalars s1, ... , sn ∈ K such that v =

∑n
i=1 sivi .

Using the linearity of f and g , we compute

f (v) = f

(
n∑

i=1

sivi

)
=

n∑
i=1

si f (vi ) =
n∑

i=1

sig(vi ) = g

(
n∑

i=1

sivi

)
= g(v)

so that f = g .

(ii) Let v ∈ V . Since {v1, ... , vn} is a basis of V there exist unique scalars s1, ... , sn such
that v =

∑n
i=1 sivi . We define f (v) =

∑n
i=1 siwi , so that in particular f (vi ) = wi for

1 ⩽ i ⩽ n. Since {w1, ... ,wn} are linearly independent we have f (v) = 0W if and only if
s1 = · · · = sn = 0, that is v = 0V . Lemma 3.31Lemma 3.31 implies that f is injective and hence an
isomorphism by Corollary 3.77Corollary 3.77. The uniqueness of f follows from (i). □

Remark 3.94 Lemma 3.93Lemma 3.93 fails for maps which are not linear. Consider

f : R2 → R,
(
x1
x2

)
7→ x1x2

and

g : R2 → R
(
x1
x2

)
7→ (x1 − 1)(x2 − 1).

Then f (e⃗1) = g(e⃗1) and f (e⃗2) = g(e⃗2), but f ̸= g .

Proof of Proposition 3.92Proposition 3.92 Given an ordered basis b = (v1, ... , vn) of V , the previous
lemma implies that there is a unique linear coordinate system β : V → Kn such that

(3.14) β(vi ) = e⃗i

for 1 ⩽ i ⩽ n, where {e⃗1, ... , e⃗n} denotes the standard basis of Kn. Conversely, if
β : V → Kn is a linear coordinate system, we obtain an ordered basis of V

b = (β−1(e⃗1), ... ,β
−1(e⃗n))

and these assignments are clearly inverse to each other. □

In the special case where V = Kn, the bijective correspondence between linear co-
ordinate systems and ordered bases can be made more explicit. Given an ordered basis
b = (v⃗1, ... , v⃗n) of Kn, we can form an invertible matrix B = (Bij)1⩽i ,j⩽n ∈ Mn,n(K)

whose columns are the elements of the ordered basis b. That is, we have Bij = [v⃗j ]i
for 1 ⩽ i , j ⩽ n. The linear coordinate system corresponding to b is a linear map
β : Kn → Kn and hence β = fA for some matrix A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K). It is
natural to wonder how the matrices A and B are related. By definition of β, we have for
all 1 ⩽ j ⩽ n

β(v⃗j) = e⃗j = Av⃗j .

Taking the k-th entry of the previous vector, where 1 ⩽ k ⩽ n, we obtain

[e⃗j ]k = δkj = [Av⃗j ]k .

Recall that for x⃗ ∈ Kn and C = (Cij)1⩽i ,j⩽n ∈ Mn,n(K), we have

[Cx⃗ ]k =
n∑

i=1

Cki [x⃗ ]i .

Hence we have for all 1 ⩽ j , k ⩽ n

δkj = [Av⃗j ]k =
n∑

i=1

Aki [v⃗j ]i =
n∑

i=1

AkiBij
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which is equivalent to the statement that 1n = AB. Proposition 3.83Proposition 3.83 implies that A =

B−1. We have thus shown:

Proposition 3.95 Let b = (v⃗1, ... , v⃗n) be an ordered basis of Kn and let B denote
the invertible matrix whose columns are the vectors of b. Then the linear coordinate
system β corresponding to b is given by

β : Kn → Kn, v⃗ 7→ β(v⃗) = B−1v⃗ .

Remark 3.96 (Notation) We will denote an ordered basis by an upright bold Roman
letter, such asb, c,d or e. We will denote the corresponding linear coordinate system
by the corresponding bold Greek letter β,γ,δ or ε, respectively.

Example 3.97 (Example 3.90Example 3.90 continued) The ordered basis corresponding to β :

R2 → R2 is given by

b =
(
1
3 e⃗1 +

1
3 e⃗2,−

2
3 e⃗1 +

1
3 e⃗2
)
=
((

1/3
1/3

)
,
(

−2/3
1/3

))
.

Indeed, we have

β
(
1
3 e⃗1 +

1
3 e⃗2
)
= β

((
1/3
1/3

))
= ( 10 ) = e⃗1

and
β
(
− 2

3 e⃗1 +
1
3 e⃗2
)
= β

((
−2/3
1/3

))
= ( 01 ) = e⃗2.

Notice that the matrix

B =
1

3

(
1 −2

1 1

)
whose columns are the vectors of the ordered basis b satisfies

B−1 =

(
1 2

−1 1

)
and that β(v⃗) = fB−1(v⃗) = B−1v⃗ for all v⃗ ∈ R2, as predicted by Proposition 3.95Proposition 3.95.

Example 3.98 On the vector space of 2-by-2matricesV = M2,2(K)we consider the
ordered basis b = (E1,1,E1,2,E2,1,E2,2). Then the corresponding linear coordinate
system β : M2,2 → K4 is given by Example 3.87Example 3.87.

Example 3.99 On the vector space of polynomials of degree at most two V =

P2(R) we consider the ordered basis b = (x2, x , 1). Then the corresponding linear
coordinate system β : P2(R) → R3 is given by Example 3.88Example 3.88.

Example 3.100 Let V = K3 and e = (e⃗1, e⃗2, e⃗3) denote the ordered standard basis.
Then for all x⃗ = (xi )1⩽i⩽3 ∈ R3 we have

ε(x⃗) = x⃗ .
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where ε denotes the linear coordinate system corresponding to e. Notice that ε
is the standard coordinate system on Kn. Considering instead the ordered basis
b = (v⃗1, v⃗2, v⃗3) = (e⃗1 + e⃗3, e⃗3, e⃗2 − e⃗1), we obtain

β(x⃗) =

 x1 + x2
−x1 − x2 + x3

x2

 =

 1 1 0

−1 −1 1

0 1 0


︸ ︷︷ ︸

=A

x⃗

since

x⃗ =

x1
x2
x3

 = (x1 + x2)

1

0

1


︸ ︷︷ ︸
=v⃗1

+(x3 − x1 − x2)

0

0

1


︸ ︷︷ ︸
=v⃗2

+x2

−1

1

0


︸ ︷︷ ︸

=v⃗3

.

Notice that the matrix B whose columns are the vectors of b is given by

B =

1 0 −1

0 0 1

1 1 0


and that AB = 13, as predicted by Proposition 3.95Proposition 3.95.

3.7.1 Change of basis

It is natural to ask how a change of basis affects the coordinates of a vector. To answer
this we need the following:

Definition 3.101 (Change of basis matrix) Let V be a K-vector space of dimension
n and b,b′ be ordered bases of V with corresponding linear coordinate systems
β,β′. The change of basis matrix from b to b′ is the matrix C ∈ Mn,n(K) satisfying

(3.15) fC = β′ ◦ β−1.

We will write C(b,b′) for the change of basis matrix from b to b′.

Remark 3.102 From (3.153.15) we obtain β′(v) =
(
β′ ◦ β−1 ◦ β

)
(v) = fC(β(v)).

Using that we write C(b,b′) for C we thus have

(3.16) β′(v) = C(b,b′)β(v).

The change of basis matrix can be computed as follows:

Lemma 3.103 Let V be a K-vector space of dimension n and b = (v1, ... , vn) and
b′ = (v ′

1, ... , v
′
n) ordered bases on V . Then there are unique scalars Cij , 1 ⩽ i , j ⩽ n

so that vj =
∑n

i=1 Cijv
′
i . Setting C = (Cij)1⩽i ,j⩽n, the matrix C is the change of basis

matrix from b to b′, that is C = C(b,b′).
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Remark 3.104 For 1 ⩽ j ⩽ n let c⃗j denote the j-th column vector of the change of
basis matrix C(b,b′) so that

c⃗j =


C1j

C2j

...
Cnj

 .

By the previous lemma, we have

vj = C1j v⃗
′
1 + C2j v⃗

′
2 + · · ·+ Cnj v⃗

′
n.

The j-th column vector of C(b,b′) thus arises by expressing the j-th basis vector vj
of b as a linear combination of the elements of the ordered basis b′ = (v ′

1, ... , v
′
n)

and writing the corresponding coefficients into a column vector.

Proof of Lemma 3.103Lemma 3.103 Fix j ∈ {1, ... , n}. Then the scalars Cij ∈ K for 1 ⩽ i ⩽ n exist,
since the vectors {v ′

1, ... , v
′
n} are a basis of V . If Ĉij for 1 ⩽ i ⩽ n are also scalars so that

vj =
∑n

i=1 Ĉijv
′
i , then

vj − vj = 0V =
n∑

i=1

Cijv
′
j −

n∑
i=1

Ĉijv
′
j =

n∑
i=1

(Cij − Ĉij)v
′
j

which is only possibly if Cij = Ĉij for all 1 ⩽ i ⩽ n, since {v ′
1, ... , v

′
n} are linearly inde-

pendent. It follows that C = (Cij)1⩽i ,j⩽n is well-defined.

We next argue that β′ ◦ β−1 = fC. Using Lemma 3.93Lemma 3.93 it is sufficient to show that (β′ ◦
β−1)(e⃗j) = fC(e⃗j) for 1 ⩽ j ⩽ n, where (e⃗1, ... , e⃗n) denotes the ordered standard basis
of Kn. Using the definition of C and the linearity of β′, we obtain

(
β′ ◦ β−1

)
(e⃗j) = β′(β−1(e⃗j)) = β′(vj) = β′

(
n∑

i=1

Cijv
′
i

)
=

n∑
i=1

Cijβ
′(v ′

i )

=
n∑

i=1

Cij e⃗i = Ce⃗j = fC(e⃗j),

where we also use that β−1(e⃗j) = vj and that β′(v ′
i ) = e⃗i for 1 ⩽ i , j ⩽ n. □

In the case of V = Kn the change of basis matrix can alternatively be computed as
follows:

Proposition 3.105 On V = Kn consider the ordered bases b = (v⃗1, ... , v⃗n) and
b′ = (v⃗ ′

1, ... , v⃗
′
n). Let B and B′ denote the invertible matrices whose columns are the

vectors of b and b′, respectively. Then we have

C(b′,b) = B−1B′.

Proof Left as an exercise. □

Example 3.106 (Example 3.97Example 3.97 continued) Consider V = R2 equipped with the
ordered basis e = (e⃗1, e⃗2) and the ordered basis b =

(
1
3 e⃗1 +

1
3 e⃗2,−

2
3 e⃗1 +

1
3 e⃗2
)

.
Then we have

e⃗1 = 1 ·
(
1
3 e⃗1 +

1
3 e⃗2
)
+ (−1) ·

(
− 2

3 e⃗1 +
1
3 e⃗2
)
.
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Therefore, the first column vector of the change of basis matrix C(e,b) is given by

c⃗1 =

(
1

−1

)
.

Likewise, we obtain

e⃗2 = 2 ·
(
1
3 e⃗1 +

1
3 e⃗2
)
+ 1 ·

(
− 2

3 e⃗1 +
1
3 e⃗2
)

so that

c⃗2 =

(
2

1

)
and hence

C(e,b) =

(
1 2

−1 1

)
.

Alternatively, we have

B =
1

3

(
1 −2

1 1

)
and E =

(
1 0

0 1

)
= 12

so that by Proposition 3.105Proposition 3.105 we obtain

C(e,b) = B−1E = B−1 =

(
1 2

−1 1

)
.

Recall from Example 3.90Example 3.90 that the vector v⃗ = 2e⃗1 + e⃗2 satisfies

ε(v⃗) =

(
2

1

)
and β(v⃗) =

(
4

−1

)
where ε and β denotes the linear coordinate system corresponding to e and b,
respectively. Indeed we have

β(v) =

(
4

−1

)
=

(
1 2

−1 1

)(
2

1

)
= C(e,b)ε(v),

in agreement with (3.163.16).

Fixing linear coordinate systems – or equivalently ordered bases – on finite dimensional
vector spaces V ,W also allows to describe each linear map g : V → W in terms of a
matrix:

Definition 3.107 (Matrix representation of a linear map) Let V ,W be finite dimen-
sional K-vector spaces, b an ordered basis of V and c an ordered basis of W . The
matrix representation of a linear map g : V → W with respect to the ordered bases
b and c is the unique matrix M(g ,b, c) ∈ Mm,n(K) such that

fM(g ,b,c) = γ ◦ g ◦ β−1,

where β and γ denote the linear coordinate systems corresponding to b and c,
respectively.

Video Matrix representation of a linear mapMatrix representation of a linear map

The role of the different mappings can be summarised in terms of the following diagram:

V
g−−−−→ W

β−1

x yγ

Kn
fM(g ,b,c)−−−−→ Km

In practise, we can compute the matrix representation of a linear map as follows:
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Proposition 3.108 Let V ,W be finite dimensional K-vector spaces, b = (v1, ... , vn)

an ordered basis of V , c = (w1, ... ,wm) an ordered basis of W and g : V → W a
linear map. Then there exist unique scalars Aij ∈ K, where 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

such that

(3.17) g(vj) =
m∑
i=1

Aijwi , 1 ⩽ j ⩽ n.

Furthermore, the matrix A = (Aij)1⩽i⩽m,1⩽j⩽n satisfies

fA = γ ◦ g ◦ β−1

and hence is the matrix representation of g with respect to the ordered bases b and c.

The proof is very similar to the proof of Lemma 3.103Lemma 3.103.

Proof of Proposition 3.108Proposition 3.108 For all 1 ⩽ j ⩽ n the vector g(vj) is an element of W and
hence a linear combination of the vectors c = (w1, ... ,wm), as c is an ordered basis of W .
We thus have scalars Aij ∈ K with 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n such that g(vj) =

∑m
i=1 Aijwi .

If Âij ∈ K with 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n also satisfy g(vj) =
∑m

i=1 Âijwi , then subtracting
the two equations gives

g(vj)− g(vj) = 0W =
m∑
i=1

(Aij − Âij)wi

so that 0 = Aij − Âij for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, since the vectors (w1, ... ,wm) are linearly
independent. It follows that the scalars Aij are unique.

We want to show that fA ◦ β = γ ◦ g . Using Lemma 3.93Lemma 3.93 it is sufficient to show that
(fA ◦ β)(vj) = (γ ◦ g)(vj) for 1 ⩽ j ⩽ n. Let {e⃗1, ... , e⃗n} denote the standard basis of
Kn so that β(vj) = e⃗j and {d⃗1, ... , d⃗m} the standard basis of Km so that γ(wi ) = d⃗i . We
compute

(fA ◦ β)(vj) = fA(e⃗j) = Ae⃗j =
m∑
i=1

Aij d⃗i =
m∑
i=1

Aijγ(wi ) = γ

(
m∑
i=1

Aijwi

)
= γ(g(vj)) = (γ ◦ g)(vj)

where we have used the linearity of γ and (3.173.17). □

This all translates to a simple recipe for calculating the matrix representation of a linear
map, which we now illustrate in some examples.

Example 3.109 Let V = P2(R) and W = P1(R) and g = d
dx . We consider the

ordered basis b = (v1, v2, v3) = ((1/2)(3x2 − 1), x , 1) of V and c = (w1,w2) =

(x , 1) of W .
(i) Compute the image under g of the elements vi of the ordered basis b.

g

(
1

2
(3x2 − 1)

)
=

d

dx

(
1

2
(3x2 − 1)

)
= 3x

g (x) =
d

dx
(x) = 1

g (1) =
d

dx
(1) = 0.
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(ii) Write the image vectors as linear combinations of the elements of the ordered
basis c.

(3.18)

3x = 3 · w1 + 0 · w2

1 = 0 · w1 + 1 · w2

0 = 0 · w1 + 0 · w2

(iii) Taking the transpose of the matrix of coefficients appearing in (3.183.18) gives the
matrix representation

M

(
d

dx
,b, c

)
=

(
3 0 0

0 1 0

)
.

of the linear map g = d
dx with respect to the bases b, c.

Example 3.110 Let e = (e⃗1, ... , e⃗n) and d = (d⃗1, ... , d⃗m) denote the ordered stand-
ard basis of Kn and Km, respectively. Then for A ∈ Mm,n(K), we have

A = M(fA, e,d),

that is, the matrix representation of the mapping fA : Kn → Km with respect to the
standard bases is simply the matrix A. Indeed, we have

fA(e⃗j) = Ae⃗j =

A1j

...
Amj

 =
m∑
i=1

Aij d⃗i .

Example 3.111 Let e = (e⃗1, e⃗2) denote the ordered standard basis of R2. Consider
the matrix

A =

(
5 1

1 5

)
= M(fA, e, e).

We want to compute Mat(fA,b,b), where b = (v⃗1, v⃗2) = (e⃗1 + e⃗2, e⃗2 − e⃗1) is not
the standard basis of R2. We obtain

fA(v⃗1) = Av⃗1 =

(
5 1

1 5

)(
1

1

)
=

(
6

6

)
= 6 · v⃗1 + 0 · v⃗2

fA(v⃗2) = Av⃗2 =

(
5 1

1 5

)(
−1

1

)
=

(
−4

4

)
= 0 · v⃗1 + 4 · v⃗2

Therefore, we have

M(fA,b,b) =

(
6 0

0 4

)
.

Proposition 3.112 Let V ,W be finite dimensional K-vector spaces, b an ordered
basis of V with corresponding linear coordinate system β, c an ordered basis of W
with corresponding linear coordinate system γ and g : V → W a linear map. Then
for all v ∈ V we have

γ(g(v)) = M(g ,b, c)β(v).

Proof By definition we have for all x⃗ ∈ Kn and A ∈ Mm,n(K)

Ax⃗ = fA(x⃗).
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Combining this with Definition 3.107Definition 3.107, we obtain for all v ∈ V

M(g ,b, c)β(v) = fM(g ,b,c)(β(v)) = (γ ◦ g ◦ β−1)(β(v)) = γ(g(v)),

as claimed. □

Remark 3.113 Explicitly, Proposition 3.112Proposition 3.112 states the following. LetA = M(g ,b, c)

and let v ∈ V . Since b is an ordered basis of V , there exist unique scalars si ∈ K,
1 ⩽ i ⩽ n such that

v = s1v1 + · · ·+ snvn.

Then we have
g(v) = t1w1 + · · ·+ tmwm,

where  t1
...
tm

 = A

s1
...
sn

 .

Example 3.114 (Example 3.109Example 3.109 continued) With respect to the ordered basis b =(
1
2 (3x

2 − 1), x , 1
)

, the polynomial a2x2 + a1x + a0 ∈ V = P2(R) is represented by
the vector

β(a2x
2 + a1x + a0) =

 2
3a2
a1

a2
3 + a0


Indeed

a2x
2 + a1x + a0 =

2

3
a2

(
1

2
(3x2 − 1)

)
+ a1x +

(a2
3

+ a0
)
1.

Computing M( d
dx ,b, c)β(a2x

2 + a1x + a0) gives(
3 0 0

0 1 0

) 2
3a2
a1

a2
3 + a0

 =

(
2a2
a1

)
and this vector represents the polynomial 2a2 · x + a1 · 1 = d

dx (a2x
2 + a1x + a0)

with respect to the basis c = (x , 1) of P1(R).

