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CHAPTER 1

Fields and complex numbers

1.1 Fields ety
2

Afield Kis roughly speaking a number system in which we can add and multiply numbers,
so that the expected properties hold. We will only briefly state the basic facts about fields.
For a more detailed account, we refer to the algebra module.

Definition 1.1 Afield consists of a set K containing distinguished elements Ox # 1,
as well as two binary operations, addition +x : K x K — K and multiplication
'k : K x K — K, so that the following properties hold:

- Commutativity of addition
x+xy=y+xx forallx,yeK.
« Commutativity of multiplication
(1.1) xxgy=yxgx forallx,yeK.
« Associativity of addition
(1.2) (x4+xy)+xz=x+x (y +x z) forallx,y,zec K.
+ Associativity of multiplication
(1.3) (xky)kz=x=x(yxz) forallx,y,zeK
« Ok is the identity element of addition
(1.4) X +x Ok = Og +x x = x forall x € K.
« 1 is the identity element of multiplication
(1.5) X klg =1g xk x =x forallx € K.

+ Forany x € K there exists a unique element, denoted by (—x) and called the
additive inverse of x, such that

(1.6) x 4k (—x) = (—x) +x x = Ok.

- Forany x € K\ {0k} there exists a unique element, denoted by x~* or £ and
called the multiplicative inverse of x, such that
1 1
(1.7) X'K*:*'KX:]-K-
X X
+ Distributivity of multiplication over addition
(1.8) (x+xy) kz=xkz+rky kz foralx,y zeK.
Remark 1.2
(i) Itiscustomaryto simply speak of a field K, without explicitly mentioning Ok, 1x
and +g, k.



(i) When K is clear from the context, we often simply write 0 and 1 instead of Ok
and 1k. Likewise, it is customary to write + instead of +x and - instead of -k.
Often -k is omitted entirely so that we write xy instead of x -k y.

(iii) We refer to the elements of a field as scalars.

(iv) ThesetK \ {0k} is usually denoted by K*.

(v) Forallx,y € Kwewritex — y = x +x (—y) and forall x € Kand y € K* we
Write§ =X 'K % =X -Kyfl.

(vi) Afield K containing only finitely many elements is called finite. Algorithms in
cryptography are typically based on finite fields.

Example 1.3
(i) The rational numbers or quotients Q, the real numbers R and the complex
numbers C - that we will study more carefully below - equipped with the usual
addition and multiplication are examples of fields.
(i) Theintegers Z (with usual addition and multiplication) are not a field, as only 1
and —1 admit a multiplicative inverse.
(iii) Considering a set IF'; consisting of only two elements that we may denote by 0
and 1, we define +p, and -, via the following tables

+m, [0 1 ‘F |01
0 [0]1 and 0[0]|0
1 10 1 (0|1

For instance, we havel +5, 1 = 0and 1 -r, 1 = 1. Then, one can check that
IF5 equipped with these operations is indeed a field. A way to remember these
tables is to think of 0 as representing the even numbers, while 1 represents the
odd numbers. So for instance, a sum of two odd numbers is even and a product
of two odd numbers is odd. Alternatively, we may think of 0 and 1 representing
the boolean values FALSE and TRUE. In doing so, +r, corresponds to the logical
XOR and -, corresponds to the logical AND.

(iv) Considering a set IF4 consisting of four elements, say {0, 1, a, b}, we define +,
and g, via the following tables

+F, O|1|al|b T, O|1|al|b
0 |0|1]|a|b 0[0|0|0]|O
1 |1/0|b]|a and 1 |10(1|a|b
a |a|b|0]|1 al|0fla|b|l
b |b|la|l]|0 b |0[b|l]a

Again one can check that IF4 equipped with these operations is indeed a field.

Lemma 1.4 (Field properties) In a field K we have the following properties:
(i) Ox -x x = Ok forall x € K.

(ii) —x = (_]-K) x x forall x € K.

(iii) Forallx,y € K, ifx -.x y = Ok, then x = Og or y = Ok.

(iV) *OK = OK.

(V) (1K)71 = 1k.

(vi) (—(—x)) = xforallx € K.
(i) (—x) ky = x 'k (=y) = —(x 'k ¥).
(viii) (x71)~! = x forall x € K*.
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Proof We will only prove some of the items, the rest are an exercise for the reader.

(i) Using (1.4), we obtain Og +x Ox = Ok. Hence for all x € K we have
x g O = x ‘g (Ox + Ox) = x g Ox +x X 'k Ok,

where the second equality uses (1.8). Adding the additive inverse of x -k Ok, we get

x -k Og — x 'k Ox = (X 'k Ox +x X 'K Ox) — X ‘K Ox
using the associativity of addition (1.2) and (1.6), this last equation is equivalent to

Ox = x 'k O
as claimed.
(iii) Let x, y € K such that x -x y = Ok. If x = Og then we are done, so suppose x # 0Ok.
Using (1.7), we have 1x = x~! -x x. Multiplying this equation with y we obtain
y=yxrlxg=yx(xgx )= xx)xx " =0xx =0k

where we have used (1.5), the commutativity (1.1) and associativity (1.3) of multiplication
as well as (i) from above.

(v) By (1.5), we have 1k -k 1g = 1k, hence 1k is the multiplicative inverse of 1k and since
the multiplicative inverse is unique, it follows that (1x)~! = 1. O

For a positive integer n € N and an element x of a field K, we write

nX =X+gX+gX+Kg- "+ +tK X.

nsummands
The field I, has the property that 2x = 0 for all x € FF,. In this case we say the [F, has
characteristic 2. More generally, the smallest positive integer p such that px = 0 for
all x € Kiis called the characteristic of the field. In the case where no such integer exists
the field is said to have characteristic 0. So Q, R, C are fields of characteristic 0. It can be
shown that the characteristic of any field is either 0 or a prime number.

Asubset IF of a field K that is itself a field, when equipped with the multiplication and
addition of K, is called a subfield of K.

Example 1.5

(i) The rational numbers Q form a subfield of the real numbers R. Furthermore,
as we will see below, the real numbers R can be interpreted as a subfield of the
complex numbers C.

(i) F> may be thought of as the subfield of F, consisting of {0, 1}.

Throughout your studies in mathematics, you will encounter various mappings having
names ending in morphism, such as homomorphism, isomorphism, endomorphism, auto-
morphism. This is quite confusing and to make things worse, the precise meaning of
*-morphism depends on the structure of the set between which the mapping is defined.
But don’t worry, we will introduce one x-morphism at a time, starting with homomorph-
ism. Broadly speaking, a homomorphism between sets X and ) that are equipped with
some extra structure of the same typeisamap f : X — Y that respects the extra
structure.

In the case of a field KK, the extra structure consists of addition +, multiplication -k, the
identity element of multiplication 1x and the identity element of addition Ox. A field
homomorphism respects this structure. More precisely:
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Definition 1.6 (Field homomorphism) Let IF and K be fields. A field homomorphism
is a mapping x : F — K satisfying x(1r) = 1k as well as

X(x+ry)=x(x)+xx(y) and  x(x-Fy)=x(x) & x(y)
forallx,y € F.

Example 1.7 From the above tables we see that x : Fo — F, defined by x(1p,) =
1, and x(Op,) = Op, is a field homomorphism.

Remark 1.8

(i) We certainly also want that a field homorphism x : F — K satisfies x(0r) =
Ok. It turns out that we don’t have to ask for this in the definition of a field
homomorphism, it is automatically satisfied with Definition 1.6. Indeed, we
have

x(0r) = x(Of +¥ Or) = x(Or) +x X(OF).
Adding the additive inverse of x(0r) in K, we conclude that Ox = x(0Op).

(ii) Afield homomorphism is injective. Suppose x, y € I satisfy x(x) = x(y) so
that x(x —y) = Ox. Assume w = x — y # Op, then x(w) x x(w™1!) = x(1p) =
1g. Since by assumption y(w) = Ok, we thus obtain 0x -x x(w™?!) = 1k,
contradicting Lemma 1.4 (i). It follows that x = y and hence y is injective.

1.2 Complex numbers

Video Complex numbers

Historically the complex numbers arose from an interest to make sense of the square root
of a negative number. We may picture the rational numbers Q as elements of an infinite
number line with an origin 0. Positive numbers extending to the right of the origin and
negative numbers to the left. Mathematicians have observed early on that this line of
numbers contains elements, such as 7 or v/2, that are not quotients. Phrased differently,
the rational numbers do not fill out the whole number line, there are gaps consisting
of irrational numbers. In a sense to be made precise in the Analysis module, the real
numbers may be thought of as the union of the rational numbers and the gaps on the
number line, resulting in a gap less line of numbers, known as the complete field of real
numbers.
-1 0 1 2 3

— ] Il | Il
1 T 1 T

\/

FIGURE 1.1. The real number line.

The square x2 of a real number x is a non-negative real number, x?> > 0, hence if we want
to define what the square root of a negative number ought to be, we are in trouble, since
there are no numbers left on the line of numbers that we might use. The solution is to
consider pairs of real numbers instead. A complex number is an ordered pair (x, y) of
real numbers x, y € R. We denote the set of complex numbers by C. We equip C with
the addition defined by the rule

(x1, y1) +c (2, y2) = (x1 + %2, )1 + y2)

10
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forall (x1, y1) and (x2, y») € C and where + on the right denotes the usual addition +g
of real numbers. Furthermore, we equip C with the multiplication defined by the rule

(1.9) (x1,y1) c (2, y2) = (1 X2 — y1 - Yo, X1 Yo + Y1 - X2).

forall (x1, y1) and (x2, y») € C and where - on the right denotes the usual multiplication
-r of real numbers.

Definition 1.9 (Complex numbers) The set C together with the operations +¢, -¢
and O¢c = (0,0) and 1¢ = (1, 0) is called the field of complex numbers.

The mapping x : R — C, x — (x, 0) is a field homomorphism. Indeed,

X(x1 4+r x2) = (x1 +r x2,0) = (x1,0) +¢ (x2,0) = x(x1) +c x(x2),
xX(xa r %) = (31 & x2,0) = (x1,0) -c (2, 0) = x(x1) ‘¢ X(x2),
forall x;, x € Rand x(1) = (1,0) = 1¢.

This allows to think of the real numbers R as the subfield {(x, 0)|x € R} of the complex
numbers C. Because of the injectivity of x, it is customary to identify x with x(x), hence
abusing notation, we write (x,0) = x.

Notice that (0, 1) satisfies (0, 1) ¢ (0, 1) = (—1,0) and hence is a square root of the real
number (—1,0) = —1. Thenumber (0, 1) is called the imaginary unit and usually denoted
by i. Sometimes the notation v/—1 is also used. Every complex number (x, y) € C can
now be written as

(x,y) =(x,0)4+c (0,y) = (x,0) +ci-c (y.0) = x +1iy,

where we follow the usual custom of omitting -¢ and writing + instead of +¢ on the right
hand side. With this convention, complex numbers can be manipulated as real numbers,
we just need to keep in mind that i satisfies i> = —1. For instance, the multiplication of
complex numbers x; 4 iy; and x, + iy» gives

(x1 +iy1)(x +iy2) = xix2 + i2y1y2 +i(xye + y1xe) = x1x — y1ye + i(x1y2 + y1x2)

in agreement with (1.9). Here we also follow the usual custom of omitting -g on the right
hand side.

Definition 1.10 For a complex number z = x + iy € C with x, y € R we call
+ Re(z) = x its real part;

« Im(z) = y itsimaginary part;

« Z = x — iy the complex conjugate of z;

z| = \/zzZ = \/x2 + y? the absolute value or modulus of z.

The mapping z — Z is called complex conjugation.

Remark 1.11
(i) Forz € C the following statements are equivalent

zeR << Re(z)=z <= Im(z)=0 <= =z=2zZ

(ii) We have |z| = 0if and only if z = 0.

11
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Example 1.12 Let z = 23 Then

@560 (2+5)(6+i) 1 i
T 6—n6=n  16-1P = 577+ 32

so that Re(z) = 4 and Im(z) = 32. Moreover,

A= () (3 2, /2
B 37 37) V31

Remark 1.13

(i) We may think of a complex number z = a + ib as a point or a vector in the
plane R? with x-coordinate a and y-coordinate b.

(i) The real numbers form the horizontal coordinate axis (the real axis) and the
purely imaginary complex numbers {iy|y € R} form the vertical coordinate
axis (the imaginary axis).

(iii) The point Z is obtained by reflecting z along the real axis.

(iv) |z|is the distance of z to the origin 0c = (0,0) € C

(v) The addition of complex numbers corresponds to the usual vector addition.

(vi) Forthe geometric significance of the multiplication, we refer the reader to the
Analysis module.