As a corollary to Proposition 3.108Proposition 3.108 we obtain:

Corollary 3.115 Let V1,V2,V3 be finite dimensional K-vector spaces and bi an
ordered basis of Vi for i = 1, 2, 3. Let g1 : V1 → V2 and g2 : V2 → V3 be linear maps.
Then

M(g2 ◦ g1,b1,b3) = M(g2,b2,b3)M(g1,b1,b2).

Proof Let us write C = M(g2 ◦ g1,b1,b3) and A1 = M(g1,b1,b2) as well as A2 =

M(g2,b2,b3). Using Proposition 2.20Proposition 2.20 and Theorem 2.21Theorem 2.21 it suffices to show that fC =

fA2A1 = fA2 ◦ fA1 . Now Proposition 3.108Proposition 3.108 gives

fA2 ◦ fA1 = β3 ◦ g2 ◦ β
−1
2 ◦ β2 ◦ g1 ◦ β

−1
1 = β3 ◦ g2 ◦ g1 ◦ β

−1
1 = fC.

□
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Proposition 3.116 Let V ,W be finite dimensional K-vector spaces, b an ordered
basis of V and c an ordered basis of W . A linear map g : V → W is bijective if and
only if M(g ,b, c) is invertible. Moreover, in the case where g is bijective we have

M(g−1, c,b) = (M(g ,b, c))−1.

Proof Let n = dim(V ) and m = dim(W ).

⇒ Let g : V → W be bijective so that g is an isomorphism and hence n = dim(V ) =

dim(W ) = m by Proposition 3.80Proposition 3.80. Then Corollary 3.115Corollary 3.115 gives

M(g−1, c,b)M(g ,b, c) = M(g−1 ◦ g ,b,b) = M(IdV ,b,b) = 1n

and
M(g ,b, c)M(g−1, c,b) = M(g ◦ g−1, c, c) = M(IdW , c, c) = 1n

so that M(g ,b, c) is invertible with inverse M(g−1, c,b).

⇐ Conversely suppose A = M(g ,b, c) is invertible with inverse A−1. It follows that n =

m by Corollary 3.81Corollary 3.81. We consider h = β−1 ◦ fA−1 ◦γ : W → V and since fA = γ ◦g ◦β−1

by Proposition 3.108Proposition 3.108, we have

g ◦ h = γ−1 ◦ fA ◦ β ◦ β−1 ◦ fA−1 ◦ γ = γ−1 ◦ fAA−1 ◦ γ = IdW .

Likewise, we have

h ◦ g = β−1 ◦ fA−1 ◦ γ ◦ γ−1 ◦ fA ◦ β = β−1 ◦ fA−1A ◦ β = IdV ,

showing that g admits an inverse mapping h : W → V and hence g is bijective. □

Remark 3.117 Notice that the change of basis matrix is also given by the matrix
representation of the identity mapping on V :

C(b,b′) = M(IdV ,b,b
′).

Since the identity map IdV : V → V is bijective with inverse (IdV )
−1 = IdV ,

Proposition 3.116Proposition 3.116 implies that the change of basis matrix C(b,b′) is invertible with
inverse

C(b,b′)−1 = C(b′,b).

Example 3.118 Let V = R2 and e = (e⃗1, e⃗2) be the ordered standard basis and
b = (v⃗1, v⃗2) = (e⃗1 + e⃗2, e⃗2 − e⃗1) another ordered basis. Recall that if we want to
compute C(e,b), we simply need to write each vector of e as a linear combination of
the elements of b. The transpose of the resulting coefficient matrix is then C(e,b).
We obtain

e⃗1 =
1

2
v⃗1 −

1

2
v⃗2,

e⃗2 =
1

2
v⃗1 +

1

2
v⃗2,

so that

C(e,b) =

(
1
2

1
2

− 1
2

1
2

)
.

Reversing the role of e and b gives C(b, e)
v⃗1 = 1e⃗1 + 1e⃗2,

v⃗2 = −1e⃗1 + 1e⃗2,
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so that

C(b, e) =

(
1 −1

1 1

)
.

Notice that indeed we have

C(e,b)C(b, e) =

(
1
2

1
2

− 1
2

1
2

)(
1 −1

1 1

)
=

(
1 0

0 1

)
so that C(e,b)−1 = C(b, e).

Theorem 3.119 Let V ,W be finite dimensional K-vector spaces and b,b′ ordered
bases of V and c, c′ ordered bases of W . Let g : V → W be a linear map. Then we
have

M(g ,b′, c′) = C(c, c′)M(g ,b, c)C(b′,b)

In particular, for a linear map g : V → V we have

M(g ,b′,b′) = CM(g ,b,b)C−1,

where we write C = C(b,b′).

Proof We write A = M(g ,b, c) and B = M(g ,b′, c′) and C = C(b,b′) and D =

C(c, c′). By Remark 3.117Remark 3.117 we have C−1 = C(b′,b), hence applying Proposition 2.20Proposition 2.20 and
Theorem 2.21Theorem 2.21 and Corollary 2.22Corollary 2.22, we need to show that

fB = fD ◦ fA ◦ fC−1 .

By Definition 3.107Definition 3.107 we have
fA = γ ◦ g ◦ β−1,

fB = γ′ ◦ g ◦ (β′)−1

and by Definition 3.101Definition 3.101 we have

fC−1 = β ◦ (β′)−1,

fD = γ′ ◦ γ−1.

Hence we obtain

fD ◦ fA ◦ fC−1 = γ′ ◦ γ−1 ◦ γ ◦ g ◦ β−1 ◦ β ◦ (β′)−1 = γ′ ◦ g ◦ (β′)−1 = fB,

as claimed. The second statement follows again by applying Remark 3.117Remark 3.117. □

Example 3.120 (Example 3.111Example 3.111 and Example 3.118Example 3.118 continued) Let e = (e⃗1, e⃗2) de-
note the ordered standard basis of R2 and

A =

(
5 1

1 5

)
= M(fA, e, e).

Let b = (e⃗1 + e⃗2, e⃗2 − e⃗1). We computed that

M(fA,b,b) =

(
6 0

0 4

)
as well as

C(e,b) =

(
1
2

1
2

− 1
2

1
2

)
and C(b, e) =

(
1 −1

1 1

)
.

According to Theorem 3.119Theorem 3.119 we must have

M(fA,b,b) = C(e,b)M(fA, e, e)C(b, e)
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and indeed (
6 0

0 4

)
=

(
1
2

1
2

− 1
2

1
2

)(
5 1

1 5

)(
1 −1

1 1

)
.

Finally, we observe that every invertible matrix can be realised as a change of basis
matrix:

Lemma 3.121 Let V be a finite dimensional K-vector space, b = (v1, ... , vn) an
ordered basis of V and C ∈ Mn,n(K) an invertible n × n-matrix. Define v ′

j =∑n
i=1 Cijvi for 1 ⩽ i ⩽ n. Then b′ = (v ′

1, ... , v
′
n) is an ordered basis of V and

C(b′,b) = C.

Proof It is sufficient to prove that the vectors {v ′
1, ... , v

′
n} are linearly independent. In-

deed, if they are linearly independent, then they span a subspace U of dimension n and
Proposition 3.74Proposition 3.74 implies that U = V , so that b′ is an ordered basis of V . Suppose we
have scalars s1, ... , sn such that

0V =
n∑

j=1

sjv
′
j =

n∑
j=1

n∑
i=1

sjCijvi =
n∑

i=1

( n∑
j=1

Cijsj
)
vi .

Since {v1, ... , vn} is a basis ofV we must have
∑n

j=1 Cijsj = 0 for all i = 1, ... , n. In matrix
notation this is equivalent to the conditon Cs⃗ = 0Kn , where s⃗ = (si )1⩽i⩽n. Since C is
invertible, we can multiply this last equation from the left with C−1 to obtain C−1Cs⃗ =

C−10Kn which is equivalent to s⃗ = 0Kn . It follows that b′ is an ordered basis of V . By
definition we have C(b′,b) = C. □

Exercises

Exercise 3.122 Let IdV : V → V denote the identity mapping of the finite dimen-
sional K-vector space V and let b = (v1, ... , vn) be any ordered basis of V . Show
that M(IdV ,b,b) = 1n.
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CHAPTER 4

Applications of Gaussian elimination

4.1 Gaussian elimination WEEK 7

In the Algorithmics module M01 you learned how to use Gaussian elimination to solve a
system of equations of the form

(4.1) Ax⃗ = b⃗

for some given matrixA ∈ Mm,n(K), vector b⃗ ∈ Km and unknown x⃗ ∈ Kn. Many concrete
problems in Linear Algebra lead to systems of the form (4.14.1). A few sample problems that
can be solved with Gaussian elimination are discussed below.

Solving equations of the type (4.14.1) hinges on the elementary observation that a vector
x⃗ ∈ Kn solves Ax⃗ = b⃗ if and only if it solves BAx⃗ = Bb⃗, where B ∈ Mm,m(K) is any
invertible m-by-m matrix.

In the Gaussian elimination algorithm, the matrix B is chosen among three types of
matrices:

Definition 4.1 (Elementary matrices) Let m ∈ N. The elementary matrices of size m
are the square matrices

Lk,l(s) = 1m + sEk,l ,

Dk(s) = 1m + (s − 1)Ek,k ,

Pk,l = 1m − Ek,k − El ,l + Ek,l + El ,k ,

where 1 ⩽ k, l ⩽ m with k ̸= l , Ek,l ∈ Mm,m(K) and s ∈ K with s ̸= 0.

Video Elementary matricesElementary matrices

Example 4.2 For m = 4 we have for instance

L2,3(s) =


1 0 0 0

0 1 s 0

0 0 1 0

0 0 0 1

 , D4(s) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 s


and

P2,4 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

As an exercise in matrix multiplication, we compute the effect of left multiplication with
elementary matrices.
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For A = (Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K), we obtain

[Lk,l(s)A]ij =
m∑
r=1

(δir + sδikδlr )Arj = Aij + sδikAlj =

{
Aij + sAlj i = k

Aij i ̸= k
,

where we use that [1m]ir = δir and [Ek,l ]ir = δikδlr . Therefore, multiplying the matrix A
with Lk,l(s) from the left, adds s times the l -th row of A to the k-th row of A and leaves A
unchanged otherwise.

Likewise, we obtain

[Dk(s)A]ij =
m∑
r=1

(δir + (s − 1)δikδkr )Arj =

{
sAij i = k

Aij i ̸= k
.

Therefore, multiplying the matrix A with Dk(s) from the left, multiplies the k-th row of A
with s and leaves A unchanged otherwise.

Finally,

[Pk,lA]ij =
m∑
r=1

(δir − δikδkr − δilδlr + δikδlr + δilδrk)Arj

= Aij − δikAkj − δilAlj + δikAlj + δilAkj

= Aij + δik (Alj − Akj) + δil (Akj − Alj) =


Alj i = k

Akj i = l

Aij i ̸= k, i ̸= l

.

Therefore, multiplying the matrix A with Pk,l from the left, swaps the k-th row of A with
the l -th row of A and leaves A unchanged otherwise.

These calculations immediately imply:

Proposition 4.3 The elementary matrices are invertible with

Lk,l(s)
−1 = Lk,l(−s) and Dk(s)

−1 = Dk(1/s) and (Pk,l)
−1 = Pk,l .

The sceptical reader may also verify this fact by direct computation with the help of the
following lemma:

Lemma 4.4 Let m ∈ N. For 1 ⩽ k , l , p, q ⩽ m, we have

Ek,lEp,q =

{
Ek,q p = l

0m,m p ̸= l

Proof By definition, we have

Ek,lEp,q =

(
m∑
r=1

δikδlrδrpδqj

)
1⩽i ,j⩽m

= δlp (δikδqj)1⩽i ,j⩽m =

{
Ek,q p = l

0m,m p ̸= l
.

□

For each row in a matrix, if the row does not consist of zeros only, then the leftmost
nonzero entry is called the leading coefficient of that row.

Definition 4.5 (Row echelon form) A matrix A ∈ Mm,n(K) is said to be in row
echelon form (REF) if
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• all rows consisting of only zeros are at the bottom;
• the leading coefficient of a nonzero row is always strictly to the right of the leading

coefficient of the row above it.
The matrix A is said to be in reduced row echelon form (rREF) if furthermore
• all of the leading coefficients are equal to 1;
• in every column containing a leading coefficient, all of the other entries in that

column are zero.

Gaussian elimination from the Algorithmics module M01 implies the following statement:

Theorem 4.6 (Gauss–Jordan elimination) Let A ∈ Mm,n(K) then there exists
N ∈ N and an N-tuple of elementary matrices (B1, ... ,BN) such that the matrix
BNBN−1 · · ·B2B1A is in reduced row echelon form.

Proof Applying Gaussian elimination implies the existence of N̂ ∈ N and elementary
matrices B1, ... ,BN̂ so that BN̂BN̂−1 · · ·B2B1A is REF. After possibly further multiplying
this matrix from the left with elementary matrices of the type Dk(s), we can assume that
all leading coefficients are 1. By choosing suitable left multiplications with matrices of
the type Lk,l(s), we find a natural number N ⩾ N̂ and elementary matrices (B1, ... ,BN)

so that BNBN−1 · · ·B2B1A is in reduced row echelon form. □

4.2 Applications

4.2.1 Compute the inverse of a matrix

An algorithm using Gaussian elimination for computing the inverse of an invertible matrix
relies on the following fact:

Proposition 4.7 LetA ∈ Mn,n(K) be a square matrix. Then the following statements
are equivalent:

(i) A is invertible;
(ii) the row vectors of A are linearly independent;

(iii) the column vectors of A are linearly independent.

Proof Part of an exercise sheet. □

Suppose the matrix A ∈ Mn,n(K) is invertible. Applying Gauss–Jordan elimination to
A, we cannot encounter a zero row, since the occurrence of a zero row corresponds to a
non-trivial linear combination of row vectors which gives the zero vector. This is excluded
by the above proposition. Having no zero row vectors, the Gauss–Jordan elimination
applied to A must give the identity matrix 1n. Thus we can find a sequence of elementary
matrices B1, ... ,BN , N ∈ N, so that

1n = BNBN−1 · · ·B2B1A.

In other words, BNBN−1 · · ·B2B1 is the inverse of A. This gives the following recipe for
computing the inverse of A:
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We write the matrix A and 1n next to each other, say A on the left and 1n on the right. We
then perform Gauss–Jordan elimination on A. At each step, we also perform the Gauss–
Jordan elimination step to the matrix on the right. Once Gauss–Jordan elimination
terminates, we thus obtain BNBN−1 · · ·B2B1A on the left and BNBN−1 · · ·B2B11n on
the right. But since BNBN−1 · · ·B2B11n = BNBN−1 · · ·B2B1 (notice the absence of 1n
after the equality sign), the right hand side is the inverse of A.

Example 4.8 (Inverse of a matrix) We want to compute the inverse of

A =

(
1 −2

−3 4

)
.

Write (
1 −2

−3 4

∣∣∣∣ 1 0

0 1

)
.

Adding 3-times the first row to the second row gives(
1 −2

0 −2

∣∣∣∣ 1 0

3 1

)
.

Dividing the second row by −2 gives(
1 −2

0 1

∣∣∣∣ 1 0

− 3
2 − 1

2

)
.

Finally, adding the second row twice to the first row gives(
1 0

0 1

∣∣∣∣ −2 −1

− 3
2 − 1

2

)
,

so that

A−1 =

(
−2 −1

− 3
2 − 1

2

)
.

Video Inverse of a matrixInverse of a matrix

4.2.2 Compute a basis of a subspace

Gaussian elimination can also be used to compute a basis for a vector subspace U of
a finite dimensional K-vector space V . We assume that U = span{v1, ... , vk} for some
vectors vi ∈ V , 1 ⩽ i ⩽ k . We assume that dimU ⩾ 1 so that not all vectors are the zero
vector.

We first consider the special case where V is the space Kn of row vectors of length n and
with entries in K. Recall that we denote the row vectors by small Greek letters. We write
Km

n for the m-fold Cartesian product (Kn)
m of Kn. Clearly, we have a bijective mapping

Ω : Km
n → Mm,n(K), (ν⃗1, ... , ν⃗m) 7→

 ν⃗1
...
ν⃗m



which simply writes the row vectors (ν⃗1, ... , ν⃗m) into a matrix with the k-th row vector
from the m-tuple of row vectors becoming the k-th row of the matrix.
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Example 4.9

Ω
((
1 2 3

)
,
(
4 5 6

))
=

(
1 2 3

4 5 6

)
.

We have
Lk,l(s)Ω(ν⃗1, ... , ν⃗m) = Ω (ν⃗1, ... , ν⃗k−1, ν⃗k + s ν⃗l , ν⃗k+1, ... , ν⃗m) ,

Dk(s)Ω(ν⃗1, ... , ν⃗m) = Ω (ν⃗1, ... , ν⃗k−1, s ν⃗k , ν⃗k+1, ... , ν⃗m) ,

Pk,lΩ(ν⃗1, ... , ν⃗m) = Ω (ν⃗1, ... , ν⃗k−1, ν⃗l , ν⃗k+1, ... , ν⃗l−1, ν⃗k , ν⃗l+1, ... , ν⃗m) .

Notice that all these operations do not change the span of the vectors ν⃗1, ... , ν⃗m. More pre-
cisely, if (ν⃗1, ... , ν⃗m) is an n-tuple of row vectors and if Ω (ω⃗1, ... , ω⃗m) = BΩ(ν⃗1, ... , ν⃗m)

for some elementary matrix B, then

span{ν⃗1, ... , ν⃗m} = span{ω⃗1, ... , ω⃗m}.

Applying Gaussian elimination to the matrix Ω(ν⃗1, ... , ν⃗m) gives a list of elementary
matrices B1, ... ,BN such that

BNBN−1 · · ·B2B1Ω(ν⃗1, ... , ν⃗m) = Ω(ω⃗1, ... , ω⃗r , 0Kn , ... , 0Kn)

where 1 ⩽ r ⩽ m and 0Kn denotes the zero vector in Kn. By construction, the matrix
A = Ω(ω⃗1, ... , ω⃗r , 0Kn , ... , 0Kn) is REF. Since the leading coefficient of ω⃗i is always strictly
to the right of the leading coefficient of ω⃗i−1, it follows that the vectors ω⃗1, ... , ω⃗r are
linearly independent. Therefore, a basis of span{ν⃗1, ... , ν⃗m} is given by {ω⃗1, ... , ω⃗r}.

The general case can be treated with the help of the following facts:

Proposition 4.10 Let V ,W be finite dimensional K-vector spaces and Φ : V → W

an isomorphism. Then S ⊂ V is a basis of V if and only if Φ(S) is a basis of W .

Proof ⇒ Since S is a basis, the set S is linearly independent and since Φ is injective, so
is Φ(S) by Lemma 3.56Lemma 3.56. Since S is a basis, S is a generating set and since Φ is surjective,
the subset Φ(S) ⊂ W is a generating set for W by Lemma 3.46Lemma 3.46.

⇐ We apply the above implication to Φ−1 : W → V and the basis Φ(S) ⊂ W . □

Corollary 4.11 Let V̂ , Ŵ be finite dimensional K-vector spaces, Θ : V̂ → Ŵ an
isomorphism and U ⊂ V̂ a vector subspace. Then S ⊂ U is a basis of U if and only if
Θ(S) is a basis of Θ(U).