AR
ibg---mmmm nZ=a-+ib
i :
0 1 ai [ "R
—ib ¢ sZ=a—ib

FIGURE 1.2. The complex number plane C

We have the following elementary facts about complex numbers:

Proposition 1.14 Forall z, w € C we have

(i) Re(z) = 22, Im(z) = 5555
(i) Re(z+ w) = Re(z) + Re(w), Im(z + w) = Im(z2) + Im(w);
(i) Z+W=Z+W,ZW =ZW, Z = z;
(iv) |z|> = |Z|> = 2z = Re(2)? + Im(2)%;
() |ow| = |2||w]

Proof Exercise.
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Exercises
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CHAPTER 2

Matrices

2.1 Definitions %f/r
2

A matrix (plural matrices) is simply a rectangular block of numbers. As we will see below,
every matrix gives rise to a mapping sending a finite list of numbers to another finite list
of numbers. Mappings arising from matrices are called linear and linear mappings are
among the most fundamental objects in mathematics. In the Linear Algebra modules
we develop the theory of linear maps as well as the theory of vector spaces, the natural
habitat of linear maps. While this theory may come accross as quite abstract, it is in fact
at the heart of many real world applications, including optics and quantum physics, radio
astronomy, MP3 and JPEG compression, X-ray crystallography, MRl scans and machine
learning, just to name a few.

Throughout the Linear Algebra modules, K stands for either the real numbers R or the
complex numbers C, but almost all statements are also valid over arbitrary fields.

We start with some definitions. In this chapter, m, n, m, i denote natural numbers.

Definition 2.1 (Matrix)
« Arectangular block of scalars Aj e K, 1 <i<m,1<j<n

Au A - A

Ay Axn - Ay
(2.1) A= . .

Aml Am2 o Amn

is called an m x n matrix with entries in K.

- We also say that A is an m-by-n matrix, that A has size m x nand that A has m
rows and n columns.

+ The entry Aj of A is said to have row index i where 1 < i < m, column index j
where 1 < j < nand will be referred to as the (7, j)-th entry of A.

+ Ashorthand notation for (2.1) is A = (Aj)1<i<m1<j<n-

» For matrices A = (Aij)léigm,léjgn and B = (Bij)lgigm,lgjgn we write A = B,
provided A;j = Bjforalll </ < mandalll <j < n.

Definition 2.2 (Set of matrices)

+ The set of m-by-n matrices with entries in K will be denoted by M,, ,(K).
+ The elements of the set M, 1(K) are called column vectors of length m and the
elements of the set M; ,(KK) are called row vectors of length n.

15



» We will use the Latin alphabet for column vectors and decorate them with an
arrow. For a column vector
X1
X2

X = . & Mml(K)

Xm

we also use the shorthand notation X = (x;)1<i<m and we write [X]; for the i-th
entry of X, so that [X]; = x; forall1 < i < m.

« We will use the Greek alphabet for row vectors and decorate them with an arrow.
For a row vector

§=(& & - &)eM,(K)
we also use the shorthand notation 5: (&)1<i<n and we write [5_],- for the i-th
entry off, so that [f_],- =¢foralll <7< n

Remark 2.3 (Notation)

(i) A matrix is always denoted by a bold capital letter, such as A, B, C, D.

(ii) The entries of the matrix are denoted by A;;, Bjj, Cj;, Djj, respectively.

(iif) We may think of an m x n matrix as consisting of n column vectors of length m.
The column vectors of the matrix are denoted by a;, l;, Ci, J,-, respectively.

(iv) We may think of an m x n matrix as consisting of m row vectors of length n. The
row vectors of the matrix are denoted by @;, E, Yi, 5, respectively.

(v) For a matrix A we also write [A];; for the (7, )-th entry of A. So for A =
(A,‘j)lgigm'lgjgn,we have [A],J = A,J forall 1 < ] <m, 1 gj < n.

Example 2.4 For

T V2
A= -1 5/3 € M3’2(R),
log2 3
we have for instance [A]s, = 3, [Al12 = v/2, [A]o; = —1and
™ V2
51: -1 0 52: 5/3 0 522: (—1 5/3), 523: (|Og2 3)
log 2 3

Recall that for sets X and ) we write X x ) for the Cartesian product of X and ), defined
as the set of ordered pairs (x, y) with x € X and y € ). Moreover, X x X is usually
denoted as X2. Likewise, for a natural number n € N, we write X" for the set of ordered
lists consisting of n elements of X'. We will also refer to ordered lists consisting of n
elements as n-tuples. The elements of X' are denoted by (x1, x2, ..., x,) with x; € X for
all1 < 7 < n. In particular, for all n € N we have a bijective map from K" to M, 1(K)
given by

X1
(2.2) (X1y oy Xn)
Xn

For this reason, we also write K" for the set of column vectors of length n with entries in
K. The set of row vectors of length n with entries in K will be denoted by K,,.

16



Definition 2.5 (Special matrices and vectors)

« The zero matrix 0., , is the m x n matrix whose entries are all zero. We will also
write 0, for the n x n-matrix whose entries are all zero.

Matrices with equal number n of rows and columns are known as square matrices.
+ An entry Aj; of a square matrix A € M, ,(K) is said to be a diagonal entry if i = j
and an off-diagonal entry otherwise. A matrix whose off-diagonal entries are all
zero is said to be diagonal.

We write 1, for the diagonal n x n matrix whose diagonal entries are all equal to
1. Using the so-called Kronecker delta defined by the rule

1 i=],
e { 0 i#)
we have [1,]; = d;; forall 1 < /,j < n. The matrix 1, is called the unit matrix or
identity matrix of size n.
« Thestandard basis of K" isthe set { &1, &, ..., €,} consisting of the column vectors
of the identity matrix 1, of size n.
« The standard basis of K, is the set {7, &5, ..., &, } consisting of the row vectors of
the identity matrix 1, of size n.

Example 2.6
(i) Special matrices:

00 0 10
02’3_(0 0 o)' 12_(0 1)' 1s =

(ii) The standard basis of K3 is {&1, &, &}, where

O O =
o = O
= O O

1 0 0
ee=10], &=1|1 and &= (0
0 0 1

(iii) The standard basis of K3 is {7, £5, &3}, where

&2=(1 0 0), &=(0 1 0) and &=(0 0 1).

2.2 Matrix operations

We can multiply a matrix A € M,, ,(K) with a scalar s € K. This amounts to multiplying
each entry of A with s:

Definition 2.7 Scalar multiplication in M, ,(KK) is the map

Mn(K) * KX My n(K) = Mpm,o(K), (s,A) = s-n, k) A
defined by the rule
(2.3) S “Mpo(k) A = (5 'k Ajj)i<i<m,1<j<n € Mmn(K),

where s - Aj; denotes the field multiplication of scalars s, A; € K.