Proof Apply Proposition 4.10Proposition 4.10 to the vector space V = U , the vector space W = Θ(U)

and the isomorphism Φ = Θ|U : V → W . □

We now describe a recipe to treat the general case of a subset U = span{v1, ... , vm} of a
finite dimensional K-vector space V :

(i) Fix an isomorphism Φ : V → Kn and write ν⃗i = Φ(vi ) for 1 ⩽ i ⩽ m.
(ii) Apply Gaussian elimination to the matrixΩ(ν⃗1, ... , ν⃗m) to obtain a set of new vectors

(ω⃗1, ... , ω⃗r , 0Kn , ... , 0Kn) for some r ∈ N.
(iii) Apply the inverse isomorphism Φ−1 to the obtained list of vectors. This gives the

desired basis {Φ−1(ω⃗1), ... , Φ
−1(ω⃗r )} of U .
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Example 4.12 (Basis of a subspace) Let V = P3(R) so that dim(V ) = 4 and

U = span{x3 + 2x2 − x , 4x3 + 8x2 − 4x − 3, x2 + 3x + 4, 2x3 + 5x + x + 4}.

We want to compute a basis of U . We choose the isomorphism Φ : V → R4 defined
by

Φ(a3x
3 + a2x

2 + a1x + a0) =
(
a3 a2 a1 a0

)
.

We thus have ν⃗1 =
(
1 2 −1 0

)
, ν⃗2 =

(
4 8 −4 −3

)
, ν⃗3 =

(
0 1 3 4

)
and ν⃗4 =

(
2 5 1 4

)
.

Applying Gaussian elimination to the matrix

Ω(ν⃗1, ν⃗2, ν⃗3, ν⃗4) =


1 2 −1 0

4 8 −4 −3

0 1 3 4

2 5 1 4


yields 

1 0 −7 0

0 1 3 0

0 0 0 1

0 0 0 0

 .

Here we applied Gauss-Jordan elimination, but Gaussian elimination is good
enough. This gives the vectors ω⃗1 =

(
1 0 −7 0

)
, ω⃗2 =

(
0 1 3 0

)
,

ω⃗3 =
(
0 0 0 1

)
.

Our basis of U is thus

{Φ−1(ω⃗1), Φ
−1(ω⃗2), Φ

−1(ω⃗3)} =
{
x3 − 7x , x2 + 3x , 1

}
,

where we use that

Φ−1
((
a3 a2 a1 a0

))
= a3x

3 + a2x
2 + a1x + a0.

Video Basis of a subspaceBasis of a subspace

4.2.3 Compute the image and rank of a linear map

Let V ,W be finite dimensional K-vector spaces and f : V → W a linear map. By
computing the image of a linear map f , we mean computing a basis of Im(f ).

In order to compute a basis for Im(f ) we use the following lemma:

Lemma 4.13 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. If {v1, ... , vn} is a basis of V , then

Im(f ) = span{f (v1), ... , f (vn)}.

Proof Let w ∈ Im(f ) so that w = f (v) for some v ∈ V . We have scalars si for 1 ⩽ i ⩽ n

so that v =
∑n

i=1 sivi . We obtain

w = f (v) = f

(
n∑

i=1

sivi

)
=

n∑
i=1

si f (vi )

so that w is a linear combination of the vectors {f (v1), ... , f (vn)}. On the other hand, a
linear combination of the vectors f (vi ) ∈ Im(f ) lies in the image of f as well, since Im(f )

is a vector subspace. Hence we have Im(f ) = span{f (v1), ... , f (vn)}, as claimed. □
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Knowing that Im(f ) = span{f (v1), ... , f (vn)} we can apply the recipe from Section 4.2.2Section 4.2.2
to U = span{f (v1), ... , f (vn)}. By definition, the number of basis vectors for Im(f ) is the
rank of f .

Example 4.14 Let

A =


1 −2 0 4

3 1 1 0

−1 −5 −1 8

3 8 2 −12


Compute a basis for the image of fA : R4 → R4 and the rank of fA. By Lemma 4.13Lemma 4.13
we have

U = Im(fA) = span{Ae⃗1,Ae⃗2,Ae⃗3,Ae⃗4} = span{a⃗1, a⃗2, a⃗3, a⃗4},

where {e⃗i}1⩽i⩽4 denotes the standard basis ofR4 and {a⃗i}1⩽i⩽4 the column vectors
of A. Comparing with the general setup described above, we are in the case where
V = R4 and vi = Ae⃗i for i = 1, 2, 3, 4.

(i) For the isomorphism Φ : V = R4 → R4 we usually choose the transpose (but
any other isomorphism would work too). We thus have ν⃗1 =

(
1 3 −1 3

)
,

ν⃗2 =
(
−2 1 −5 8

)
, ν⃗3 =

(
0 1 −1 2

)
and ν⃗4 =

(
4 0 8 −12

)
.

(ii) Applying Gaussian elimination to the matrix

Ω(ν⃗1, ν⃗2, ν⃗3, ν⃗4) = AT =


1 3 −1 3

−2 1 −5 8

0 1 −1 2

4 0 8 −12


yields 

1 0 2 −3

0 1 −1 2

0 0 0 0

0 0 0 0

 .

Here again, we applied Gauss–Jordan elimination, but Gaussian elimina-
tion is good enough. This gives the vectors ω⃗1 =

(
1 0 2 −3

)
, ω⃗2 =(

0 1 −1 2
)

.
(iii) Our basis of Im(f ) is thus

{Φ−1(ω⃗1), Φ
−1(ω⃗2)} =




1

0

2

−3

 ,


0

1

−1

2


 ,

where we use that the transpose is its own inverse. We also conclude that
rank(fA) = 2.

Remark 4.15 In the special case where we want to compute a basis for the image
of fA for some matrix A, the recipe thus reduces to the following steps. Take the
transpose of A, perform Gaussian elimination, take the transpose again, write down
the nonzero column vectors. This gives the desired basis.
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4.2.4 Compute the kernel and nullity of a linear map

In order to find a recipe for computing the kernel and nullity of a linear map, we first start
with a related problem. Let A ∈ Mn,m(K) be an n ×m-matrix and

U =
{
ξ⃗ ∈ Kn | ξ⃗A = 0Km

}
,

where ξ⃗A is defined via matrix multiplication of the row vector ξ⃗ ∈ Kn = M1,n(K) and
the matrix A ∈ Mn,m(K). Notice that 0Kn ∈ U and if ξ⃗1, ξ⃗2 ∈ U , then s1ξ⃗1 + s2ξ⃗2 ∈ U for
all s1, s2 ∈ K. By Definition 3.21Definition 3.21, it follows that U is a vector subspace of Kn. We want to
compute a basis for U . Applying Gaussian elimination to the matrix A, we obtain r ∈ N
and elementary matrices B1, ... ,BN so that

BN · · ·B1A = Ω(ω⃗1, ... , ω⃗r , 0Km , ... , 0Km)

for some linearly independent row vectors (ω⃗1, ... , ω⃗r ) ∈ Km. Since the matrix BN · · ·B1

is invertible, we also obtain a basis {ξ⃗1, ... , ξ⃗n} of Kn so that

BN · · ·B1 = Ω(ξ⃗1, ... , ξ⃗n).

We now claim that S = {ξ⃗r+1, ... , ξ⃗n} is a basis of U . The set S is linearly independent,
hence we only need to show that span(S) = U . Since we have

Ω(ξ⃗1, ... , ξ⃗n)A = Ω(ω⃗1, ... , ω⃗r , 0Km , ... , 0Km) ,

the definition of matrix multiplication implies that ξ⃗iA = ω⃗i for 1 ⩽ i ⩽ r and ξ⃗iA = 0Km

for r + 1 ⩽ i ⩽ n. Any vector in U can be written as ν⃗ =
∑n

i=1 si ξ⃗i . The condition
ν⃗A = 0Km then implies that s1 = · · · = sr = 0, hence S is generating.

We can use this observation to compute the kernel and nullity of a linear map Kn → Km

because of the following lemma whose proof is left as an exercise.

Lemma 4.16 Let C ∈ Mm,n(K) and fC : Kn → Km be the associated linear map.
Then x⃗ ∈ Ker(fC) if and only if x⃗TCT = 0Km .

We simply apply the above procedure to the matrix A = CT and compute the vectors
{ξ⃗r+1, ... , ξ⃗n}. The basis of Ker(fC) is then given by {ξ⃗Tr+1, ... , ξ⃗

T
n }.

The nullity of fC is given by the number of basis vectors of Ker(fC).

Example 4.17 (Kernel of a linear map) Let

C =

 1 0 1 7

−2 −3 1 2

7 9 −2 1


In order to compute Ker(fC) we apply Gaussian elimination to CT whilst keeping
track of the relevant elementary matrices as in the algorithm for computing the
inverse of a matrix. That is, we consider

1 −2 7

0 −3 9

1 1 −2

7 2 1

∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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Gauss–Jordan elimination (again, Gaussian elimination is enough) gives
1 0 1

0 1 −3

0 0 0

0 0 0

∣∣∣∣∣∣∣∣
0 0 − 2

5
1
5

0 0 7
5 − 1

5

1 0 16
5 − 3

5

0 1 21
5 − 3

5

 .

The vectors ξ⃗3 =
(
1 0 16

5 − 3
5

)
and ξ⃗4 =

(
0 1 21

5 − 3
5

)
thus span the sub-

space of vectors ξ satisfying ξCT = 0K3 . A basis S for the kernel of fC is thus given
by

S =




1

0
16
5

− 3
5

 ,


0

1
21
5

− 3
5




and fC satisfies nullity(fC) = 2.

Video Kernel of a linear mapKernel of a linear map

Remark 4.18 Section 4.2.3Section 4.2.3 and Section 4.2.4Section 4.2.4 can be combined to compute Ker(fA)

and Im(fA) for A ∈ Mm,n(K) by a single application of Gaussian elimination.

Remark 4.19 In order to compute the kernel of a linear map g : V → W between
finite dimensional vector spaces, we can fix an ordered basis b of V and an ordered
basis c of W , compute C = M(g ,b, c), apply the above procedure to the matrix C
in order to obtain a basis S of Ker(fC). The desired basis of Ker(g) is then given by
β−1(S). While this algorithm can always be carried out, it is computationally quite
involved. In many cases it is therefore advisable to compute Ker(g) by some other
technique.
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CHAPTER 5

The determinant

5.1 Axiomatic characterisation WEEK 8

Surprisingly, whether or not a square matrix A ∈ Mn,n(K) admits an inverse is captured
by a single scalar, called the determinant of A and denoted by detA or det(A). That is,
the matrix A admits an inverse if and only if detA is nonzero. In practice, however, it is
often quicker to use Gauss–Jordan elimination to decide whether the matrix admits an
inverse. The determinant is nevertheless a useful tool in linear algebra.

The determinant is an object of multilinear algebra, which – for ℓ ∈ N – considers map-
pings from the ℓ-fold Cartesian product of a K-vector space into another K-vector space.
Such a mapping f is required to be linear in each variable. This simply means that if
we freeze all variables of f , except for the k-th variable, 1 ⩽ k ⩽ ℓ, then the resulting
mapping gk of one variable is required to be linear. More precisely:

Definition 5.1 (Multilinear map) Let V ,W be K-vector spaces and ℓ ∈ N. A map-
ping f : V ℓ → W is called ℓ-multilinear (or simply multilinear) if the mapping
gk : V → W , v 7→ f (v1, ... , vk−1, v , vk+1, ... , vℓ) is linear for all 1 ⩽ k ⩽ ℓ and for
all ℓ-tuples (v1, ... , vℓ) ∈ V ℓ.

Video Multilinear mapMultilinear map

We only need an (ℓ− 1)-tuple of vectors to define the map gk , but the above definition is
more convenient to write down.

Two types of multilinear maps are of particular interest:

Definition 5.2 (Symmetric and alternating multilinear maps) Let V ,W be K-vector
spaces and f : V ℓ → W an ℓ-multilinear map.
• The map f is called symmetric if exchanging two arguments does not change the

value of f . That is, we have

f (v1, ... , vℓ) = f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all (v1, ... , vℓ) ∈ V ℓ.
• The map f is called alternating if f (v1, ... , vℓ) = 0W whenever at least two argu-

ments agree, that is, there exist i ̸= j with vi = vj . Alternating ℓ-multilinear maps
are also called W -valued ℓ-forms or simply ℓ-forms when W = K.

1-multilinear maps are simply linear maps. 2-multilinear maps are called bilinear and
3-multilinear maps are called trilinear. Most likely, you are already familiar with two
examples of bilinear maps:
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Example 5.3 (Bilinear maps)
(i) The first one is the scalar product of two vectors in R3 (or more generally Rn).

So V = R3 and W = R. Recall that the scalar product is the mapping

V 2 = R3 × R3 → R, (x⃗ , y⃗) 7→ x⃗ · y⃗ = x1y1 + x2y2 + x3y3,

where we write x⃗ = (xi )1⩽i⩽3 and y⃗ = (yi )1⩽i⩽3. Notice that for all s1, s2 ∈ R
and all x⃗1, x⃗2, y⃗ ∈ R3 we have

(s1x⃗1 + s2x⃗2) · y⃗ = s1(x⃗1 · y⃗) + s2(x⃗2 · y⃗),

so that the scalar product is linear in the first variable. Furthermore, the scalar
product is symmetric, x⃗ · y⃗ = y⃗ · x⃗ . It follows that the scalar product is also
linear in the second variable, hence it is bilinear or 2-multilinear.

(ii) The second one is the cross product of two vectors in R3. Here V = R3 and
W = R3. Recall that the cross product is the mapping

V 2 = R3 × R3 → R3, (x⃗ , y⃗) 7→ x⃗ × y⃗ =

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 .

Notice that for all s1, s2 ∈ R and all x⃗1, x⃗2, y⃗ ∈ R3 we have

(s1x⃗1 + s2x⃗2)× y⃗ = s1(x⃗1 × y⃗) + s2(x⃗2 × y⃗),

so that the cross product is linear in the first variable. Likewise, we can check
that the cross product is also linear in the second variable, hence it is bilinear
or 2-multilinear. Observe that the cross product is alternating.

Example 5.4 (Multilinear map) Let V = K and consider f : V ℓ → K, (x1, ... , xℓ) 7→
x1x2 · · · xℓ. Then f is ℓ-multilinear and symmetric.

Example 5.5 Let A ∈ Mn,n(R) be a symmetric matrix, AT = A. Notice that we
obtain a symmetric bilinear map

f : Rn × Rn → R, (x , y) 7→ x⃗TAy⃗ ,

where on the right hand side all products are defined by matrix multiplication.

The Example 5.5Example 5.5 gives us a wealth of symmetric bilinear maps on Rn. As we will see
shortly, the situation is quite different if we consider alternating n-multilinear maps on
Kn (notice that we have the same number n of arguments as the dimension of Kn).

Let {ε⃗1, ... , ε⃗n} denote the standard basis of Kn so that Ω(ε⃗1, ... , ε⃗n) = 1n.

Theorem 5.6 Let n ∈ N. Then there exists a unique alternating n-multilinear map
fn : (Kn)

n → K satisfying fn(ε⃗1, ... , ε⃗n) = 1.

Recall that we have a bijective mapping Ω : (Kn)
n → Mn,n(K) which forms an n ×

n-matrix from n row vectors of length n. For the choice V = Kn, the notion of n-
multilinearity thus also makes sense for a mapping f : Mn,n(K) → K which takes
an n × n matrix as an input. Here the multilinearity means the the mapping is linear
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in each row of the matrix. Since Ω(ε⃗1, ... , ε⃗n) = 1n, we may phrase the above theorem
equivalently as:

Theorem 5.7 (Existence and uniqueness of the determinant) Let n ∈ N. Then
there exists a unique alternating n-multilinear map fn : Mn,n(K) → K satisfying
fn(1n) = 1.

Definition 5.8 (Determinant) The mapping fn : Mn,n(K) → K provided by
Theorem 5.7Theorem 5.7 is called the determinant and denoted by det. For A ∈ Mn,n(K) we say
det(A) is the determinant of the matrix A.

Remark 5.9 (Abuse of notation) It would be more precise to write detn since the
determinant is a family of mappings, one mapping detn : Mn,n(K) → K for each
n ∈ N. It is however common to simply write det.

Video DeterminantDeterminant

Example 5.10 For n = 1 the condition that a 1-multilinear (i.e. linear) map f1 :

M1,1(K) → K is alternating is vacuous. So the Theorem 5.7Theorem 5.7 states that there is a
unique linear map f1 : M1,1(K) → K that satisfies f1((1)) = 1. Of course, this is just
the map defined by the rule f1((a)) = a, where (a) ∈ M1,1(K) is any 1-by-1 matrix.

Example 5.11 For n = 2 and a, b, c, d ∈ K we consider the mapping f2 :

M2,2(K) → K defined by the rule

(5.1) f2

((
a b

c d

))
= ad − bc.

We claim that f2 is bilinear in the rows and alternating. The condition that f2 is
alternating simplifies to f (A) = 0 whenever the two rows of A ∈ M2,2(K) agree.
Clearly, f2 is alternating, since

f2

((
a b

a b

))
= ab − ab = 0.

Furthermore, f2 needs to be linear in each row. The additivity condition applied to
the first row gives that we must have

f2

((
a1 + a2 b1 + b2

c d

))
= f2

((
a1 b1
c d

))
+ f2

((
a2 b2
c d

))
for all a1, a2, b1, b2, c, d ∈ K. Using the definition (5.15.1), we obtain

f2

((
a1 + a2 b1 + b2

c d

))
= (a1 + a2)d − c(b1 + b2)

= a1d − cb1 + a2d − cb2

= f2

((
a1 b1
c d

))
+ f2

((
a2 b2
c d

))
,
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so that f2 is indeed additive in the first row. The 1-homogeneity condition applied to
the first row gives that we must have

f2

((
sa sb

c d

))
= sf2

((
a b

c d

))
for all a, b, c, d ∈ K and s ∈ K. Indeed, using the definition (5.15.1), we obtain

f2

((
sa sb

c d

))
= sad − csb = s(ad − bc) = sf2

((
a b

c d

))
,

so that f2 is also 1-homogeneous in the first row. We conclude that f2 is linear in the
first row. Likewise, the reader is invited to check that f2 is also linear in the second
row. Furthermore, we can easily compute that f2(12) = 1. The mapping f2 thus
satisfies all the properties of Theorem 5.7Theorem 5.7, hence by the uniqueness statement we
must have f2 = det and we obtain the formula

(5.2) det

((
a b

c d

))
= ad − cb

for all a, b, c, d ∈ K.

5.2 Uniqueness of the determinant

So far we have only shown that the determinant exists for n = 1 and n = 2. However, we
need to show the existence and uniqueness part of Theorem 5.7Theorem 5.7 in general. We first show
the uniqueness part. We start by deducing some consequences from the alternating
property:

Lemma 5.12 Let V ,W be K-vector spaces and ℓ ∈ N. An alternating ℓ-multilinear
map f : V ℓ → W satisfies:

(i) interchanging two arguments of f leads to a minus sign. That is, for 1 ⩽ i , j ⩽ ℓ

and i ̸= j we obtain

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all (v1, ... , vℓ) ∈ V ℓ;
(ii) if the vectors (v1, ... , vℓ) ∈ V ℓ are linearly dependent, then f (v1, ... , vℓ) = 0W ;

(iii) for all 1 ⩽ i ⩽ ℓ, for all ℓ-tuples of vectors (v1, ... , vℓ) ∈ V ℓ and scalars
s1, ... , sℓ ∈ K, we have

f (v1, ... , vi−1, vi + w , vi+1, ... , vℓ) = f (v1, ... , vℓ)

where w =
∑ℓ

j=1,j ̸=i sjvj . That is, adding a linear combination of vectors to
some argument of f does not change the output, provided the linear combination
consists of the remaining arguments.