17



Remark 2.8 Here we multiply with s from the left. Likewise, we define A -, k)
s = (Aj 'k S)i<i<mi<j<n, that is, we multiply from the right. Of course, since
multiplication of scalars is commutative, we have s -y, ) A = A -y, (k) S, thatis,
left multiplication and right multiplication gives the same matrix. Be aware that this
is not true in every number system. An example that you might encounter later on
are the so-called quaternions, where multiplication fails to be commutative.

The sum of matrices A and B of identical size is defined as follows:

Definition 2.9 Addition in M,, ,(K) is the map

+van(K) : Mm,,,(K) X Mm'n(K) — Mm’n(K), (A, B) — A —I—van(K) B
defined by the rule
(2.4) A+, k) B = (Aj +x& Bj)ici<cmi<i<n € Mmn(K),

where A;; +k Bjj denotes the field addition of scalars Aj;, B € K.

Remark 2.10 (Abusing notation)

- Field addition takes two scalars and produces another scalar, thus it is a map
K x K — K, whereas addition of matrices is a map M, ,(K) x M, ,(K) —
M (K). For this reason we wrote +,, (k) above in order to distinguish matrix
addition from field addition of scalars. Of course, itis quite cumbersome to always
write +p,. k) and +, so we follow the usual custom of writing +, both for field
addition of scalars and for matrix addition, trusting that the reader is aware of
the difference.

- Likewise, we simply write - instead of -3, (k) or omit the dot entirely, so that
s-A=sA=s-y ) AforscKandA c My ,(K).

Example 2.11
« Multiplication of a matrix by a scalar:

512_125_5-15-2
3 4) \3 4)7 \5.3 5.4

5 10
15 20/ °
- Addition of matrices:

(% )+ 0)-6 #):

If the number of columns of a matrix A is equal to the number of rows of a matrix B, we
define the matrix product AB of A and B as follows:

Definition 2.12 (Matrix multiplication — Video) Let A € M,, ,(K) be an m-by-n
matrix and B € M,, »(K) be an n-by-rm matrix. The matrix product of A and B is the

18
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m-by-m matrix AB € M, »(K) whose entries are defined by the rule
n n
[AB)ix = Aj1Bik + A Bok + - - - + AinBnie = ZAUBjk = Z[A]U[B]jk-
j=1 j=1
foralll </ < mandalll < k< m.

Remark 2.13 (Pairing of row and column vectors) We may define a pairing K, x
K" — K of a row vector of length n and a column vector of length n by the rule

(5)‘(’)Hg)?:£1X1+£2X2+"'+5an

for au{: (&)1<i<n € K, and forall X = (xi)1<i<n € K". So we multiply the first
entry of Ewith the first entry of X, add the product of the second entry of Eand the
second entry of X and continue in this fashion until the last entry of ¢ and X.

The (i, j)-th entry of the matrix product of A € M,, ,(K) and B € M, 5(K) is then
given by the pairing

[AB];; = dib;
of the i-th row vector &; of A and the j-th column vector EJ of B.

Remark 2.14 (Matrix multiplication is not commutative — Video) If A'isa m-by-n
matrix and B a n-by-m matrix, then both AB and BA are defined, but in general
AB # BA since AB is an m-by-m matrix and BA is an n-by-n matrix. Even when
n = mso that both A and B are square matrices, it is false in general that AB = BA.

The matrix operations have the following properties:

Proposition 2.15 (Properties of matrix operations)

« 0mn+A=Aforall A € M, ,(K);

«1,A=AandAl, =Aforall A € M, ,(K);

* 05mA =05,and A0, 7 = 0, 5 forall A € M, ,(K);

-A+B=B+Aand(A+B)+C=A~+(B+C)forallA B,C <€ M, ,(K);

«0-A=0,,foral A € M, ,(K);

¢+ (s15)A = s1(sA) forall A € My, ,(K)and all sy, s, € K;

« A(sB) = s(AB) = (sA)Bforall A € M, ,(K) and all B € M, »(K) and all
seK;

+ s(A+B)=sA+sBforallA,B € M,, ,(K)and's € K;

e (s1+5)A=s5A+sAforall A € M, ,(K)andforall's;, s, € K;

+ (B4+C)A=BA+ CAforallB,C € My »(K) and for all A € My, ,(K);

« A(B+C)=AB + ACforall A € Ms m(K) and for all B, C € M, »(K).

Proof We only show the second and the last property. The proofs of the remaining
ones are similar and/or elementary consequences of the properties of addition and
multiplication of scalars.
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CHAPTER 2 — MATRICES

To show the second property consider A € M,, ,(K). Then, by definition, we have for all
1<k<mandalll < j<n

[1mALy =Y [1nlulAlj = > dkAj = Ay = [Aly,
i=1 i=1

where the second last equality uses that §4; is 0 unless i = k, in which case §,, = 1. We
conclude that 1,,A = A. Likewise, we obtainforalll </ < mandalll < k<n

n

[AL i = > [Alj[Lalk = > Ajdi = Ai = [Al

=1 j=1

sothat Al, = A. The identities

m n
Z (5/4/\,] = Akj and ZAijéjk = A
i=1 =1

are used repeatedly in Linear Algebra, so make sure you understand them.

For the last property, applying the definition of matrix multiplication gives

AB = (iAkiBa) and AC= <Zm:Ak"C"f
i=1 1

i=1 >1<k<rﬁ,1<j<n
so that

1

<k<mI<G<n

AB + AC = (i Ak,'B,'j + zm:Ak,'C,‘j

i=1 i=1 >1<k<ﬁ1,1<j<n

where we use that
B+C= (B,'j + C,'j

)1<i<m,1<j<n .

O

Finally, we may flip a matrix along its “diagonal entries”, that is, we interchange the role
of rows and columns. More precisely:

Definition 2.16 (Transpose of a matrix)
- The transpose of a matrix A € M,, ,(K) is the matrix AT € M, ,,(KK) satisfying

[AT], = [Al;
foralll </ <nandl<j<m
- Asquare matrix A € M, ,(K) that satisfies A = AT is called symmetric.

- Asquare matrix A € M, ,(K) that satisfies A = —AT is called anti-symmetric.

Example 2.17 If
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Remark 2.18 (Properties of the transpose)
(i) For A € My, ,(K) we have by definition (AT)" = A.
(ii) ForA € M, »(K)and B € M, (K), we have
(AB)" =BTAT,

Indeed, by definition we have forall1 < /i< mandalll <j < m

n

[(AB)T], = [AB]; = > [Alu[Bls = Y [BT], [AT], = [BTAT]..

k=1
2.3 Mappings associated to matrices

Definition 2.19 (Mapping associated to a matrix) For an (m x n)-matrix A =
(Aij)icicmi<j<n € Mpmo(K) with column vectors ai, ..., a, € K™ we define a
mapping

fa: K" — K", X — AX,
where the column vector Ax € K™ is obtained by matrix multiplication of the matrix
A € M, ,(K) and the column vector X = (x;)1<i<n € K"

A11xy + Axo + - - + A1nXy
L . . Anix1 + Agoxo + - - + Aonxp
AX = 31x1 + axo + - + apx, = .

Am1X1 + Am2X2 o0 F Aman

Recallthatiff : X — Y and g : X — ) are mappings from a set X into a set ), then we
write f = g if f(x) = g(x) for all elements x € X.

The matrix A € M,, ,(K) uniquely determines the mapping fa:
Proposition 2.20 Let A, B € M,, ,(K). Then fa = fg ifand only if A = B.
Proof If A = B,then Aj; = Bjjforalll < i < m,1 < j < n, hence we conclude

that fa = fg. In order to show the converse direction we consider the standard basis
& = (djj)igj<n i = 1,..., nof K". Now by assumption

Ai Bi;

5 A2I ~ Bz,'
fA(eI) - - fB(eI) - .

Am,' Bmi

Since this holds for all / = 1, ..., n, we conclude A; = Bjforallj = 1,...,mand
i =1, ..., n. Therefore, we have A = B, as claimed. O

Recallthatif f : X — Y isamappingfromaset X' intoaset)Yandg : Y — Z amapping
from ) into a set Z, we can consider the composition of g and f

gof: X = Z, x — g(f(x)).
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The motivation for the Definition 2.12 of matrix multiplication is given by the following
theorem which states that the mapping fag associated to the matrix product AB is the
composition of the mapping fa associated to the matrix A and the mapping fg associated
to the matrix B. More precisely:

Theorem 2.21 Let A € M, ,(K) and B € M, »(K) so that fa : K" — K™ and
fB - K™ — K" and fAB : K™ — K™. Then fAB = fA o fB.

Proof For X = (x)1<k<m € K™ we write ¥ = fg(X). Then, by definition, y = BX =
(yj)lgjgn where

I
(2.5) yi = Bipxi + Bjpxo + - + Bimxin = Z Bijx.-
k=1

Hence writing Z = fa(y) = Ay, we have Z = (z;)1<i<m, Where

n n m
zi=Anyr + Anyo + - 4 Ainyn = Z Ay = Z Ajj Z Bjkxic
=1 =1 k=1

n

:Z ZA,'J'Bjk Xk

i
k=1 \ j=1

and where have used (2.5). Since AB = (Cix)1<i<m,1<k<m With
n
Ci = »_ AyBi,
j=1
we conclude that Z = fag(X), as claimed. O

Combining Theorem 2.21 and Proposition 2.20, we also obtain:

Corollary 2.22 LetA € M,, ,(K), B € M, »(K) and C € M 7(K). Then
(AB)C = A(BC),

that is, the matrix product is associative.

Proof Using Proposition 2.20 it is enough to show that
fag © fc = fa o fgc.
Using Theorem 2.21, we get for all X € K7
(fas o fc) (x) = fa(fc(X)) = fa(fa(fc(X))) = fa(fac(X)) = (fa o fac) (X).

Remark 2.23 Forall A € M, ,(K), the mapping fa : K" — K™ satisfies the
following two very important properties
26) (X + y) = fa(X) + fa(y), (additivity),
i fa(s - X) = s - fa(X), (1-homogeneity),
forall X, y € K" and s € K. Indeed, using Proposition 2.15 we have
fa(X +5) = A(X + y) = AX+ Ay = fa(X) + fa(¥)
and
fa(s - x) = A(sx) = s - (Ax) = s - fa(x).
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Mappings satisfying (2.6) are called linear.

Example 2.24 Notice that “most” functions R — R are neither additive nor 1-
homogeneous. As an example, consider a mapping f : R — R which satisfies the
1-homogeneity property. Let a = (1) € R. Then the 1-homogeneity implies that
forallx € R = R! we have

f(x)=Ff(x-1)=x-f(1)=a-x,

showing that the only 1-homogeneous mappings from R — R are of the form
x +— ax, where ais a real number. In particular, sin, cos, tan, log, exp, / and all
polynomials of degree higher than one are not linear.
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CHAPTER 3

Vector spaces and linear maps

3.1 Vector spaces "?Q./r
3

We have seen that to every matrix A € M, ,(K) we can associate a mapping fa : K" —
K™ which is additive and 1-homogeneous. Another example of a mapping which is
additive and 1-homogeneous is the derivative. Consider P(R), the set of polynomial
functions in one real variable, which we denote by x, with real coefficients. That is, an
element p € P(R) is a function

n
p:R—R, Xl—>aan+an_1Xn71+~~~+21X+ao:E akxk,
k=0

where n € N and the coefficients a, € Rfork =0, 1, ..., n. Thelargest m € NU {0} such
that a,,, # 0 'is called the degree of p. Notice that we consider polynomials of arbitrary,
but finite degree. A power series x — >_,~ aix¥, that you encounter in the Analysis
module, is not a polynomial, unless only finitely many of its coefficients are different
from zero.

Clearly, we can multiply p with a real number s € R to obtain a new polynomial s -p(r) p
(3.1) spmr)P:R—R, x s p(x)

sothat (s-pr) p)(x) = D_4_g sakx” forall x € R. Here s p(x) is the usual multiplication
of the real numbers s and p(x). If we consider another polynomial

qg:R—R, xHZbkxk
k=0

with by € Rfork =0, 1, ..., n, the sum of the polynomials p and q is the polynomial
(3.2) p+er)q:R—R, x = p(x) + q(x)

so that (p +p(r) 9)(x) = >_,_o(ak + bi)x* forall x € R. Here p(x) + g(x) is the usual
addition of the real numbers p(x) and g(x). We will henceforth omit writing +p(r) and
-p(r) and simply write + and -.

We may think of the derivative with respect to the variable x as a mapping

d
—: P(R P(R).
- P(R) > P(R)
Now recall that the derivative satisfies
d d d o
63 &(P +q) = a(P) + &(Cl) (additivity),
’ d d .
&(s -p)=s- &(p) (1-homogeneity).

Comparing (2.6) with (3.3) we notice that the polynomials p, g take the role of the vectors
X, ¥ and the derivative takes the role of the mapping fa. This suggests that the mental
image of a vector being an arrow in K” is too narrow and that we ought to come up with
a generalisation of the space K" whose elements are abstract vectors.
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Video Vector spaces

In order to define the notion of a space of abstract vectors, we may ask what key structure
the set of (column) vectors K” carries. On K", we have two fundamental operations,

+:K"x K" = K" (X,¥)— X+y, (vectoraddition),
KxK'= K", (s,X)—~s-X, (scalar multiplication).