Proof (i) Since f is alternating, we have for all (v1, ... , vℓ) ∈ V ℓ

f (v1, ... , vi−1, vi + vj , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ) = 0W .

Using the linearity in the i -th argument, this gives

0W = f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ).
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Using the linearity in the j-th argument, we obtain

0W = f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vj , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vj , vj+1, ... , vℓ).

The first summand has a double occurrence of vi and hence vanishes by the alternating
property. Likewise, the fourth summand has a double occurrence ofvj and hence vanishes
as well. Since the second summand equals f (v1, ... , vℓ), we thus obtain

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

as claimed.

(ii) Suppose {v1, ... , vℓ} are linearly dependent so that we have scalars sj ∈ K not all
zero, 1 ⩽ j ⩽ ℓ, so that s1v1 + · · ·+ sℓvℓ = 0V . Suppose si ̸= 0 for some index 1 ⩽ i ⩽ ℓ.
Then

vi = −
ℓ∑

j=1,j ̸=i

(
sj
si

)
vj

and hence by the linearity in the i -th argument, we obtain

f

v1, ... , vi−1,−
ℓ∑

j=1,j ̸=i

(
sj
si

)
vj , vi+1, ... , vℓ


= −

ℓ∑
j=1,j ̸=i

(
sj
si

)
f (v1, ... , vi−1, vj , vi+1, ... , vℓ) = 0W ,

where we use that for each 1 ⩽ j ⩽ ℓ with j ̸= i , the expression

f (v1, ... , vi−1, vj , vi+1, ... , vℓ)

has a double occurrence of vj and thus vanishes by the alternating property.

(iii) Let (v1, ... , vℓ) ∈ V ℓ and (s1, ... , sℓ) ∈ Kℓ. Then, using the linearity in the i -th
argument, we compute

f (v1, ... , vi−1, vi +
ℓ∑

j=1,j ̸=i

sjvj , vi+1, ... , vℓ)

= f (v1, ... , vℓ) +
ℓ∑

j=1,j ̸=i

sj f (v1, ... , vi−1vj , vi+1, ... , vℓ) = f (v1, ... , vℓ),

where the last equality follows exactly as in the proof of (ii). □

The alternating property of an n-multilinear map fn : Mn,n(K) → K together with the
condition fn(1n) = 1 uniquely determines the value of fn on the elementary matrices:

Lemma 5.13 Let n ∈ N and fn : Mn,n(K) → K an alternating n-multilinear map
satisfying fn(1n) = 1. Then for all 1 ⩽ k , l ⩽ n with k ̸= l and all s ∈ K, we have

(5.3) fn(Dk(s)) = s, fn(Lk,l(s)) = 1, fn(Pk,l) = −1.

Moreover, for A ∈ Mn,n(K) and an elementary matrix B of size n, we have

(5.4) fn(BA) = fn(B)fn(A).
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Proof Recall that Dk(s) applied to a square matrix A multiplies the k-th row of A with
s and leaves A unchanged otherwise. We write A ∈ Mn,n(K) as A = Ω(α⃗1, ... , α⃗n) for
α⃗i ∈ Kn, 1 ⩽ i ⩽ n. Hence we obtain

Dk(s)A = Ω(α⃗1, ... , α⃗k−1, sα⃗k , α⃗k+1, ... , α⃗n).

The linearity of f in the k-th row thus gives fn(Dk(s)A) = sfn(A). In particular, the choice
A = 1n together with fn(1n) = 1 implies that fn(Dk(s)) = fn(Dk(s)1n) = sfn(1n) = s .
Therefore, we have

fn(Dk(s)A) = fn(Dk(s))fn(A).

Likewise we obtain

Lk,l(s)A = Ω(α⃗1, ... , α⃗k−1, α⃗k + sα⃗l , α⃗k+1, ... , α⃗n)

and we can apply property (iii) of Lemma 5.12Lemma 5.12 for the choice w = sα⃗l to conclude that
fn(Lk,l(s)A) = fn(A). In particular, the choice A = 1n together with fn(1n) = 1 implies
fn(Lk,l(s)) = fn(Lk,l(s)1n) = fn(1n) = 1.

Therefore, we have
fn(Lk,l(s)A) = fn(Lk,l(s))fn(A).

Finally, we have

Pk,lA = Ω(α⃗1, ... , α⃗k−1, α⃗l , α⃗k+1, ... , α⃗l−1, α⃗k , α⃗l+1, ... , α⃗n)

so that property (ii) of Lemma 5.12Lemma 5.12 immediately gives that

fn(Pk,lA) = −fn(A).

In particular, the choice A = 1n together with fn(1n) = 1 implies fn(Pk,l) = fn(Pk,l1n) =

−fn(1n) = −1.

Therefore, we have fn(Pk,lA) = fn(Pk,l)fn(A), as claimed. □

We now obtain the uniqueness part of Theorem 5.7Theorem 5.7.

Proposition 5.14 Let n ∈ N and fn, f̂n : Mn,n(K) → K be alternating n-multilinear
maps satisfying fn(1n) = f̂n(1n) = 1. Then fn = f̂n.

Proof We need to show that for all A ∈ Mn,n(K), we have fn(A) = f̂n(A). Suppose
first that A is not invertible. Then, by Proposition 4.7Proposition 4.7, the row vectors of A are linearly
dependent and hence property (ii) of Lemma 5.12Lemma 5.12 implies that fn(A) = f̂n(A) = 0.

Now suppose that A is invertible. Using Gauss–Jordan elimination, we obtain N ∈ N and
a sequence of elementary matrices B1, ... ,BN so that BN · · ·B1 = A. We obtain

fn(A) = fn(BN · · ·B1) = fn(BN)fn(BN−1 · · ·B1) = f̂n(BN)fn(BN−1 · · ·B1),

where the second equality uses (5.45.4) and the third equality uses that (5.35.3) implies that
f̂n(B) = fn(B) for all elementary matrices B. Proceeding in this fashion we get

fn(A) = f̂n(BN)f̂n(BN−1) · · · f̂n(B1) = f̂n(BN)f̂n(BN−1) · · · f̂n(B2B1) = · · ·

= f̂n(BNBN−1 · · ·B1) = f̂n(A).

□
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5.3 Existence of the determinant

It turns out that we can define the determinant recursively in terms of the determinants
of certain submatrices. Determinants of submatrices are called minors. To this end we
first define:

Definition 5.15 (Submatrix) Let n ∈ N. For a square matrix A ∈ Mn,n(K) and
1 ⩽ k , l ⩽ n we denote by A(k,l) the (n − 1) × (n − 1) submatrix obtained by
removing the k-th row and l -th column from A.

Example 5.16

A =

(
a b

c d

)
, A(1,1) = (d), A(2,1) = (b).

A =


1 −2 0 4

3 1 1 0

−1 −5 −1 8

3 8 2 −12

 , A(3,2) =

1 0 4

3 1 0

3 2 −12

 .

We use induction to prove the existence of the determinant:

Lemma 5.17 Let n ∈ N with n ⩾ 2 and fn−1 : Mn−1,n−1(K) → K an alternating
(n − 1)-multilinear mapping satisfying fn−1(1n−1) = 1. Then, for any fixed integer l
with 1 ⩽ l ⩽ n, the mapping

fn : Mn,n(K) → K, A 7→
n∑

k=1

(−1)l+k [A]kl fn−1

(
A(k,l)

)
is alternating, n-multilinear and satisfies fn(1n) = 1.

Proof of Theorem 5.6Theorem 5.6 For n = 1 we have seen that f1 : M1,1(K) → K, (a) 7→ a is
1-multilinear, alternating and satisfies f1(11) = 1. Hence Lemma 5.17Lemma 5.17 implies that for
all n ∈ N there exists an n-multilinear and alternating map fn : Mn,n(K) → K satisfying
fn(1n) = 1. By Proposition 5.14Proposition 5.14 there is only one such mapping for each n ∈ N. □

Proof of Lemma 5.17Lemma 5.17 We take some arbitrary, but then fixed integer l with 1 ⩽ l ⩽ n.

Step 1. We first show that fn(1n) = 1. Since [1n]kl = δkl , we obtain

fn(1n) =
n∑

k=1

(−1)l+k [1n]kl fn−1

(
1(k,l)n

)
= (−1)2l fn−1

(
1(l ,l)n

)
= fn−1 (1n−1) = 1,

where we use that 1(l ,l)n = 1n−1 and fn−1(1n−1) = 1.

Step 2. We show that fn is multilinear. Let A ∈ Mn,n(K) and write A = (Akj)1⩽k,j⩽n. We
first show that fn is 1-homogeneous in each row. Say we multiply the i -th row of A with s

so that we obtain a new matrix Â = (Âkj)1⩽k,j⩽n with

Âkj =

{
Akj , k ̸= i ,

sAkj , k = i .
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We need to show that fn(Â) = sfn(A). We compute

fn(Â) =
n∑

k=1

(−1)l+k Âkl fn−1(Â
(k,l))

= (−1)l+i sAil fn−1(Â
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(Â
(k,l)).

Now notice that Â(i ,l) = A(i ,l), since A and Â only differ in the i -th row, but this is
the row that is removed. Since fn−1 is 1-homogeneous in each row, we obtain that
fn−1(Â(k,l)) = sfn−1(A(k,l)) whenever k ̸= i . Thus we have

fn(Â) = s(−1)l+iAil fn−1(A
(i ,l)) + s

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(A
(k,l))

= s
n∑

k=1

(−1)l+kAkl fn−1

(
A(k,l)

)
= sfn(A).

We now show that fn is additive in each row. Say the matrix B = (Bkj)1⩽k,j⩽n is identical
to the matrix A, except for the i -th row, so that

Bkj =

{
Akj k ̸= i

Bj k = i

for some scalars Bj with 1 ⩽ j ⩽ n. We need to show that fn(C) = fn(A) + fn(B), where
C = (Ckj)1⩽k,j⩽n with

Ckj =

{
Akj k ̸= i

Aij + Bj k = i

We compute

fn(C) = (−1)l+i (Ail + Bl)fn−1(C
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(C
(k,l)).

As before, since A,B,C only differ in the i -th row, we have A(i ,l) = B(i ,l) = C(i ,l). Using
that fn−1 is linear in each row, we thus obtain

fn(C) = (−1)l+iBl fn−1(B
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(B
(k,l))

+ (−1)l+iAil fn−1(A
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(A
(k,l)) = fn(A) + fn(B).

Step 3. We show that fn is alternating. Suppose we have 1 ⩽ i , j ⩽ n with j > i and so
that the i -th and j-th row of the matrix A = (Aij)1⩽i ,j⩽n are the same. Therefore, unless
k = i or k = j , the submatrix A(k,l) also contains two identical rows and since fn−1 is
alternating, all summands vanish except the one for k = i and k = j , this gives

fn(A) = (−1)i+lAil fn−1(A
(i ,l)) + (−1)j+lAjl fn−1(A

(j ,l))

= Ail(−1)l
(
(−1)i fn−1(A

(i ,l)) + (−1)j fn−1(A
(j ,l))

)
where the second equality sign follows because we have Ail = Ajl for all 1 ⩽ l ⩽ n (the
i -th and j-th row agree). The mapping fn−1 is alternating, hence by the first property of
the Lemma 5.12Lemma 5.12, swapping rows in the matrix A(j ,l) leads to a minus sign in fn−1(A(j ,l)).
Moving the i -th row of A(j ,l) down by j − i − 1 rows (which corresponds to swapping
j − i − 1 times), we obtain A(i ,l), hence

fn−1(A
(j ,l)) = (−1)j−i−1fn−1(A

(i ,l)).

This gives

fn(A) = Ail(−1)l
(
(−1)i fn−1(A

(i ,l)) + (−1)2j−i−1fn−1(A
(i ,l))

)
= 0.
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□

Remark 5.18 (Laplace expansion) As a by-product of the proof of Lemma 5.17Lemma 5.17 we
obtain the formula

(5.5) det(A) =
n∑

k=1

(−1)l+k [A]kl det
(
A(k,l)

)
,

known as the Laplace expansion of the determinant. The uniqueness state-
ment of Theorem 5.7Theorem 5.7 thus guarantees that for every n × n matrix A, the scalar∑n

k=1(−1)l+k [A]kl det
(
A(k,l)

)
is independent of the choice of l ∈ N, 1 ⩽ l ⩽ n. In

practice, when computing the determinant, it is thus advisable to choose l such that
the corresponding column contains the maximal amount of zeros.

Video Laplace expansionLaplace expansion

Example 5.19 For n = 2 and choosing l = 1, we obtain

det

((
a b

c d

))
= a det

(
A(1,1)

)
− c det

(
A(2,1)

)
= ad − cb,

in agreement with (5.15.1). For A = (Aij)1⩽i ,j⩽3 ∈ M3,3(K) and choosing l = 3 we
obtain

det

A11 A12 A13

A21 A22 A23

A31 A32 A33

 = A13 det

((
A21 A22

A31 A32

))

− A23 det

((
A11 A12

A31 A32

))
+ A33 det

((
A11 A12

A21 A22

))

so that
detA = A13(A21A32 − A31A22)− A23(A11A32 − A31A12)

+ A33(A11A22 − A21A12)

= A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31.

Exercises

Exercise 5.20 (Trilinear map) Let V = R3 and W = R. Show that the map

f : V 3 → W , (x⃗ , y⃗ , z⃗) 7→ (x⃗ × y⃗) · z⃗

is alternating and trilinear.
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5.4 Properties of the determinant WEEK 9

Proposition 5.21 (Product rule) For matrices A,B ∈ Mn,n(K) we have

det(AB) = det(A) det(B).

Proof We first consider the case where A is not invertible, then det(A) = 0 (see the
proof of Proposition 5.14Proposition 5.14). If A is not invertible, then neither is AB. Indeed, if AB were
invertible, then there exists a matrixC such that (AB)C = 1n. But since, by Corollary 2.22Corollary 2.22,
the matrix product is associative, this also gives A(BC) = 1n, so that BC is the inverse
of A, a contradiction. Hence if A is not invertible, we must also have det(AB) = 0, which
verifies that det(AB) = 0 = det(A) det(B) for A not invertible.

If A is invertible, we can write it as a product of elementary matrices and applying the
second part of Lemma 5.13Lemma 5.13, we conclude that det(AB) = det(A) det(B). □

Corollary 5.22 A matrixA ∈ Mn,n(K) is invertible if and only ifdet(A) ̸= 0. Moreover,
in the case where A is invertible, we have

det
(
A−1

)
=

1

detA
.

Proof We have already seen that ifA is not invertible, thendet(A) = 0. This is equivalent
to saying that if det(A) ̸= 0, then A is invertible. It thus remains to show that if A is
invertible, then det(A) ̸= 0. Suppose A is invertible, then applying Proposition 5.21Proposition 5.21
gives

det(1n) = det
(
AA−1

)
= det(A) det

(
A−1

)
= 1

so that det(A) ̸= 0 and det
(
A−1

)
= 1/ det(A). □

Remark 5.23 (Product symbol) Recall that for scalars x1, ... , xn ∈ K, we write
n∏

i=1

xi = x1x2 · · · xn.

Proposition 5.24 Let n ∈ N andA = (Aij)1⩽i ,j⩽n ∈ Mn,n(K) be an upper triangular
matrix so that Aij = 0 for i > j . Then

(5.6) det(A) =
n∏

i=1

Aii = A11A22 · · ·Ann.

Proof We use induction. For n = 1 the condition Aij = 0 for i > j is vacuous and (5.65.6) is
trivially satisfied, thus the statement is anchored.

Inductive step: Assume n ∈ N and n ⩾ 2. We want to show that if (5.65.6) holds for upper
triangular (n − 1)× (n − 1)-matrices, then also for upper triangular n × n-matrices. Let
A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K) be an upper triangular matrix. Choosing l = 1 in the formula
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for det(A), we obtain

det(A) =
n∑

k=1

(−1)k+1Ak1 det
(
A(k,1)

)
= A11 det

(
A(1,1)

)
+

n∑
k=2

Ak1 det
(
A(k,1)

)
= A11 det

(
A(1,1)

)
,

where the last equality uses that Ak1 = 0 for k > 1. We have A(1,1) = (Aij)2⩽i ,j⩽n and
since A is an upper triangular matrix, it follows that A(1,1) is an (n − 1)× (n − 1) upper
triangular matrix as well. Hence by the induction hypothesis, we obtain

det(A(1,1)) =
n∏

i=2

Aii .

We conclude that det(A) =
∏n

i=1 Aii , as claimed. □

5.5 Permutations

A rearrangement of the natural numbers from 1 up to n is called a permutation:

Definition 5.25 (Permutation) Let n ∈ N and Xn = {1, 2, 3, ... , n}. A permutation
is a bijective mapping σ : Xn → Xn. The set of all permutations of Xn is denoted by
Sn.

Video PermutationPermutation

Remark 5.26 If τ ,σ : Xn → Xn are permutations, it is customary to write τσ or τ ·σ
instead of τ ◦ σ. Furthermore, the identity mapping IdXn is often simply denoted by
1. A convenient way to describe a permutation σ ∈ Sn is in terms of a 2× n matrix(

i

σ(i)

)
1⩽i⩽n

.

which we denote by σ. For instance, for n = 4, the matrix

σ =

(
1 2 3 4

2 3 1 4

)
corresponds to the permutation σ satisfying σ(1) = 2,σ(2) = 3,σ(3) = 1,σ(4) =

4.

Permutations which only swap two natural numbers and leave all remaining numbers
unchanged are known as transpositions:

Definition 5.27 (Transposition) Let n ∈ N and 1 ⩽ k, l ⩽ n with k ̸= l . The
transposition τk,l ∈ Sn is the permutation satisfying

τk,l(k) = l , τk,l(l) = k , τk,l(i) = i if i /∈ {k, l}.

Every permutation σ ∈ Sn defines a linear map g : Kn → Kn satisfying g(e⃗i ) = e⃗σ(i),
where {e⃗1, ... , e⃗n}denotes the standard basis ofKn. Since g is linear, there exists a unique
matrix Pσ ∈ Mn,n(K) so that g = fPσ

. Observe that the column vectors of the matrix Pσ

are given by e⃗σ(1), e⃗σ(2), ... , e⃗σ(n).
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Definition 5.28 (Permutation matrix) We callPσ ∈ Mn,n(K) the permutation matrix
associated to σ ∈ Sn.

Example 5.29 Let n = 4. For instance, we have

σ =

(
1 2 3 4

2 3 1 4

)
Pσ =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


and

τ 2,4 =

(
1 2 3 4

1 4 3 2

)
Pτ2,4 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

Remark 5.30 Notice that Pτk,l = Pk,l , where Pk,l belongs to the elementary
matrices of size n, c.f. Definition 4.1Definition 4.1.

Assigning to a permutation its permutation matrix turns composition of permutations
into matrix multiplication:

Proposition 5.31 Let n ∈ N. Then P1 = 1n and for all σ,π ∈ Sn we have

Pπ·σ = PπPσ.

In particular, for all σ ∈ Sn, the permutation matrix Pσ is invertible with (Pσ)
−1 =

Pσ−1 .