A vector space is roughly speaking a set where these two operations are defined and obey
the expected properties. More precisely:

Definition 3.1 (Vector space) A K-vector space, or vector space over K is a set V
with a distinguished element 0y, (called the zero vector) and two operations

+v:VXxV =V (v,v)—wv-+ywv (vectoraddition)
and
v :KxV =V (s,v)—s-yv (scalarmultiplication),
so that the following properties hold:
- Commutativity of vector addition
vitvwv=w+yv (forallv, v e V),
« Associativity of vector addition
vitv(va+yvvi)=(vi+vw)t+yvvs (forallvi, vy, vz € V),
- Identity element of vector addition
(3.4) Ov+vv=v+y0y=v (forallve V)
« Identity element of scalar multiplication
l.yv=v (forallve V),
+ Scalar multiplication by zero
(3.5) 0-vv=0y (forallve V),
- Compatibility of scalar multiplication with field multiplication
(s192) ' vv=s1-v(s2:vv) (foralls,s €K, ve V)

» Distributivity of scalar multiplication with respect to vector addition

sviitvw)=s-vvit+vs-ywn (forallseK vi,v, €V);
- Distributivity of scalar multiplication with respect to field addition

(s1+s)vv=si-vvt+ys-yvv (foralls,s K ve V).

The elements of V are called vectors.

Example 3.2 (Field) Afield K is a K-vector space. We may take V = K, 0y = Ok
and equip V with addition +, = +k and scalar multiplication -,y = . Then the
properties of a field imply that V = Kis a K-vector space.

Example 3.3 (Vector space of matrices) Let V = M, ,(K) denote the set of m x
n-matrices with entries in K and 0y, = 0,, , denote the zero vector. It follows
from Proposition 2.15 that V' equipped with addition +y : V x V — V defined
by (2.4) and scalar multiplication -y : K x V — V defined by (2.3) is a K-vector
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space. In particular, the set of column vectors K" = M,, 1 (K) is a K-vector space as
well.

Example 3.4 (Vector space of polynomials) The set P(R) of polynomials in one
real variable and with real coefficients is an R-vector space, when equipped with
addition and scalar multiplication as defined in (3.1) and (3.2) and when the zero
vector Op(r) is defined to be the zero polynomial o : R — R, that is, the polynomial
satisfying o(x) = 0 forall x € R.

More generally, functions form a vector space:

Example 3.5 (Vector space of functions) We follow the convention of calling a
mapping with values in K a function. Let | C R be anintervalandleto : | — K
denote the zero function defined by o(x) = 0 forall x € /. We consider V = F(/, K),
the set of functions from / to K with zero vector 0, = o given by the zero function
and define addition +y : V x V — V asin (3.2) and scalar multiplication -y, :
K x V — Vasin (3.1). It now is a consequence of the properties of addition and
multiplication of scalars that F(/, K) is a K-vector space. (The reader is invited to
check this assertion!)

Example 3.6 (Vector space of sequences) A mapping x : N — K from the natural
numbers into a field K called a sequence in K (or simply a sequence, when K is clear
from the context). It is common to write x, instead of x(n) for n € N and to denote a
sequence by (x,)nen = (x1, X2, X3, -..). We write K for the set of sequences in K.
For instance, taking K = R, we may consider the sequence

L T
n)pen 12345

(\/B)neN = (1, V2,v/3,2,V/5, ) }

If we equip K> with the zero vector given by the zero sequence (0, 0,0, 0,0, ...),
addition given by (x,)nen + (Vn)nen = (Xn + ¥n)nen and scalar multiplication given
by s - (xn)nen = (5Xn)nen for s € K, then K* is a K-vector space.

or the sequence

Example 3.7 (Zero vector space) Consider a set V = {x} consisting of a single
element. We define 0y = x, addition by x +\ x = x and scalar multiplication by
s-v x = x. Then all the properties of Definition 3.1 are satisfied. We write VV = {0y}
orsimply V = {0} and call V the zero vector space (over K).

The notion of a vector space is an example of an abstract space. Later in your studies you
will encounter further examples, like topological spaces, metric spaces and manifolds.

Remark 3.8 (Notation & Definition) Let V' be a K-vector space.
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« Forv € V wewrite —v = (—1) -y vandforv;, v, € V wewrite vy — v, =
vi +v (—w). In particular, using the properties from Definition 3.1 we have (check
which properties we do use!)

v—v=v+y(—v)=v+y(-1).yv=(1-1)-yv=0-yv=0y

For this reason we call —v the additive inverse of v.

- Again, it is too cumbersome to always write +/, for this reason we often write
vi + v instead of vi +v vo.

« Likewise, we will often write s - v or sv instead of s - v.

« Itis also customary to write 0 instead of 0,.

Lemma 3.9 (Elementary properties of vector spaces) Let V' be a K-vector space.
Then we have:
(i) The zero vector is unique, that is, if 0\, is another vector such that 0\, + v =
v+ 0, =vforallv e V, then 0}, = Oy.
(ii) The additive inverse of every v € V is unique, thatis, if w € V satisfies v + w =
Oy, thenw = —v.
(iii) Forall s € K we have sOy = 0y,.
(iv) Fors € Kandv € V we have sv = Oy ifand only if eithers = 0 or v = 0y,.

Proof (The reader is invited to check which property of Definition 3.1 is used in each of
the equality signs below)

(i) We have 0}, =07, + 0y = Oy.

(ii) Since v + w = 0y, adding —v, we obtain (—v) + v+ w =0y + (—v) = —v = w.
(iii) We compute sOy = s(0y + 0y) = s0y + s0y so that s0y, — s0y = 0y, = sOy.

(iv) <If v =0y, then sv = 0y by (iii). If s = 0, then sv = 0 by (3.5).

= Lets € Kand v € V such that sv = 0y. Itis sufficient to show that if s # 0, then
v = Oy. Since s # 0 we can multiply sv = 0y with 1/s so that

S

1 1 1
=(sv) = (5> v=v= EOVZOV'

3.2 Linear maps

Throughout this section, V, W denote K-vector spaces.

Previously we saw that the mapping fa : K" — K™ associated to a matrix M, ,(K) is
additive and 1-homogeneous. These notions also make sense for mappings between
vector spaces.