Example 5.32 Consider n = 3. For

σ =

(
1 2 3

3 1 2

)
and π =

(
1 2 3

1 3 2

)
we have π ·σ =

(
1 2 3

2 1 3

)
,

as well as

Pσ =

0 1 0

0 0 1

1 0 0

 , Pπ =

1 0 0

0 0 1

0 1 0

 and Pπ·σ =

0 1 0

1 0 0

0 0 1

 .

Thus we obtain

Pπ·σ =

0 1 0

1 0 0

0 0 1

 =

1 0 0

0 0 1

0 1 0

0 1 0

0 0 1

1 0 0

 = PπPσ,

as claimed by Proposition 5.31Proposition 5.31.

Proof of Proposition 5.31Proposition 5.31 The matrix P1 has column vectors given by e⃗1, ... , e⃗n, hence
P1 = 1n.
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Using Proposition 2.20Proposition 2.20 and Theorem 2.21Theorem 2.21 it is sufficient to show that for all π,σ ∈ Sn we
have fPπ·σ = fPπ ◦ fPσ . For all 1 ⩽ i ⩽ n, we obtain

fPπ (fPσ (e⃗i )) = fPπ

(
e⃗σ(i)

)
= e⃗π(σ(i)) = e⃗(π·σ)(i) = fPπ·σ (e⃗i ).

The two maps thus agree on the ordered basis e = (e⃗1, ... , e⃗n) of Kn, so that the second
claim follows by applying Lemma 3.93Lemma 3.93.

We have

Pσ·σ−1 = P1 = 1n = PσPσ−1

showing that Pσ is invertible with inverse (Pσ)
−1 = Pσ−1 . □

Definition 5.33 (Signature of a permutation) For σ ∈ Sn we call sgn(σ) = det(Pσ)

its signature.

Remark 5.34
(i) Combining Proposition 5.21Proposition 5.21 and Proposition 5.31Proposition 5.31, we conclude that

sgn(π · σ) = sgn(π) sgn(σ)

for all π,σ ∈ Sn.
(ii) Since Pτk,l = Pk,l and detPk,l = −1 by Lemma 5.13Lemma 5.13, we conclude that

sgn(τk,l) = −1

for all transpositions τk,l ∈ Sn.

Similarly to elementary matrices being the building blocks of invertible matrices, trans-
positions are the building blocks of permutations:

Proposition 5.35 Let n ∈ N and σ ∈ Sn. Then there exists m ⩾ 0 and m transposi-
tions τk1,l1 , ... , τkm,lm ∈ Sn such that σ = τkm,lm · · · τk1,l1 , where we use the convention
that 0 transpositions corresponds to the identity permutation.

Example 5.36 Let n = 6 and σ the permutation defined by the matrix

σ =

(
1 2 3 4 5 6

3 5 2 4 6 1

)
.

To express it as a product of transposition, we write

3 5 2 4 6 1

3 2 5 4 6 1 τ2,3
1 2 5 4 6 3 τ1,6
1 2 5 4 3 6 τ5,6
1 2 3 4 5 6 τ3,5

so that σ = τ3,5τ5,6τ1,6τ2,3.

Proof of Proposition 5.35Proposition 5.35 We use induction. For n = 1 we have Xn = {1} and the only
permutation is the identity permutation 1, so the statement is trivially true and hence
anchored.
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Inductive step: Assume n ∈ N and n ⩾ 2. We want to show that if the claim holds for
Sn−1, then also for Sn. Let σ ∈ Sn and define k = σ(n). Then the permutation σ1 = τn,kσ

satisfies σ1(n) = τn,kσ(n) = τn,k(k) = n and hence does not permute n. Restricting σ1

to the first n − 1 elements, we obtain a permutation of {1, ... , n − 1}. By the induction
hypothesis, we thus have m̃ ∈ N and τk1,l1 , ... τkm̃ , τlm̃ ∈ Sn such that

σ1 = τkm̃,lm̃ · · · τk1,l1 = τn,kσ.

Since τ 2n,k = 1, multiplying from the left with τn,k gives σ = τn,kτkm̃,lm̃ · · · τk1,l1 , the claim
follows with m = m̃ + 1. □

Combining Definition 5.33Definition 5.33, Remark 5.34Remark 5.34 and Proposition 5.35Proposition 5.35, we conclude:

Proposition 5.37 Let n ∈ N and σ ∈ Sn. Then sgn(σ) = ±1. If σ is a product of m
transpositions, then sgn(σ) = (−1)m.

Remark 5.38 Permutations with sgn(σ) = 1 are called even and permutations with
sgn(σ) = −1 are called odd, since they arise from the composition of an even or
odd number of transpositions, respectively.

5.6 The Leibniz formula

Besides the Laplace expansion, there is also a formula for the determinant which relies
on permutations. As a warm-up, we first consider the case n = 2. Using the linearity of
the determinant in the first row, we obtain

det

(
a b

c d

)
= det

(
a 0

c d

)
+ det

(
0 b

c d

)
,

where a, b, c, d ∈ K. Using the linearity of the determinant in the second row, we can
further decompose the two above summands

det

(
a b

c d

)
= det

(
a 0

c 0

)
+ det

(
a 0

0 d

)
︸ ︷︷ ︸

=det

a 0

c d



+det

(
0 b

c 0

)
+ det

(
0 b

0 d

)
︸ ︷︷ ︸

=det

0 b

c d



The first and fourth summand are always zero due to the occurrence of a zero column.
The second and third summand are possibly nonzero (it might still happen that they are
zero in the case where some of a, b, c, d are zero). In any case, we get

det

(
a b

c d

)
= det

(
a 0

0 d

)
+ det

(
0 b

c 0

)
.
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We can proceed analogously in general. Let A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K). We denote the
rows of A by {α⃗1, ... , α⃗n}. Using the linearity of det in the first row, we can write

detA = det


A11 0 0 · · · 0

α⃗2

...
α⃗n

+ det


0 A12 0 · · · 0

α⃗2

...
α⃗n

+ · · ·

· · ·+ det


0 0 0 · · · A1n

α⃗2

...
α⃗n

 .

We can now use the linearity in the second row and proceed in the same fashion with
each of the above summands. We continue this procedure until the n-th row. As a result,
we can write

(5.7) detA =
nn∑
k=1

detMk

where each of the matrices Mk has exactly one possibly nonzero entry in each row.
As above, some of the matrices Mk will have a zero column so that their determinant
vanishes. The matricesMk without a zero column must have exactly one possibly nonzero
entry in each row and each column. We can thus write the matrices Mk with possibly
nonzero determinant as

Mk =
n∑

i=1

Aσ(i)iEσ(i),i

for some permutation σ ∈ Sn. Every permutation of {1, ... , n} occurs precisely once in
the expansion (5.75.7), hence we can write

detA =
∑
σ∈Sn

det

(
n∑

i=1

Aσ(i)iEσ(i),i

)
,

where the notation
∑

σ∈Sn
means that we sum over all possible permutations of{1, ... , n}.

We will next write the matrix
∑n

i=1 Aσ(i)iEσ(i),i differently. To this end notice that for all
σ ∈ Sn, the permutation matrix Pσ can be written as Pσ =

∑n
i=1 Eσ(i),i . Furthermore,

the diagonal matrix

Dσ =


Aσ(1)1

Aσ(2)2

. . .
Aσ(n)n


can be written as Dσ =

∑n
j=1 Aσ(j)jEj ,j . Therefore, using Lemma 4.4Lemma 4.4, we obtain

PσDσ =
n∑

i=1

Eσ(i),i

n∑
j=1

Aσ(j)jEj ,j =
n∑

i=1

n∑
j=1

Aσ(j)jEσ(i),iEj ,j =
n∑

i=1

Aσ(i)iEσ(i),i ,

We thus have the formula

detA =
∑
σ∈Sn

det (PσDσ) =
∑
σ∈Sn

sgn(σ) det(Dσ),

where we use the product rule Proposition 5.21Proposition 5.21 and the definition of the signature of a
permutation. By Proposition 5.24Proposition 5.24, the determinant of a diagonal matrix is the product of
its diagonal entries, hence we obtain

detA =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aσ(i)i .
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Finally, writing π = σ−1, we have

n∏
i=1

Aσ(i)i =
n∏

j=1

Ajπ(j).

We have thus shown:

Proposition 5.39 (Leibniz formula for the determinant) Let n ∈ N and A =

(Aij)1,⩽i ,j⩽n ∈ Mn,n(K). Then we have

(5.8) det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aσ(i)i =
∑
π∈Sn

sgn(π)
n∏

j=1

Ajπ(j).

Example 5.40 For n = 3 we have six permutations

σ1 =

(
1 2 3

1 2 3

)
, σ2 =

(
1 2 3

1 3 2

)
, σ3 =

(
1 2 3

2 1 3

)
σ4 =

(
1 2 3

2 3 1

)
, σ5 =

(
1 2 3

3 1 2

)
, σ6 =

(
1 2 3

3 2 1

)
.

For A = (Aij)1⩽i ,j⩽3 ∈ M3,3(K), the Leibniz formula gives

det(A) = sgn(σ1)A11A22A33 + sgn(σ2)A11A23A32 + sgn(σ3)A12A21A33

+ sgn(σ4)A12A23A31 + sgn(σ5)A13A21A32 + sgn(σ6)A13A22A31,

so that in agreement with Example 5.19Example 5.19, we obtain

detA = A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31.

Remark 5.41 Exercise 5.49Exercise 5.49 has two important consequences. Since the transpose
turns the rows of a matrix into columns and vice versa, we conclude:

(i) the determinant is also multilinear and alternating, when thought of as a map
(Kn)n → K, that is, when taking n columns vectors as an input. In particular,
the determinant is also linear in each column;

(ii) the Laplace expansion is also valid if we expand with respect to a row, that is,
for A ∈ Mn,n(K) and 1 ⩽ l ⩽ n, we have

det(A) =
n∑

k=1

(−1)k+l [A]lk det
(
A(l ,k)

)
.

Example 5.42 (♡ – not examinable) For n ∈ N and a vector x⃗ = (xi )1⩽i⩽n ∈ Kn we
can form a matrix Vx⃗ = (Vij)1⩽i ,j⩽n ∈ Mn,n(K) with Vij = x j−1

i , that is,

Vx⃗ =


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)

2 · · · (xn)
n−1

 .
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Such matrices are known as Vandermonde matrices and the determinant of a Van-
dermonde matrix is known as a Vandermonde determinant, they satisfy

det(Vx⃗) =
∏

1⩽i<j⩽n

(xj − xi ).

Sketch of a proof We can define a function f : Kn → K, x⃗ 7→ det(Vx⃗). By the Leibniz
formula, the function f is a polynomial in the variables xi with integer coefficients. If we
freeze all variables of f except the ℓ-th variable, then we obtain a function gℓ : K → K
of one variable xℓ. For 1 ⩽ i ⩽ n with i ̸= ℓ we have gℓ(xi ) = 0, since we compute the
determinant of a matrix with two identical rows, the ℓ-th row and the i -th row. Factoring
the zeros, we can thus write gℓ(xℓ) = qℓ(xℓ)

∏
1⩽i⩽n,i ̸=ℓ(xℓ − xi ) for some polynomial qℓ.

We can repeat this argument for all ℓ and hence can write det(Vx⃗) = q(x⃗)
∏

1⩽i<j⩽n(xj −
xi ) for some polynomial q(x⃗). The Leibniz formula implies that the sum of the exponents
of all the factors xi in det(Vx⃗) must be 1

2n(n − 1). The same holds true for
∏

1⩽i<j⩽n.
It follows that q must be a constant. Using the Leibniz formula again, we see that the
summand of det(Vx⃗) corresponding to the identity permutation is the product of the
diagonal entries of Vx⃗ , that is, x2(x3)2 · · · (xn)n−1. Taking the first term in all factors of∏

1⩽i<j⩽n(xj − xi ), we also obtain x2(x3)
2 · · · (xn)n−1, hence det(Vx⃗) =

∏
1⩽i<j⩽n(xj −

xi ), as claimed. □

5.7 Cramer’s rule

The determinant can be used to give a formula for the solution of a linear system of
equations of the form Ax⃗ = b⃗ for an invertible matrix A ∈ Mn,n(K), b⃗ ∈ Kn and
unknowns x⃗ ∈ Kn. This formula is often referred to as Cramer’s rule. In order to derive it
we start with definitions:

Definition 5.43 (Adjugate matrix) Let n ∈ N and A ∈ Mn,n(K) be a square matrix.
The adjugate matrix of A is the n × n-matrix Adj(A) whose entries are given by
(notice the reverse order of i and j on the right hand side)

[Adj(A)]ij = (−1)i+j det
(
A(j ,i)

)
, 1 ⩽ i , j ⩽ n.

Video Adjugate matrixAdjugate matrix

Example 5.44

Adj

((
a b

c d

))
=

(
d −b

−c a

)
, Adj

1 1 2

0 2 1

1 0 2

 =

 4 −2 −3

1 0 −1

−2 1 2



The determinant and the adjugate matrix provide a formula for the inverse of a matrix:

Theorem 5.45 Let n ∈ N and A ∈ Mn,n(K). Then we have

Adj(A)A = AAdj(A) = det(A)1n.
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In particular, if A is invertible then

A−1 =
1

detA
Adj(A).

Proof Let A = (Aij)1⩽i ,j⩽n. For 1 ⩽ i ⩽ n we obtain for the i -th diagonal entry

[Adj(A)A]ii =
n∑

k=1

(−1)i+k det
(
A(k,i)

)
Aki = det(A),

where we use the Laplace expansion (5.55.5) of the determinant. The diagonal entries of
Adj(A)A are thus all equal to detA. For 1 ⩽ i , j ⩽ n with i ̸= j we have

[Adj(A)A]ij =
n∑

k=1

(−1)i+k
(
detA(k,i)

)
Akj .

We would like to interpret this last expression as a Laplace expansion. We consider a
new matrix Â = (Âij)1⩽i ,j⩽n which is identical to A, except that the i -th column of A is
replaced with the j-th column of A, that is, for 1 ⩽ k ⩽ n, we have

(5.9) Âkl =

{
Akj , l = i ,

Akl , l ̸= i .

Then, for all 1 ⩽ k ⩽ n we have Â(k,i) = A(k,i), since the only column in which A and Â

are different is removed in A(k,i). Using (5.95.9), the Laplace expansion of Â with respect to
the i -th column gives

det Â =
n∑

k=1

(−1)(i+k)Âki det
(
Â(k,i)

)
=

n∑
k=1

(−1)i+k
(
detA(k,i)

)
Akj

= [Adj(A)A]ij

The matrix Â has a double occurrence of the i -th column, hence its column vectors are
linearly dependent. Therefore Â is not invertible by Proposition 4.7Proposition 4.7 and so det Â =

[Adj(A)A]ij = 0 by Corollary 5.22Corollary 5.22. The off-diagonal entries of Adj(A)A are thus all zero
and we conclude Adj(A)A = det(A)1n. Using the row version of the Laplace expansion
we can conclude analogously that AAdj(A) = det(A)1n.

Finally, ifA is invertible, thendetA ̸= 0by Corollary 5.22Corollary 5.22, so thatA−1 = Adj(A)/ det(A),
as claimed. □

As a corollary we obtain:

Corollary 5.46 Let n ∈ N and A ∈ Mn,n(K) be an invertible upper triangular matrix.
Then A−1 is also an upper triangular matrix.

Remark 5.47 Taking the transpose also implies: Let A ∈ Mn,n(K) be an invertible
lower triangular matrix. Then A−1 is also a lower triangular matrix.

Proof of Corollary 5.46Corollary 5.46 Write A = (Aij)1⩽i ,j⩽n. Using Theorem 5.45Theorem 5.45 it suffices to show
that Adj(A) is an upper triangular matrix. If A is an upper triangular matrix, then Aij = 0

for all i > j . By definition we have

[Adj(A)]ij = (−1)i+j det
(
A(j ,i)

)
, 1 ⩽ i , j ⩽ n.
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Notice that for i > j every element below the diagonal of A(j ,i) is also below the diagonal
of A and hence must be zero. It follows that A(j ,i) is an upper triangular matrix as well.
Proposition 5.24Proposition 5.24 implies that the determinant of A(j ,i) is the product of its diagonal
entries. Since A(j ,i) arises from the upper triangular matrix A by removing a row and a
column, at least one of the diagonal entries of A(j ,i) must be zero and thus detA(j ,i) = 0

for i > j . We conclude that A−1 is an upper triangular matrix as well. □

We now use Theorem 5.45Theorem 5.45 to obtain a formula for the solution of the linear systemAx⃗ = b⃗

for an invertible matrix A. Multiplying from the left with A−1, we get

x⃗ = A−1b⃗ =
1

detA
Adj(A)b⃗.

Writing x⃗ = (xi )1⩽i⩽n, multiplication with detA gives for 1 ⩽ i ⩽ n

xi detA =
n∑

k=1

[Adj(A)]ikbk =
n∑

k=1

(−1)i+k det
(
A(k,i)

)
bk .

We can again interpret the right hand side as a Laplace expansion of the matrix Âi ob-
tained by replacing the i -th column of A with b⃗ and leaving A unchanged otherwise.
Hence, we have for all 1 ⩽ i ⩽ n

xi =
det Âi

detA
.

This formula is known as Cramer’s rule. While this is a neat formula, it is rarely used in
computing solutions to linear systems of equations due to the complexity of computing
determinants.

Example 5.48 (Cramer’s rule) We consider the system Ax⃗ = b⃗ for

A =

2 1 1

1 2 1

1 1 2

 and b⃗ =

−2

2

4

 .

Here we obtain

Â1 =

−2 1 1

2 2 1

4 1 2

 , Â2 =

2 −2 1

1 2 1

1 4 2

 , Â3 =

2 1 −2

1 2 2

1 1 4

 .

We compute detA = 4, det Â1 = −12, det Â2 = 4 and det Â3 = 12 so that Cramer’s
rule gives indeed the correct solution

x⃗ =
1

4

−12

4

12

 =

−3

1

3

 .

Exercises

Exercise 5.49 Use the Leibniz formula to show that

det(A) = det(AT )

for all A ∈ Mn,n(K).
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CHAPTER 6

Endomorphisms

6.1 Sums, direct sums and complements WEEK 10

In this chapter we study linear mappings from a vector space to itself.

Definition 6.1 (Endomorphism) A linear map g : V → V from a K-vector space V

to itself is called an endomorphism. An endomorphism that is also an isomorphism
is called an automorphism.

Video EndomorphismEndomorphism

Before we develop the theory of endomorphisms, we introduce some notions for sub-
spaces.

Definition 6.2 (Sum of subspaces) Let V be a K-vector space, n ∈ N and U1, ... ,Un

be vector subspaces of V . The set
n∑

i=1

Ui = U1 + U2 + · · ·+ Un = {v ∈ V | v = u1 + u2 + · · ·+ un for ui ∈ Ui}

is called the sum of the subspaces Ui .

Video Sum of subspacesSum of subspaces

Recall that by Proposition 3.27Proposition 3.27, the intersection of two subspaces is again a subspace,
whereas the union of two subspaces fails to be a subspace in general. However, subspaces
do behave nicely with regards to sums:

Proposition 6.3 The sum of the subspaces Ui ⊂ V , i = 1, ... , n is again a vector
subspace.

Proof The sum
∑n

i=1 Ui is non-empty, since it contains the zero vector 0V . Let v and
v ′ ∈

∑n
i=1 Ui so that

v = v1 + v2 + · · ·+ vn and v ′ = v ′
1 + v ′

2 + · · ·+ v ′
n

for vectors vi , v ′
i ∈ Ui , i = 1, ... , n. Each Ui is a vector subspace of V . Therefore, for all

scalars s, t ∈ K, the vector svi + tv ′
i is an element of Ui , i = 1, ... , n. Thus

sv + tv ′ = sv1 + tv ′
1 + · · ·+ svn + tv ′

n

is an element of U1+ · · ·+Un. By Definition 3.21Definition 3.21, it follows that U1+ · · ·+Un is a vector
subspace of V . □
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Remark 6.4 Notice thatU1+· · ·+Un is the smallest vector subspace ofV containing
all vector subspaces Ui , i = 1, ... , n.

If each vector in the sum is in a unique way the sum of vectors from the subspaces we say
the subspaces are in direct sum:

Definition 6.5 (Direct sum of subspaces) Let V be a K-vector space, n ∈ N and
U1, ... ,Un be vector subspaces ofV . The subspacesU1, ... ,Un are said to be in direct
sum if each vector w ∈ W = U1 + · · ·+ Un is in a unique way the sum of vectors
vi ∈ Ui for 1 ⩽ i ⩽ n. That is, if w = v1 + v2 + · · · + vn = v ′

1 + v ′
2 + · · · + v ′

n for
vectors vi , v ′

i ∈ Ui , then vi = v ′
i for all 1 ⩽ i ⩽ n. We write

n⊕
i=1

Ui

in case the subspaces U1, ... ,Un are in direct sum.

Example 6.6 Let n ∈ N and V = Kn as well as Ui = span{e⃗i}, where {e⃗1, ... , e⃗n}
denotes the standard basis of Kn. Then Kn =

⊕n
i=1 Ui .

Remark 6.7
(i) Two subspaces U1,U2 of V are in direct sum if and only if U1 ∩ U2 = {0V }.

Indeed, suppose U1 ∩ U2 = {0V } and consider w = v1 + v2 = v ′
1 + v ′

2

with vi , v
′
i ∈ Ui for i = 1, 2. We then have v1 − v ′

1 = v ′
2 − v2 ∈ U2, since

U2 is a subspace. Since U1 is a subspace as well, we also have v1 − v ′
1 ∈ U1.

Since v1 − v ′
1 lies both in U1 and U2, we must have v1 − v ′

1 = 0V = v ′
2 − v2.

Conversely, suppose U1,U2 are in direct sum and let w ∈ (U1 ∩ U2). We can
write w = w + 0V = 0V + w , since w ∈ U1 and w ∈ U2. Since U1,U2 are in
direct sum, we must have w = 0V , hence U1 ∩ U2 = {0V }.

(ii) Observe that if the subspaces U1, ... ,Un are in direct sum and vi ∈ Ui with
vi ̸= 0V for 1 ⩽ i ⩽ n, then the vectors {v1, ... , vn} are linearly independent.
Indeed, if s1, ... , sn are scalars such that

s1v1 + s2v2 + · · ·+ snvn = 0V = 0V + 0V + · · ·+ 0V ,

then sivi = 0V for all 1 ⩽ i ⩽ n. By assumption vi ̸= 0V and hence si = 0 for
all 1 ⩽ i ⩽ n.

Proposition 6.8 Let n ∈ N, V be a finite dimensional K-vector space and U1, ... ,Un

be subspaces of V . Let bi be an ordered basis of Ui for 1 ⩽ i ⩽ n. Then we have:
(i) The tuple of vectors obtained by listing all the vectors of the bases bi is a basis of

V if and only if V =
⊕n

i=1 Ui .
(ii) dim(U1 + · · ·+ Un) ⩽ dim(U1) + · · ·+ dim(Un) with equality if and only if the

subspaces U1, ... ,Un are in direct sum.

Proof Part of an exercise. □
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Definition 6.9 (Complement to a subspace) Let V be a K-vector space and U ⊂ V

a subspace. A subspace U ′ of V such that V = U ⊕ U ′ is called a complement to U .

Example 6.10 Notice that a complement need not be unique. Consider V = R2

and U = span{e⃗1}. Let v⃗ ∈ V . Then the subspace U ′ = span{v⃗} is a complement
to U , provided e⃗1, v⃗ are linearly independent.

Corollary 6.11 (Existence of a complement) Let U be a subspace of a finite dimen-
sional K-vector space V . Then there exists a subspace U ′ so that V = U ⊕ U ′.

Proof Suppose (v1, ... , vm) is an ordered basis of U . By Theorem 3.64Theorem 3.64, there exists a
basis {v1, ... , vm, vm+1, ... , vn} of V . Defining U ′ = span{vm+1, ... , vn}, Proposition 6.8Proposition 6.8
implies the claim. □

The dimension of a sum of two subspaces equals the sum of the dimensions of the
subspaces minus the dimension of the intersection:

Proposition 6.12 LetV be a finite dimensionalK-vector space andU1,U2 subspaces
of V . Then we have

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).

Proof Let r = dim(U1 ∩ U2) and let {u1, ... , ur} be a basis of U1 ∩ U2. These vectors
are linearly independent and elements of U1, hence by Theorem 3.64Theorem 3.64, there exist vectors
v1, ... , vm−r so that S1 = {u1, ... , ur , v1, ... , vm−r} is a basis of U1. Likewise there exist
vectors w1, ... ,wn−r such that S2 = {u1, ... , ur ,w1, ... ,wn−r} is a basis of U2. Here m =

dimU1 and n = dimU2.

Now consider the set S = {u1, ... , ur , v1, ... , vm−r ,w1, ... ,wn−r} consisting of r +m −
r + n − r = n +m − r vectors. If this set is a basis of U1 + U2, then the claim follows,
since then dim(U1 + U2) = n +m − r = dim(U1) + dim(U2)− dim(U1 ∩ U2).

We first show that S generates U1 + U2. Let y ∈ U1 + U2 so that y = x1 + x2 for vectors
x1 ∈ U1 and x2 ∈ U2. Since S1 is a basis of U1, we can write x1 as a linear combination of
elements of S1. Likewise we can write x2 as a linear combination of elements of S2. It
follows that S generates U1 + U2.

We need to show that S is linearly independent. So suppose we have scalars s1, ... , sr ,
t1, ... , tm−r , and r1, ... , rn−r , so that

s1u1 + · · ·+ srur︸ ︷︷ ︸
=u

+ t1v1 + · · ·+ tm−rvm−r︸ ︷︷ ︸
=v

+ r1w1 + · · ·+ rn−rwn−r︸ ︷︷ ︸
=w

= 0V .

Equivalently, w = −u− v so that w ∈ U1. Since w is a linear combination of elements of
S2, we also have w ∈ U2. Therefore, w ∈ U1 ∩ U2 and there exist scalars ŝ1, ... , ŝr such
that

w = ŝ1u1 + · · ·+ ŝrur︸ ︷︷ ︸
=û
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This is equivalent to w − û = 0V , or written out

r1w1 + · · ·+ rn−rwn−r − ŝ1u1 − · · · − ŝrur = 0V .

Since the vectors {u1, ... , ur ,w1, ... ,wn−r} are linearly independent, we conclude that
r1 = · · · = rn−r = ŝ1 = · · · = ŝr = 0. It follows that w = 0V and hence u + v = 0V .
Again, since {u1, ... , ur , v1, ... , vm−r} are linearly independent, we conclude that s1 =

· · · = sr = t1 = · · · = tm−r = 0 and we are done. □

6.2 Invariants of endomorphisms

LetV be a finite dimensional vector space equipped with an ordered basisb and g : V →
V an endomorphism. Recall from Theorem 3.119Theorem 3.119 that if we consider another ordered
basis b′ of V , then

M(g ,b′,b′) = CM(g ,b,b)C−1,

where we write C = C(b,b′) for the change of basis matrix. This motivates the following
definition:

Definition 6.13 (Similar / conjugate matrices) Let n ∈ N and A,A′ ∈ Mn,n(K). The
matrices A and A′ are called similar or conjugate over K if there exists an invertible
matrix C ∈ Mn,n(K) such that

A′ = CAC−1.

Similarity of matrices over K is an equivalence relation:

Proposition 6.14 Let n ∈ N and A,B,X ∈ Mn,n(K). Then we have
(i) A is similar to itself;

(ii) A is similar to B then B is similar to A;
(iii) If A is similar to B and B is similar to X, then A is also similar to X.

Proof (i) We take C = 1n.

(ii) SupposeA is similar toB so thatB = CAC−1 for some invertible matrixC ∈ Mn,n(K).
Multiplying with C−1 from the left and C from the right, we get

C−1BC = C−1CAC−1C = A,

so that the similarity follows for the choice Ĉ = C−1.

(iii) We have B = CAC−1 and X = DBD−1 for invertible matrices C,D. Then we get

X = DCAC−1D−1,

so that the similarity follows for the choice Ĉ = DC. □

Remark 6.15
• Because of (ii) in particular, one can say that two matrices A and B are similar

without ambiguity.
• Theorem 3.119Theorem 3.119 shows that A and B are similar if and only if there exists an endo-

morphism g of Kn such that A and B represent g with respect to two ordered
bases of Kn.
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One might wonder whether there exist functions f : Mn,n(K) → Kwhich are invariant un-
der conjugation, that is, f satisfies f (CAC−1) = f (A) for all A ∈ Mn,n(K) and all invert-
ible matrices C ∈ Mn,n(K). We have already seen an example of such a function, namely
the determinant. Indeed using the product rule Proposition 5.21Proposition 5.21 and Corollary 5.22Corollary 5.22, we
compute

(6.1)
det
(
CAC−1

)
= det(CA) det

(
C−1

)
= det(C) det(A) det

(
C−1

)
= det(A).

Because of this fact, the following definition makes sense:

Definition 6.16 (Determinant of an endomorphism) Let V be a finite dimensional
K-vector space and g : V → V an endomorphism. We define

det(g) = det (M(g ,b,b))

where b is any ordered basis of V . By Theorem 3.119Theorem 3.119 and (6.16.1), the scalar det(g) is
independent of the chosen ordered basis.

Another example of a scalar that we can associate to an endomorphism is the so-called
trace. Like for the determinant, we first define the trace for matrices. Luckily, the trace is
a lot simpler to define:

Definition 6.17 (Trace of a matrix) Let n ∈ N and A ∈ Mn,n(K). The sum
∑n

i=1[A]ii
of its diagonal entries is called the trace of A and denoted by Tr(A) or TrA.

Example 6.18 For all n ∈ N we have Tr(1n) = n. For

A =

2 1 1

1 2 1

1 1 3


we have Tr(A) = 2 + 2 + 3 = 7.

The trace of a product of square matrices is independent of the order of multiplication:

Proposition 6.19 Let n ∈ N and A,B ∈ Mn,n(K). Then we have

Tr(AB) = Tr(BA).

Proof Let A = (Aij)1⩽i ,j⩽n and B = (Bij)1⩽i ,j⩽n. Then

[AB]ij =
n∑

k=1

AikBkj and [BA]kj =
n∑

i=1

BkiAij ,

so that

Tr(AB) =
n∑

i=1

n∑
k=1

AikBki =
n∑

k=1

n∑
i=1

BkiAik = Tr(BA).

□

Using the previous proposition, we obtain

(6.2) Tr
(
CAC−1

)
= Tr

(
AC−1C

)
= Tr(A).
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As for the determinant, the following definition thus makes sense:

Definition 6.20 (Trace of an endomorphism) LetV be a finite dimensionalK-vector
space and g : V → V an endomorphism. We define

Tr(g) = Tr (M(g ,b,b))

where b is any ordered basis of V . By Theorem 3.119Theorem 3.119 and (6.26.2), the scalar Tr(g) is
independent of the chosen ordered basis.

The trace and determinant of endomorphisms behave nicely with respect to composition
of maps:

Proposition 6.21 Let V be a finite dimensional K-vector space. Then, for all endo-
morphisms f , g : V → V we have

(i) Tr(f ◦ g) = Tr(g ◦ f );
(ii) det(f ◦ g) = det(f ) det(g).

Proof (i) Fix an ordered basis b of V . Then, using Corollary 3.115Corollary 3.115 and Proposition 6.19Proposition 6.19,
we obtain

Tr(f ◦ g) = Tr (M(f ◦ g ,b,b)) = Tr (M(f ,b,b)M(g ,b,b))

= Tr (M(g ,b,b)M(f ,b,b)) = Tr (M(g ◦ f ,b,b)) = Tr(g ◦ f ).

The proof of (ii) is analogous, but we use Proposition 5.21Proposition 5.21 instead of Proposition 6.19Proposition 6.19. □

We also have:

Proposition 6.22 Let V be a finite dimensional K-vector space and g : V → V an
endomorphism. Then the following statements are equivalent:

(i) g is injective;
(ii) g is surjective;

(iii) g is bijective;
(iv) det(g) ̸= 0.

Proof The equivalence of the first three statements follows from Corollary 3.77Corollary 3.77. We fix
an ordered basis b of V . Suppose g is bijective with inverse g−1 : V → V . Then we have

det(g ◦ g−1) = det(g) det
(
g−1

)
= det (IdV ) = det (M(IdV ,b,b)) = det (1dimV ) = 1.

It follows that det(g) ̸= 0 and moreover that

det
(
g−1

)
=

1

det g
.

Conversely, suppose that det g ̸= 0. Then detM(g ,b,b) ̸= 0 so that M(g ,b,b) is
invertible by Corollary 5.22Corollary 5.22 and Proposition 3.116Proposition 3.116 implies that g is bijective. □

Remark 6.23 Notice that Proposition 6.22Proposition 6.22 is wrong for infinite dimensional vector
spaces. Consider V = K∞, the K-vector space of sequences from Example 3.6Example 3.6. The
endomorphism g : V → V defined by (x1, x2, x3, ...) 7→ (0, x1, x2, x3, ...) is injective
but not surjective.
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6.3 Eigenvectors and eigenvalues WEEK 11

Mappings g that have the same domain and codomain allow for the notion of a fixed
point. Recall that an element x of a set X is called a fixed point of a mapping g : X → X
if g(x) = x , that is, x agrees with its image under g . In Linear Algebra, a generalisation of
the notion of a fixed point is that of an eigenvector. A vector v ∈ V is called an eigenvector
of the linear map g : V → V if v is merely scaled when applying g to v , that is, there
exists a scalar λ ∈ K – called eigenvalue – such that g(v) = λv . Clearly, the zero vector
0V will satisfy this condition for every choice of scalar λ. For this reason, eigenvectors
are usually required to be different from the zero vector. In this terminology, fixed points
v of g are simply eigenvectors with eigenvalue 1, since they satisfy g(v) = v = 1v .

It is natural to ask whether a linear map g : V → V always admits an eigenvector. In the
remaining part of this chapter we will answer this question and further develop our theory
of linear maps, specifically endomorphisms. We start with some precise definitions.

Definition 6.24 (Eigenvector, eigenspace, eigenvalue) Let g : V → V be an endo-
morphism of a K-vector space V .
• An eigenvector with eigenvalue λ ∈ K is a non-zero vector v ∈ V such that
g(v) = λv .

• If λ ∈ K is an eigenvalue of g , the λ-eigenspace Eigg (λ) is the subspace of vectors
v ∈ V satisfying g(v) = λv .

• The dimension of Eigg (λ) is called the geometric multiplicity of the eigenvalue λ.
• The set of all eigenvalues of g is called the spectrum of g .
• For A ∈ Mn,n(K) we speak of eigenvalues, eigenvectors, eigenspaces and spec-

trum to mean those of the endomorphism fA : Kn → Kn.

Video Eigenvector, eigenspace, eigenvalueEigenvector, eigenspace, eigenvalue

Remark 6.25 By definition, the zero vector 0V is not an eigenvector, it is however
an element of the eigenspace Eigg (λ) for every eigenvalue λ.

Example 6.26
(i) The scalar 0 is an eigenvalue of an endomorphism g : V → V if and only if

the kernel of g is different from {0V }. In the case where the kernel of g does
not only consist of the zero vector, we have Ker g = Eigg (0) and the geometric
multiplicity of 0 is the nullity of g .

(ii) The endomorphism fD : Kn → Kn associated to a diagonal matrix with distinct
diagonal entries

D =


λ1

λ2

. . .
λn


has spectrum {λ1, ... ,λn} and corresponding eigenspaces EigfD(λi ) =

span{e⃗i}.
(iii) Consider the R-vector space P(R) of polynomials and f = d

dx : P(R) →
P(R) the derivative by the variable x . The kernel of f consists of the constant
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polynomials and hence 0 is an eigenvalue for f . For any non-zero scalar λ we
cannot have polynomials p satisfying d

dx p = λp, as the left hand side of this
last expression has a smaller degree than the right hand side.

Previously we defined the trace and determinant for an endomorphism g : V → V

by observing that the trace and determinant of the matrix representation of g are in-
dependent of the chosen basis of V . Similarly, we can consider eigenvalues of g and
eigenvalues of the matrix representation of g with respect to some ordered basis of V .
Perhaps unsurprisingly, the eigenvalues are the same:

Proposition 6.27 Let g : V → V be an endomorphism of a finite dimensional K-
vector space V . Let b be an ordered basis of V with corresponding linear coordinate
system β. Then v ∈ V is an eigenvector of g with eigenvalue λ ∈ K if and only if
β(v) ∈ Kn is an eigenvector with eigenvalue λ of M(g ,b,b). In particular, conjugate
matrices have the same eigenvalues.

Proof Write A = M(g ,b,b). Recall that by an eigenvector of A ∈ Mn,n(K), we mean an
eigenvector of fA : Kn → Kn. By Definition 3.107Definition 3.107, we have fA = β ◦ g ◦ β−1. Suppose
λ ∈ K is an eigenvalue of g so that g(v) = λv for some non-zero vector v ∈ V . Consider
the vector x⃗ = β(v) ∈ Kn which is non-zero, since β : V → Kn is an isomorphism. Then

fA(x⃗) = β(g(β−1(x⃗))) = β(g(v)) = β(λv) = λβ(v) = λx⃗ ,

so that x⃗ is an eigenvector of fA with eigenvalue λ.

Conversely, if λ is an eigenvalue of fA with non-zero eigenvector x⃗ , then it follows as
above that v = β−1(x⃗) ∈ V is an eigenvector of g with eigenvalue λ.

By Remark 6.15Remark 6.15, if the matrices A, B are similar, then they represent the same endo-
morphism g : Kn → Kn and hence have the same eigenvalues. □

The “nicest” endomorphisms are those for which there exists an ordered basis consisting
of eigenvectors:

Definition 6.28 (Diagonalisable endomorphism)
• An endomorphism g : V → V is called diagonalisable if there exists an ordered

basis b of V such that each element of b is an eigenvector of g .
• For n ∈ N, a matrix A ∈ Mn,n(K) is called diagonalisable over K if the endo-

morphism fA : Kn → Kn is diagonalisable.

Example 6.29
(i) We consider V = P(R) and the endomorphism g : V → V which replaces the

variable x with 2x . For instance, we have

g(x2 − 2x + 3) = (2x)2 − 2(2x) + 3 = 4x2 − 4x + 3.