Definition 3.10 (Linear map) Amapping f : V — W is called linear if it is additive
and 1-homogeneous, that is, if it satisfies

(3.6) f(51V1 aF 52V2) =5 f(Vl) == 52f(V2)
forall s, s, € Kandforall vy, v» € V.
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The reader is invited to check that the condition (3.6) is indeed equivalent to f being
additive and 1-homogeneous.

Example 3.11 As we have seen in Remark 2.23, the mapping fa : K" — K™ associ-
ated to a matrix A € M,, ,(K) is linear. In Lemma 3.18 below we will see that in fact
any linear map K” — K" is of this form.

Example 3.12 The derivative £ : P(R) — P(R) is linear, see (3.3).

Example 3.13 The matrix transpose is a map M,, ,(K) — M, »,(K) and this map is
linear. Indeed, foralls, t € Kand A, B € M,, ,(K), we have

(sA+tB)T = (sA;i + tBji)igj<ni<i<m = S(Aj)igj<ni<i<mt

t(Bji)i<j<nic<icm = SAT +tBT.

Example 3.14 If X is set, the mappingldy : X — X which returnsitsinputis called
the identity mapping. Let V be a K-vector space and Idy : V — V the identity
mapping so that Idy(v) = v forall v € V. The identity mapping s linear since for
all sy, s, € Kand vi, v» € V we have

|d\/(51V1 -+ 52V2) =S51V; +SHw = 51|d\/(V1) + 52|d\/(V2).

A necessary condition for linearity of a mapping is that it maps the zero vector onto the
zero vector:

Lemma3.15 Letf : V — W bea linear map, then f(0y) = Ow.

Proof Sincef : V — W is linear, we have

F(Oy) = £(0-0y) =0 £(0y) = Ow.

Proposition 3.16 Let V1, V5, V3 be K-vector spacesand f : V; — Voand g : Vo —
V3 be linear maps. Then the composition g o f : V; — V43 is linear. Furthermore,
if f + Vi — Vs is bijective, then the inverse function f~* : V, — V4 (satisfying
f~lof=Ffof1=1Idy)islinear.

Proof Lets,t € Kandv,w € V;.Then
(g0 F) (sv + tw) = g(F(sv + tw)) = g(sF(v) + tF(w))
= sg(f(v)) + tg(f(w)) = s(g o F)(v) + t(g o F)(w),
where we first use the linearity of f and then the linearity of g. It follows that g o f is

linear.

29



CHAPTER 3 — VECTOR SPACES AND LINEAR MAPS

Now suppose f : V4 — V, is bijective with inverse function f =1 : V, — V4. Lets, t € K
and v, w € V5. Since f is bijective there exist unique vectors v/, w’ € V; with f(v/) = v
and f(w’) = w. Hence we can write
i (sv 4 tw) = FH(sF(V)) + tF (W) = FH(F(sv/ + tw'))
=(Flof)(sv +tw) =sv +tw
where we use the linearity of . Since we also have v/ = f~(v) and w’ = f~1(w), we
obtain
fl(sv + tw) = sf1(v) + tFH(w),
thus showing that f =1 : V5, — V; is linear. O

We also have:
Proposition 3.17 Let A € M, ,(K) and fa : K" — K" the associated linear map.
Then fy is bijective if and only if there exists a matrixB € M,, ,,(K) satisfyingBA =1,

and AB = 1,,. In this case, the matrix B is unique and will be denoted by A~*. We
refer to A= as the inverse of A and call A invertible.

In order to prove Proposition 3.17 we need the following lemma:

Lemma 3.18 A mapping g : K™ — K" is linear if and only if there exists a matrix
B € M, »(K)sothat g = fg.

Proof Let B € M, ,(K), then fg is linear by Remark 2.23. Conversely, let g : K" — K"
be linear. Let {&;, ..., &,} denote the standard basis of K™. Write

Bui
g(é) = for - i=1,...,m
Bhi
and consider the matrix
Bii -+ Bim
B=| : .. ! |€MnK).
Bn -+ Bum
Fori =1, ..., mwe obtain
(3.7) fa(€;) = Bé; = g(é&i).

Any vector vV = (v)i<i<m € K™ can be written as
V=V + -+ Vi
for (unique) scalars v;, i = 1, ..., m. Hence using the linearity of g and fg, we compute
g(V) — fg(V) = g(viér + -+ + Vm€m) — fe(vié1 + - -+ + Vim€m)
= vi(g(é1) — fa(é)) + - + vim (g(€m) — fa(ém)) = O,

where the last equality uses (3.7). Since the vector V is arbitrary, it follows that g = fg, as
claimed. O

Proof of Proposition 3.17 First, notice that the mapping f1, : K” — K" associated to
the unit matrix is the identity mapping on K", that is, for all n € N, we have fi, = ldk-.

Let A € M, ,(K) and suppose that fa : K" — K™ is bijective with inverse function
(fa)~! : K™ — K". By Proposition 3.16, the mapping (fa) ! is linear and hence of
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the form (fa)~! = fg for some matrix B € M, ,(K) by the previous Lemma 3.18. Us-
ing Theorem 2.21, we obtain

(fa) tofa=Idgn = fgofa = fga = f,
hence Proposition 2.20 implies that BA = 1,,. Likewise we have

fao(fa) = Idgm = faofg = fag = f1,
sothat AB = 1,,.
Conversely, let A € M,, ,(K) and suppose the matrix B € M, ,,(K) satisfies AB = 1,
and BA = 1,,. Then, as before, we have

fap=fi, =Ildgm =faofg and fga =f, =Idg» = fgofa
showing that fa : K" — K™ is bijective with inverse function fg : K™ — K".
Finally, to verify the uniqueness of B, we assume that there exists B’ € M, ,,(K) with
AB’' =1, and B’A =1,. Then
B'=B'1l,=B'AB=(B'A)B=1,B=B,

showing that B’ = B, hence B is unique. O

Exercises

Exercise 3.19 lLetf : V — W be a linear map, k > 2 a natural number and
st,....,sk € Kand v, ..., v € V.Then f : V — W satisfies

f(51V1 + -1 skvk) = Slf(Vl) qF o0 qF skf(vk)

or written with the sum symbol

f (ZS,’V;) :Zs;f(v;).

This identity is used frequently in Linear Algebra, so make sure you understand it.

Exercise 3.20 Leta, b, ¢, d € K and
a b
A= M 5 (K).
(c d) € Mp2(K)

Show that A has aninverse A=t ifand onlyif ad — bc # 0. For ad — bc # 0, compute
the inverse A1,
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3.3 Vector subspaces and isomorphisms %@r
4
3.3.1 Vector subspaces

Avector subspace of a vector space is a subset that is itself a vector space, more precisely:

Definition 3.21 (Vector subspace) Let V be a K-vector space. Asubset U C Vis
called a vector subspace of V if U is non-empty and if

(3.8) stvvityvs-ywe U forall sy, s, € Kandall vi, vn» € U.