Then g is diagonalisable. The vector space P(R) has an ordered basis b =

(1, x , x2, x3, ...). Clearly, for all k ∈ N ∪ {0} we have g(xk) = 2kxk , so that xk

is an eigenvector of g with eigenvalue 2k .
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(ii) For α ∈ (0,π) consider

Rα =

(
cosα − sinα

sinα cosα

)
.

Recall that the endomorphism fRα : R2 → R2 rotates vectors counter-
clockwise around the origin 0R2 by the angle α. Since α ∈ (0,π), the endo-
morphism fRα

has no eigenvectors and hence is not diagonalisable.

Remark 6.30 Applying Proposition 6.27Proposition 6.27, we conclude that in the case of a finite
dimensional K-vector space V , an endomorphism g : V → V is diagonalisable if
and only if there exists an ordered basis b of V such that M(g ,b,b) is a diagonal
matrix. Moreover, A ∈ Mn,n(K) is diagonalisable if and only if A is similar over K to
a diagonal matrix.

Recall, if X ,Y are sets, f : X → Y a mapping and Z ⊂ X a subset of X , we can consider
the restriction of f to Z , usually denoted by f |Z , which is the mapping

f |Z : Z → Y, z 7→ f (z).

So we simply take the same mapping f , but apply it to the elements of the subset only.

Closely related to the notion of an eigenvector is that of a stable subspace. Let v ∈ V be
an eigenvector with eigenvalue λ of the endomorphism g : V → V . The 1-dimensional
subspace U = span{v} is stable under g , that is, g(U) ⊂ U . Indeed, since g(v) = λv

and since every vector u ∈ U can be written as u = tv for some scalar t ∈ K, we have
g(u) = g(tv) = tg(v) = tλv ∈ U . This motivates the following definition:

Definition 6.31 (Stable subspace) A subspace U ⊂ V is called stable or invariant
under the endomorphism g : V → V if g(U) ⊂ U , that is g(u) ∈ U for all vectors
u ∈ U . In this case, the restriction g |U of g to U is an endomorphism of U .

Remark 6.32 Notice that a finite dimensional subspace U ⊂ V is stable under g if
and only if g(vi ) ∈ U for 1 ⩽ i ⩽ m, where {v1, ... , vm} is a basis of U .

Example 6.33
(i) Every eigenspace of an endomorphism g : V → V is a stable subspace. By

definition g |Eigg (λ) : Eigg (λ) → Eigg (λ) is multiplication by the scalar λ ∈ K.
(ii) We consider V = R3 and

Rα =

cosα − sinα 0

sinα cosα 0

0 0 1


for α ∈ (0,π). The endomorphism fRα

: R3 → R3 is the rotation by the angle
α ∈ R around the axis spanned by e⃗3. Then the plane U = {x⃗ = (xi )1⩽i⩽3 ∈
R3|x3 = 0} is stable under f = fRα . Here f |U : U → U is the rotation in the
plane U around the origin with angle α.
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Moreover, the vector e⃗3 is an eigenvector with eigenvalue 1 so that

Eigf (1) = span{e⃗3}.

(iii) We consider again the R-vector space P(R) of polynomials and f = d
dx :

P(R) → P(R) the derivative by the variable x . For n ∈ N let Un denote the
subspace of polynomials of degree at most n. Since Un−1 ⊂ Un, the subspace
Un is stable under f .

Stable subspaces correspond to zero blocks in the matrix representation of linear maps.
More precisely:

Proposition 6.34 Let V be a K-vector space of dimension n ∈ N and g : V → V an
endomorphism. Furthermore, let U ⊂ V be a subspace of dimension 1 ⩽ m ⩽ n and
b an ordered basis of U and c = (b,b′) an ordered basis of V . Then U is stable under
g if and only if the matrix A = M(g , c, c) has the form

A =

(
Â ∗

0n−m,m ∗

)
for some matrix Â ∈ Mm,m(K). In the case where U is stable under g , we have
Â = M(g |U ,b,b) ∈ Mm,m(K).

Proof Write b = (v1, ... , vm) for vectors vi ∈ U and b′ = (w1, ... ,wn−m) for vectors
wi ∈ V .

⇒ Since U is stable under g , we have g(u) ∈ U for all vectors u ∈ U . Since b is a basis of
U , there exist scalars Âij ∈ K with 1 ⩽ i , j ⩽ m such that

g(vj) =
m∑
i=1

Âijvi

for all 1 ⩽ j ⩽ m. By Proposition 3.108Proposition 3.108, the matrix representation of g with respect to
the ordered basis c = (b,b′) of V thus takes the form

A =

(
Â ∗

0n−m,m ∗

)
where we write Â = (Âij)1⩽i ,j⩽m = M(g |U ,b,b).

⇐ Suppose

A =

(
Â ∗

0n−m,m ∗

)
= M(g , c, c)

is the matrix representation of g with respect to the ordered basis c of V . Write Â =

(Âij)1⩽i ,j⩽m. Then, by Proposition 3.108Proposition 3.108, g(vj) =
∑m

i=1 Âijvi ∈ U for all 1 ⩽ j ⩽ m,
hence U is stable under g , by Remark 6.32Remark 6.32. □

From Proposition 6.34Proposition 6.34 we can conclude:

Remark 6.35 Suppose V is the direct sum of subspaces U1, U2, ... ,Um, all of which
are stable under the endomorphism g : V → V . If bi is an ordered basis of Ui for
i = 1, ... ,m. Then the matrix representation of g with respect to the ordered basis
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c = (b1, ... ,bm) takes the block form

A =


A1

A2

. . .
Am


where Ai = M(g |Ui ,bi ,bi ) for i = 1, ... ,m.

6.4 The characteristic polynomial

The eigenvalues of an endomorphism are the solutions of a polynomial equation:

Lemma 6.36 Let V be a finite dimensional K-vector space and g : V → V an
endomorphism. Then λ ∈ K is an eigenvalue of g if and only if

det (λIdV − g) = 0.

Moreover if λ is an eigenvalue of g , then Eigg (λ) = Ker(λIdV − g).

Proof Let v ∈ V . We may write v = IdV (v). Hence

g(v) = λv ⇐⇒ 0V = (λIdV − g)(v) ⇐⇒ v ∈ Ker(λIdV − g)

It follows that Eigg (λ) = Ker(λIdV − g). Moreover λ ∈ K is an eigenvalue of g if
and only if the kernel of λIdV − g is different from {0V } or if and only if λIdV − g is
not injective. Proposition 6.22Proposition 6.22 implies that λ ∈ K is an eigenvalue of g if and only if
det (λIdV − g) = 0. □

Definition 6.37 (Characteristic polynomial) Let g : V → V be an endomorphism
of a finite dimensional K-vector space V . The function

charg : K → K, x 7→ det (x IdV − g)

is called the characteristic polynomial of the endomorphism g .

Video Characteristic polynomialCharacteristic polynomial

In practice, in order to compute the characteristic polynomial of an endomorphism
g : V → V , we choose an ordered basis b of V and compute the matrix representation
A = M(g ,b,b) of g with respect to b. We then have

charg (x) = det (x1n − A) .

By the characteristic polynomial of a matrix A ∈ Mn,n(K), we mean the characteristic
polynomial of the endomorphism fA : Kn → Kn, that is, the function x 7→ det (x1n − A).

A zero of a polynomial f : K → K is a scalar λ ∈ K such that f (λ) = 0. The multiplicity
of a zero λ is the largest integer n ⩾ 1 such that there exists a polynomial f̂ : K → K so
that f (x) = (x − λ)n f̂ (x) for all x ∈ K. Zeros are also known as roots.
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Example 6.38 The polynomial f (x) = x3 − x2 − 8x + 12 can be factorised as
f (x) = (x − 2)2(x + 3) and hence has zero 2 with multiplicity 2 and −3 with
multiplicity 1.

Definition 6.39 (Algebraic multiplicity) Letλbe an eigenvalue of the endomorphism
g : V → V . The multiplicity of the zero λ of charg is called the algebraic multiplicity
of λ.

Example 6.40
(i) We consider

A =

(
1 5

5 1

)
.

Then

charA(x) = charfA(x) = det (x12 − A) = det

(
x − 1 −5

−5 x − 1

)
= (x − 1)2 − 25 = x2 − 2x − 24 = (x + 4)(x − 6).

Hence we have eigenvalues λ1 = 6 and λ2 = −4, both with algebraic multipli-
city 1. By definition we have

EigA(6) = EigfA(6) =
{
v⃗ ∈ K2|Av⃗ = 6v⃗

}
and we compute that

EigA(6) = span

{(
1

1

)}
Since dimEigA(6) = 1, the eigenvalue 6 has geometric multiplicity 1. Likewise
we compute

EigA(−4) = span

{(
−1

1

)}
so that the eigenvalue −4 has geometric multiplicity 1 as well. Notice that we
have an ordered basis of eigenvectors of A and hence A is diagonalisable, c.f.
Example 3.111Example 3.111.

(ii) We consider

A =

(
2 1

0 2

)
Then charA(x) = (x − 2)2 so that we have a single eigenvalue 2 with algebraic
multiplicity 2. We compute

EigA(2) = span

{(
1

0

)}
so that the eigenvalue 2 has geometric multiplicity 1. Notice that we cannot
find an ordered basis consisting of eigenvectors, hence A is not diagonalisable.

The determinant and trace of an endomorphism do appear as coefficients in its charac-
teristic polynomial:
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Lemma 6.41 Let g : V → V be an endomorphism of a K-vector space V of dimen-
sion n. Then charg is a polynomial of degree n and

charg (x) = xn − Tr(g)xn−1 + · · ·+ (−1)n det(g).

Proof We fix an ordered basis b of V . Writing M(g ,b,b) = A = (Aij)1⩽i ,j⩽n and using
the Leibniz formula (5.85.8), we have

charg (x) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Biσ(i),

where

Bij =

{
x − Aii , i = j ,

−Aij , i ̸= j .

Therefore, charg is a finite sum of products containing x at most n times, hence charg is
a polynomial in x of degree at most n. The identity permutation contributes the term∏n

i=1 Bii in the Leibniz formula, hence we obtain

charg (x) =
n∏

i=1

(x − Aii ) +
∑

σ∈Sn,σ ̸=1

sgn(σ)
n∏

i=1

Biσ(i)

We now use induction to show that
n∏

i=1

(x − Aii ) = xn − Tr(A)xn−1 + Cn−2x
n−2 + · · ·+ c1x + c0

for scalars Cn−2, ... , c0 ∈ K. For n = 1 we obtain x − A11, so that the statement is
anchored.

Inductive step: Suppose
n−1∏
i=1

(x − Aii ) = xn−1 −

(
n−1∑
i=1

Aii

)
xn−2 + Cn−2x

n−3 + · · ·+ c1x + c0,

for coefficients Cn−2, ... , c0, then
n∏

i=1

(x − Aii ) = (x − Ann)

[
xn−1 −

(
n−1∑
i=1

Aii

)
xn−2 + Cn−2x

n−3 + · · ·+ c1x + c0

]

= xn −

(
n∑

i=1

Aii

)
xn−1 + lower order terms in x ,

so the induction is complete.

We next argue that
∑

σ∈Sn,σ ̸=1 sgn(σ)
∏n

i=1 Biσ(i) has at most degree n − 2. Notice that
each factor Biσ(i) of

∏n
i=1 Biσ(i) for which i ̸= σ(i) does not contain x . So suppose that∑

σ∈Sn,σ ̸=1 sgn(σ)
∏n

i=1 Biσ(i) has degree bigger or equal than n− 1. Then we have n− 1

integers i with 1 ⩽ i ⩽ n such that i = σ(i). Let j denote the remaining integer. Since σ is
injective, it follows that for any i ̸= j we must have i = σ(i) ̸= σ(j). Therefore, σ(j) = j

and hence σ = 1, a contradiction.

In summary, we have shown that

charg (x) = xn − Tr(g)xn−1 + Cn−2x
n−2 + · · ·+ c1x + c0

for coefficients Cn−2, ... , c0 ∈ K. It remains to show that c0 = (−1)n det(g). We have
c0 = charg (0) = det(−g) = det(−A). Since the determinant is linear in each row of A,
this gives det(−A) = (−1)n det(A), as claimed. □
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Remark 6.42 In particular, for n = 2 we have charg (x) = x2 − Tr(g)x + det(g).
Compare with Example 6.40Example 6.40.
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6.5 Properties of eigenvalues WEEK 12

We will argue next that an endomorphism g : V → V of a finite dimensional K-vector
space V has at most dim(V ) eigenvalues. We first need:

Theorem 6.43 (Little Bézout’s theorem) For a polynomial f ∈ P(K) of degree n ⩾ 1

and x0 ∈ K, there exists a polynomial g ∈ P(K) of degree n − 1 such that for all
x ∈ K we have f (x) = f (x0) + g(x)(x − x0).

Proof We will give an explicit expression for the polynomial g . If one is not interested in
such an expression, a proof using induction can also be given. Write f (x) =

∑n
k=0 akx

k

for coefficients (a0, ... , an) ∈ Kn+1. For 0 ⩽ j ⩽ n − 1 consider

(6.3) bj =

n−j−1∑
k=0

ak+j+1x
k
0

and the polynomial

g(x) =
n−1∑
j=0

bjx
j

of degree n − 1. We have

g(x)(x − x0) =
n−1∑
j=0

n−j−1∑
k=0

(
ak+j+1x

k
0 x

j+1
)
−

n−1∑
j=0

n−j−1∑
k=0

(
ak+j+1x

k+1
0 x j

)
=

n∑
j=1

n−j∑
k=0

(
ak+jx

k
0 x

j
)
−

n−1∑
j=0

n−j∑
k=1

(
ak+jx

k
0 x

j
)

= anx
n +

n−1∑
j=1

ajx
j + a0 − a0 −

n∑
k=1

akx
k
0 = f (x)− f (x0).

□

From this we conclude:

Proposition 6.44 Let f ∈ P(K) be a polynomial of degree n. Then f has at most n
(distinct) zeros or f is the zero polynomial.

Proof We use induction. The case n = 0 is clear, hence the statement is anchored.

Inductive step: Suppose f ∈ P(K) is a polynomial of degree n with n + 1 distinct zeros
λ1, ... ,λn+1. Since f (λn+1) = 0, Theorem 6.43Theorem 6.43 implies that

f (x) = (x − λn+1)g(x)

for some polynomial g of degree n − 1. For 1 ⩽ i ⩽ n, we thus have

0 = f (λi ) = (λi − λn+1)g(λi ).

Since λi ̸= λn+1 it follows that g(λi ) = 0. Therefore, g has n distinct zeros and must be
the zero polynomial by the induction hypothesis. It follows that f is the zero polynomial
as well. □

This gives:
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Corollary 6.45 Letg : V → V be an endomorphism of aK-vector space of dimension
n ∈ N. Then g has at most n (distinct) eigenvalues.

Proof By Lemma 6.36Lemma 6.36 and Lemma 6.41Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial. The characteristic polynomial of g has degree n. The claim follows
by applying Proposition 6.44Proposition 6.44. □

Proposition 6.46 (Linear independence of eigenvectors) Let V be a finite dimen-
sional K-vector space and g : V → V an endomorphism. Then the eigenspaces
Eigg (λ) of g are in direct sum. In particular, if v1, ... , vm are eigenvectors correspond-
ing to distinct eigenvalues of g , then {v1, ... , vm} are linearly independent.

Proof We use induction on the number m of distinct eigenvalues of g . Let {λ1, ... ,λm}
be distinct eigenvalues of g . For m = 1 the statement is trivially true, so the statement is
anchored.

Inductive step: Assume m − 1 eigenspaces are in direct sum. We want to show that then
m eigenspaces are also in direct sum. Let vi , v ′

i ∈ Eigg (λi ) be eigenvectors such that

(6.4) v1 + v2 + · · ·+ vm = v ′
1 + v ′

2 + · · ·+ v ′
m.

Applying g to this last equation gives

(6.5) λ1v1 + λ2v2 + · · ·+ λmvm = λ1v
′
1 + λ2v

′
2 + · · ·+ λmv

′
m.

Subtracting λm times (6.46.4) from (6.56.5) gives

(λ1 − λm)v1 + · · ·+ (λm−1 − λm)vm−1 = (λ1 − λm)v
′
1 + · · ·+ (λm−1 − λm)v

′
m−1.

Since m − 1 eigenspaces are in direct sum, this implies that (λi − λm)vi = (λi − λm)v
′
i

for 1 ⩽ i ⩽ m − 1. Since the eigenvalues are distinct, we have λi − λm ̸= 0 for all
1 ⩽ i ⩽ m − 1 and hence vi = v ′

i for all 1 ⩽ i ⩽ m − 1. Now (6.56.5) implies that vm = v ′
m

as well and the inductive step is complete.

Since the eigenspaces are in direct sum, the linear independence of eigenvectors with
respect to distinct eigenvalues follows from Remark 6.7Remark 6.7 (ii). □

In the case where all the eigenvalues are distinct, we conclude that g is diagonalisable.

Proposition 6.47 Let g : V → V be an endomorphism of a finite dimensional K-
vector space V . Suppose the characteristic polynomial of g has dim(V ) distinct zeros
(that is, the algebraic multiplicity of each eigenvalue is 1), then g is diagonalisable.

Proof Let n = dim(V ). Let λ1, ... ,λn denote the distinct eigenvalues of g . Let 0V ̸=
vi ∈ Eigg (λi ) for i = 1, ... , n. Then, by Proposition 6.46Proposition 6.46, the eigenvectors are linearly
independent, it follows that (v1, ... , vn) is an ordered basis ofV consisting of eigenvectors,
hence g is diagonalisable. □

Remark 6.48 Proposition 6.47Proposition 6.47 gives a sufficient condition for an endomorphism
g : V → V to be diagonalisable, it is however not necessary. The identity endo-
morphism is diagonalisable, but its spectrum consists of the single eigenvalue 1

with algebraic multiplicity dim(V ).
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Every polynomial in P(C) of degree at least 1 has at least one zero. This fact is known as
the fundamental theorem of algebra. The name is well-established, but quite misleading,
as there is no purely algebraic proof. You will encounter a proof of this statement in the
module M07. As a consequence we obtain the following important existence theorem:

Theorem 6.49 (Existence of eigenvalues) Let g : V → V be an endomorphism of a
complex vector space V of dimension n ⩾ 1. Then g admits at least one eigenvalue.
Moreover, the sum of the algebraic multiplicities of the eigenvalues of g is equal to n.
In particular, if A ∈ Mn,n(C) is a matrix, then there is at least one eigenvalue of A.

Proof By Lemma 6.36Lemma 6.36 and Lemma 6.41Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial and this is an element of P(C). The first statement thus follows by
applying the fundamental theorem of algebra to the characteristic polynomial of g .

Applying Theorem 6.43Theorem 6.43 and the fundamental theorem of algebra repeatedly, we find
k ∈ N and multiplicities m1, ... ,mk ∈ N such that

charg (x) = (x − λ1)
m1(x − λ2)

m2 · · · (x − λk)
mk

where λ1, ... ,λk are zeros of charg . Since charg has degree n, it follows that
∑k

i=1 mi =

n. □

Example 6.50
(i) Recall that the discriminant of a quadratic polynomial x 7→ ax2+bx+c ∈ P(K)

is b2 − 4ac , provided a ̸= 0. If K = C and b2 − 4ac is non-zero, then the
polynomial ax2 + bx + c has two distinct zeros. The characteristic polynomial
of a 2-by-2 matrix A satisfies charA(x) = x2−Tr(A)x +det(A). Therefore, if A
has complex entries and satisfies (TrA)2−4 detA ̸= 0, then it is diagonalisable.
If A has real entries and satisfies (TrA)2 − 4 detA ⩾ 0, then it has a least one
eigenvalue. If (TrA)2 − 4 detA > 0 then it is diagonalisable.

(ii) Recall that, by Proposition 5.24Proposition 5.24, an upper triangular matrix A = (Aij)1⩽i ,j⩽n

satisfies detA =
∏n

i=1 Aii . It follows that

charA(x) =
n∏

i=1

(x − Aii ) = (x − A11)(x − A22) · · · (x − Ann).

Consequently, an upper triangular matrix has spectrum {A11,A22, ... ,Ann}
and is diagonalisable if all its diagonal entries are distinct. Notice that by
Example 6.40Example 6.40 (ii) not every upper triangular matrix is diagonalisable.

Example 6.51 (Fibonacci sequences) We revisit the Fibonacci sequences, now
equipped with the theory of endomorphisms. A Fibonacci sequence is a sequence
ξ : N ∪ {0} → K satisfying the recursive relation ξn+2 = ξn + ξn+1. Consider the
matrix

A =

(
ξ0 ξ1
ξ1 ξ2

)
.

Then, using induction, we can show that

An =

(
ξn−1 ξn
ξn ξn+1

)
for all n ∈ N. We would like to compute An for the initial conditions ξ0 = 0 and
ξ1 = 1. Suppose we can find an invertible matrix C so that A = CDC−1 for some
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diagonal matrix D. Then

An = CDC−1CDC−1 · · ·CDC−1 = CDnC−1

and we can easily compute An, as the n-th power of a diagonal matrix D is the
diagonal matrix whose diagonal entries are given by the n-th powers of diagonal
entries of D. We thus want to diagonalise the matrix

A =

(
0 1

1 1

)
.

We obtain charA(x) = x2 − x − 1 and hence eigenvalues λ1 = (1 +
√
5)/2 and

λ2 = (1−
√
5)/2. From this we compute

EigA(λ1) = span

{(
1

λ1

)}
and EigA(λ2) = span

{(
1

λ2

)}
Let e = (e⃗1, e⃗2) denote the standard basis of R2 and consider the ordered basis

b =

((
1

λ1

)
,

(
1

λ2

))
of eigenvectors of fA. We have

M(fA,b,b) =

(
λ1 0

0 λ2

)
= D

and the change of base matrix is

C = C(b, e) =

(
1 1

λ1 λ2

)
and

C−1 = C(e,b) =
1

λ2 − λ1

(
λ2 −1

−λ1 1

)
.

Therefore A = CDC−1 and hence An = CDnC−1 so that

An =
1

λ2 − λ1

(
1 1

λ1 λ2

)(
λn
1 0

0 λn
2

)(
λ2 −1

−λ1 1

)
=

(
ξn−1 ξn
ξn ξn+1

)
.

This yields the formula

ξn =
λn
1 − λn

2

λ1 − λ2
.

Proposition 6.52 Let g : V → V be an endomorphism of a finite dimensional
K-vector space V of dimension n ⩾ 1.

(i) Let λ be an eigenvalue of g . Then its algebraic multiplicity is at least as big as its
geometric multiplicity.

(ii) If K = C, then g is diagonalisable if and only if for all eigenvalues of g , the
algebraic and geometric multiplicity are the same.

Proof (i) Let dimEigg (λ) = m and b be an ordered basis of Eigg (λ). Furthermore, let
b′ be an ordered tuple of vectors such that c = (b,b′) is an ordered basis of V . The
eigenspace Eigg (λ) is stable under g and

M(g |Eigg (λ),b,b) = λ1m.

By Proposition 6.34Proposition 6.34, the matrix representation of g with respect to the basis c takes the
form

M(g , c, c) =

(
λ1m ∗

0m−n,m B

)
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for some matrix B ∈ Mn−m,n−m(K). We thus obtain

charg (x) = det

(
(x − λ)1m ∗
0m−n,m x1n−m − B

)
Applying the Laplace expansion (5.55.5) with respect to the first column, we have

charg (x) = (x − λ) det

(
(x − λ)1m−1 ∗
0m−n,m−1 x1n−m − B

)
Applying the Laplace expansion again with respect to the first column, m-times in total,
we get

charg (x) = (x − λ)m det(x1n−m − B) = (x − λ)m charB(x).

The algebraic multiplicity of λ is thus at least m.

(ii) Suppose K = C and that g : V → V is diagonalisable. Hence we have an ordered
basis (v1, ... , vn) of V consisting of eigenvectors of g . Therefore,

charg (x) =
n∏

i=1

(x − λi )

where λi is the eigenvalue of the eigenvector vi , 1 ⩽ i ⩽ n. For any eigenvalue λj , its
algebraic multiplicity is the number of indices i with λi = λj . For each such index i , the
eigenvector vi satisfies g(vi ) = λivi = λjvi and hence is an element of the eigenspace
Eigg (λj). The geometric multiplicity of each eigenvalue is thus at least as big as the
algebraic multiplicity, but by the previous statement, the latter cannot be bigger than
the former, hence they are equal.

Conversely, suppose that for all eigenvalues of g , the algebraic and geometric multi-
plicity are the same. Since K = C, by Theorem 6.49Theorem 6.49, the sum of the algebraic multipli-
cities is n. The sum of the geometric multiplicities is by assumption also n. Since, by
Proposition 6.46Proposition 6.46, the eigenspaces with respect to different eigenvalues are in direct sum,
we obtain a basis of V consisting of eigenvectors of g . □

6.6 Special endomorphisms

6.6.1 Involutions

A mapping ι : X → X from a set X into itself is called an involution, if ι ◦ ι = IdX . In the
case where X is a vector space and ι is linear, then ι is called a linear involution.

Example 6.53 (Involutions)
(i) Let V be a K-vector space. Then the identity mapping IdV : V → V is a linear

involution.
(ii) For all n ∈ N, the transpose Mn,n(K) → Mn,n(K) is a linear involution.

(iii) For n ∈ N, let X denote the set of invertible n × n matrices. Then the matrix
inverse −1 : X → X is an involution. Notice that X is not a vector space.

(iv) For any K-vector space V , the mapping ι : V → V , v 7→ −v is a linear
involution. Considering F(I ,K), the K-vector space of functions on the interval
I ⊂ R, we obtain a linear involution of F(I ,K) by sending a function f to f ◦ ι.

(v) If A ∈ Mn,n(K) satisfies A2 = 1n, then fA : Kn → Kn is a linear involution.

The spectrum of an involution is a subset of {−1, 1}.
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Proposition 6.54 Let V be a K-vector space and ι : V → V a linear involution.
Then the spectrum of ι is contained in {−1, 1}. Moreover V = Eigι(1) ⊕ Eigι(−1)

and ι is diagonalisable.

Proof Suppose λ ∈ K is an eigenvalue of ι so that ι(v) = λv for some non-zero vector
v ∈ V . Then ι(ι(v)) = v = λι(v) = λ2v . Hence (1− λ2)v = 0V and since v is non-zero,
we conclude that λ = ±1. By Proposition 6.46Proposition 6.46, the eigenspaces Eigι(1) and Eigι(−1)

are in direct sum.

For v ∈ V we write

v =
1

2
(v + ι(v))︸ ︷︷ ︸
∈Eigι(1)

+
1

2
(v − ι(v))︸ ︷︷ ︸
∈Eigι(−1)

hence V = Eigι(1) ⊕ Eigι(−1). Take an ordered basis b+ of Eigι(1) and an ordered
basis b− of Eigι(−1). Then (b+,b−) is an ordered basis of V consisting of eigenvectors
of ι. □

6.6.2 Projections

A linear mapping Π : V → V satisfying Π ◦ Π = Π is called a projection.

Example 6.55 Consider V = R3 and

A =

1 0 0

0 1 0

0 0 0

 .

Clearly, A2 = A and fA : R3 → R3 projects a vector x⃗ = (xi )1⩽i⩽3 onto the plane
{x⃗ ∈ R3|x3 = 0}.

In a sense there is only one type of projection. Recall from the exercises that for a projec-
tion Π : V → V , we have V = Ker Π⊕ ImΠ. Given two subspaces U1,U2 of V such that
V = U1 ⊕ U2 , there is a projection Π : V → V whose kernel is U1 and whose image is
U2. Indeed, every vector v ∈ V can be written as v = u1 + u2 for unique vectors ui ∈ Ui

for i = 1, 2. Hence we obtain a projection by defining Π(v) = u2 for all v ∈ V .

Denote by X the set of projections from V to V and by Y the set of pairs (U1,U2) of
subspaces of V that are in direct sum and satisfy V = U1 ⊕ U2. Then we obtain a
mapping Λ : X → Y defined by f 7→ (Ker f , Im f ).

Similar to Proposition 6.54Proposition 6.54, we obtain:

Proposition 6.56 Let V be a K-vector space and Π : V → V a projection. Then
the spectrum of Π is contained in {0, 1}. Moreover V = EigΠ(0) ⊕ EigΠ(1), Π is
diagonalisable and ImΠ = EigΠ(1).

Proof Let v ∈ V be an eigenvector of the projection Π with eigenvalue λ. Hence we
obtain Π(Π(v)) = λ2v = Π(v) = λv , equivalently, λ(λ − 1)v = 0V . Since v is non
zero, it follows that λ = 0 or λ = 1. Since Π is a projection, we have V = Ker Π⊕ ImΠ.
Since Ker Π = EigΠ(0), we thus only need to show that ImΠ = EigΠ(1). Let v ∈ ImΠ so
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that v = Π(v̂) for some vector v̂ ∈ V . Hence Π(v) = Π(Π(v̂)) = Π(v̂) = v and v is an
eigenvector with eigenvalue 1. Conversely, suppose v ∈ V is an eigenvector of Π with
eigenvalue 1. Then Π(v) = v = Π(Π(v)) and hence v ∈ ImΠ. We thus conclude that
ImΠ = EigΠ(1). Choosing an ordered basis of Ker Π and an ordered basis of ImΠ gives
a basis of V consisting of eigenvectors, hence Π is diagonalisable. □

Exercises

Exercise 6.57 Derive the formula (6.36.3) for the coefficients bj .

Exercise 6.58 Show that Λ is a bijection.

Exercise 6.59 Show that if Π : V → V is a projection then IdV − Π : V → V is a
projection with kernel equal to the image of Π and image equal to the kernel of Π.
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CHAPTER 7

Quotient vector spaces

7.1 Affine mappings and affine spaces WEEK 13

Previously we saw that we can take the sum of subspaces of a vector space. In this final
chapter of the Linear Algebra I module we introduce the concept of a quotient of a vector
space by a subspace. Chapter 7Chapter 7 is not examinable.

Translations are among the simplest non-linear mappings.

Definition 7.1 (Translation) Let V be a K-vector space and v0 ∈ V . The mapping

Tv0 : V → V , v 7→ v + v0

is called the translation by the vector v0.

Remark 7.2 Notice that for v0 ̸= 0V , a translation is not linear, since Tv0(0V ) =

0V + v0 = v0 ̸= 0V .

Taking s1 = 1 and s2 = −1 in (3.63.6), we see that a linear map f : V → W between
K-vector spacesV ,W satisfies f (v1−v2) = f (v1)− f (v2) for all v1, v2 ∈ V . In particular,
linear maps are affine maps in the following sense:

Definition 7.3 (Affine mapping) A mapping f : V → W is called affine if there
exists a linear map g : V → W so that f (v1)− f (v2) = g(v1 − v2) for all v1, v2 ∈ V .
We call g the linear map associated to f .

Affine mappings are compositions of linear mappings and translations:

Proposition 7.4 A mapping f : V → W is affine if and only if there exists a linear
map g : V → W and a translation Tw0 : W → W so that f = Tw0 ◦ g .

Proof ⇐ Let g : V → W be linear and Tw0 : W → W be a translation for some
vector w0 ∈ W so that Tw0(w) = w + w0 for all w ∈ W . Let f = Tw0 ◦ g so that
f (v) = g(v) + w0 for all v ∈ V . Then

f (v1)− f (v2) = g(v1) + w0 − g(v2)− w0 = g(v1)− g(v2) = g(v1 − v2),

hence f is affine.
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⇒ Let f : V → W be affine and g : V → W its associated linear map. Since f is affine
we have for all v ∈ V

f (v)− f (0V ) = g(v − 0V ) = g(v)− g(0V ) = g(v)

where we use the linearity of g and Lemma 3.15Lemma 3.15. Writing w0 = f (0V ) we thus have

f (v) = g(v) + w0

so that f is the composition of the linear map g and the translation Tw0 : W → W ,
w 7→ w + w0. □

Example 7.5 Let A ∈ Mm,n(K), b⃗ ∈ Km and

fA,b⃗ : Kn → Km, x⃗ 7→ Ax⃗ + b⃗.

Then fA,b⃗ is an affine map whose associated linear map is fA. Conversely, combin-
ing Lemma 3.18Lemma 3.18 and Proposition 7.4Proposition 7.4, we see that every affine map Kn → Km is of
the form fA,b⃗ for some matrix A ∈ Mm,n(K) and vector b⃗ ∈ Km.

An affine subspace of a K-vector space V is a translation of a subspace by some fixed
vector v0.

Definition 7.6 (Affine subspace) Let V be a K-vector space. An affine subspace of
V is a subset of the form

U + v0 = {u + v0|u ∈ U},

where U ⊂ V is a subspace and v0 ∈ V . We call U the associated vector space to
the affine subspace U + v0 and we say that U + v0 is parallel to U .

Example 7.7 Let V = R2 and U = span{e⃗1 + e⃗2} = {s(e⃗1 + e⃗2)|s ∈ R} where
here, as usual, {e⃗1, e⃗2} denotes the standard basis of R2. So U is the line through
the origin 0R2 defined by the equation y = x . By definition, for all v⃗ ∈ R2 we have

U + v⃗ = {v⃗ + sw⃗ |s ∈ R} ,

where we write w⃗ = e⃗1 + e⃗2. So for each v⃗ ∈ R2, the affine subspace U + v⃗ is a line
in R2, the translation by the vector v⃗ of the line defined by y = x .

7.2 Quotient vector spaces

Let U be a subspace of a K-vector space V . We want to make sense of the notion of
dividing V by U . It turns out that there is a natural way to do this and moreover, the
quotient V /U again carries the structure of a K-vector space. The idea is to define V /U

to be the set of all translations of the subspace U , that is, we consider the set of subsets

V /U = {U + v |v ∈ V }.

We have to define what it means to add affine subspaces U + v1 and U + v2 and what it
means to scale U + v by a scalar s ∈ K. Formally, it is tempting to define 0V/U = U +0V
and

(7.1) (U + v1) +V/U (U + v2) = U + (v1 + v2)
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for all v1, v2 ∈ V as well as

(7.2) s ·V/U (U + v) = U + (sv)

for all v ∈ V and s ∈ K. However, we have to make sure that these operations are well
defined. We do this with the help of the following lemma.

Lemma 7.8 Let U ⊂ V be a subspace. Then any vector v ∈ V belongs to a unique
affine subspace parallel toU , namelyU+v . In particular, two affine subspacesU+v1
and U + v2 are either equal or have empty intersection.

Proof Since0V ∈ U , we have v ∈ (U+v), hence we only need to show that if v ∈ (U+v̂)

for some vector v̂ , then U + v = U + v̂ . Assume v ∈ (U + v̂) so that v = u+ v̂ for some
vector u ∈ U . Suppose w ∈ (U + v̂). We need to show that then also w ∈ (U + v). Since
w ∈ (U + v̂) we have w = û+ v̂ for some vector û ∈ U . Using that v̂ = v − u, we obtain

w = û + v − u = û − u + v

Since U is a subspace we have û − u ∈ U and hence w ∈ (U + v).

Conversely, suppose w ∈ (U + v), it follows exactly as before that then w ∈ (U + v̂) as
well. □

We are now going to show that (7.17.1) and (7.27.2) are well defined. We start with (7.17.1). Let
v1, v2 ∈ V and w1,w2 ∈ V such that

U + v1 = U + w1 and U + v2 = U + w2.

We need to show that U + (v1 + v2) = U + (w1 + w2). By Lemma 7.8Lemma 7.8 it suffices to show
that w1 + w2 is an element of U + (v1 + v2). Since U + w1 = U + v1 it follows that
w1 ∈ (U + v1) so that w1 = u1 + v1 for some element u1 ∈ U . Likewise it follows that
w2 = u2 + v2 for some element u2 ∈ U . Hence

w1 + w2 = u1 + u2 + v1 + v2.

Since U is a subspace, we have u1+u2 ∈ U and thus it follows that w1+w2 is an element
of U + (v1 + v2).

For (7.27.2) we need to show that if v ∈ V and w ∈ V are such that U + v = U + w , then
U+(sv) = U+(sw) for all s ∈ K. Again, applying Lemma 7.8Lemma 7.8 we only need to show that
sw ∈ U + (sv). Since U + v = U + w it follows that there exists u ∈ U with w = u + v .
Hence sw = su+sv andU being a subspace, we have su ∈ U and thus sw lies inU+(sv),
as claimed.

Having equippedV /U with addition+V/U defined by (7.17.1) and scalar multiplication ·V/U

defined by (7.27.2), we need to show that V /U with zero vector U +0V is indeed a K-vector
space. All the properties of Definition 3.1Definition 3.1 for V /U are however simply a consequence of
the corresponding property for V . For instance commutativity of vector addition in V /U

follows from the commutativity of vector in addition in V , that is, for all v1, v2 ∈ V we
have

(U + v1) +V/U (U + v2) = U + (v1 + v2) = U + (v2 + v1) = (U + v2) +V/U (U + v1).

The remaining properties follow similarly.

Notice that we have a surjective mapping

p : V → V /U, v 7→ U + v .
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which satisfies

p(v1 + v2) = U + (v1 + v2) = (U + v1) +V/U (U + v2) = p(v1) +V/U p(v2)

for all v1, v2 ∈ V and

p(sv) = U + (sv) = s ·V/U (U + v) = s ·V/U p(v).

for all v ∈ V and s ∈ K. Therefore, the mapping p is linear.

Definition 7.9 (Quotient vector space) The vector space V /U is called the quotient
(vector) space of V by U . The linear map p : V → V /U is called the canonical
surjection from V to V /U .

The mapping p : V → V /U satisfies

p(v) = 0V/U = U + 0V ⇐⇒ v ∈ U

and hence Ker(p) = U . This gives:

Proposition 7.10 Suppose the K-vector space V is finite dimensional. Then V /U is
finite dimensional as well and

dim(V /U) = dim(V )− dim(U).

Proof Since p is surjective it follows that V /U is finite dimensional as well. Hence we
can apply Theorem 3.76Theorem 3.76 and obtain

dimV = dimKer(p) + dim Im(p) = dimU + dim(V /U),

where we use that Im(p) = V /U and Ker(p) = U . □

Example 7.11 (Special cases)
(i) In the case where U = V we obtain V /U = {0V/U}.

(ii) In the case where U = {0V } we obtain that V /U is isomorphic to V .

Exercises

Exercise 7.12 Show that the image of an affine subspace under an affine map is
again an affine subspace and that the preimage of an affine subspace under an affine
map is again an affine subspace or empty (cf. Proposition 3.26Proposition 3.26).
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