Video Subspaces

Remark 3.22

(i) Observe thatsince U is non-empty, it contains an element, say u. Since 0y u =
0y € U it follows that the zero vector Oy lies in U. A vector subspace U is
itself a vector space when we take 0y = 0y and borrow vector addition and
scalar multiplication from V. Indeed, all of the properties in Definition 3.1 of
+yv and -y hold for all elements of V' and all scalars, hence also for all elements
of U C V and all scalars. We only need to verify that we cannot fall out of
U by vector addition and scalar multiplication, but this is precisely what the
condition (3.8) states.

(ii) Avector subspace is also called a linear subspace or simply a subspace.

The prototypical example of a vector subspace are lines and planes through the origin in
R3:

Example 3.23 (Lines through the origin) Let w # Ogs, then the line
U={sw|s e R} CR?
is a vector subspace. Indeed, taking s = 0 it follows that Ogs € U so that U is

non-empty. Let iy, i be vectors in U so that i3 = tyw and i, = t,w for scalars
t1, t € R. Let 51,5 € R, then

S1U + Sl = st W + Sotow = (Sltl aF 52t2) weU

sothat U C R3is a subspace.

Example 3.24 (Zero vector space) Let V be a K-vector space and U = {0y} the
zero vector space arising from 0y,. Then, by Definition 3.21 and the properties of
Definition 3.1, it follows that U is a vector subspace of V.

Example 3.25 (Periodic functions) Taking / = Rand K = R in Example 3.5, we see
that the functions f : R — R form an R-vector space V = F(R, R). Consider the
subset

U= {f € F(R,R) | f is periodic with period 27}
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consisting of 27r-periodic functions, that is, an element € U satisfies f(x + 27) =
f(x) forall x € R. Notice that U is not empty, as cos : R — Randsin : R — R are
elements of U. Suppose f1, , € U and s, s, € R. Then, we have forall x € R

(s1fi + 526)(x + 27) = s1f1(x + 27) + s2fa(x + 27) = s1f1(x) + s2f2(x)
= (s1f + 522)(x)

showing that s, f; + s, 1, is periodic with period 27r. By Definition 3.21, it follows that
U is a vector subspace of F(R, R).

Recall, if X, W aresets, Y C X, Z C Wsubsetsand f : X — W a mapping, then the
image of ) under f is the set

f(Y) = {w € W |thereexists an element y € Y with f(y) = w}

consisting of all the elements in YW which are hit by an element of ) under the mapping
f. In the special case where YV is all of X, thatis, ) = X, itis also customary to write
Im(f) instead of (') and simply speak of the image of f. Similarly, the preimage of Z
under f is the set

FH(2) = {xe X[f(x) € 2}

consisting of all the elements in X which are mapped onto elements of Z under 7. Notice
that f is not assumed to be bijective, hence the inverse mapping f~1 : W — X does
not need to exist (and in fact the definition of the preimage does not involve the inverse
mapping). Nonetheless the notation f ~1(Z) is customary.

It is natural to ask how the image and preimage of subspaces look like under a linear
map:

Proposition 3.26 Let V/, W be K-vector spaces, U C V and Z C W be vector
subspaces and f : V. — W a linear map. Then the image f(U) is a vector subspace
of W and the preimage f ~1(Z) is a vector subspace of V.

Proof Since U is a vector subspace, we have 0y € U. By Lemma3.15, f(0y) = Ow,
hence Ow € f(U). Forall wy, wy, € f(U) there exist uy, u, € U with f(u1) = wy and
f(u) = wy. Hence forall sy, s, € K we obtain

SiwWy + S = slf(ul) + SQf(UQ) = f(51u1 + 52U2),

where we use the linearity of f. Since U is a subspace, s;u; + su> is an element of U
as well. It follows that s;w; + s;ws € F(U) and hence applying Definition 3.21 again,
we conclude that f(U) is a subspace of W. The second claim is left to the reader as an
exercise. ]

Vector subspaces are stable under intersection in the following sense:

Proposition 3.27 Let V be a K-vector space, n > 2 a natural number and Uy, ..., U,
vector subspaces of V. Then the intersection
n
U=U={veV|veUforalj=1,..,n}
j=1
is a vector subspace of V as well.
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Proof Since U; is a vector subspace, 0y € U; forallj = 1, ..., n. Therefore, 0y € U,
hence U’ is not empty. Let u;, u, € U"and sy, s, € K. By assumption, uy, u, € U; for all
Jj=1,...,n. Since U;isavectorsubspaceforallj = 1, ..., nitfollowsthat s;u1 +s,us € U;
forallj =1,..., nand hence s;u; + s,up € U'. By Definition 3.21, it follows that U’ is a
vector subspace of V. O

Remark 3.28 Notice that the union of subspaces need not be a subspace. Let
V = R?, {é, &} its standard basis and

Up={séi|seR} and U,={sé&|secR}.
Then€1€U1UU2and§26U1UU2,buté'1+é'2¢U1UU2.

The kernel of alinear map f : V — W consists of those vectors in V that are mapped
onto the zero vector of W:

Definition 3.29 (Kernel) The kernel of a linear map f : V — W is the preimage of
{Ow} under f, that s,

Ker(f) = {v e V|f(v) =0w} = f1({0w}).

Example 3.30 The kernel of the linear map dd7 : Po(R) — P,_1(R) consists of the
constant polynomials satisfying f(x) = c for all x € R and where ¢ € R is some
constant.

We can characterise the injectivity of a linearmap f : V — W in terms of its kernel:

Lemma 3.31 Alinearmap f : V — W is injective if and only if Ker(f) = {0y }.

Proof Let f : V — W be injective. Suppose f(v) = Ow. Since f(0y) = Ow by
Lemma 3.15, we have f(v) = f(0v), hence v = 0y by the injectivity assumption. It
follows that Ker(f) = {0y }. Conversely, suppose Ker(f) = {0y} and let v1, v» € V be
suchthat f(v4) = f(v2). Then by the linearity we have f (v1) — f(v2) = Ow = f(v1 — v).
Hence vi — vy isin the kernel of f so that vi — vo = 0y or vi = ws. O

An immediate consequence of Proposition 3.26 is:

Corollary 3.32 Letf : V — W be a linear map, then its image Im(f) is a vector
subspace of W and its kernel Ker(f) is a vector subspace of V.

3.3.2 Isomorphisms

Definition 3.33 (Vector space isomorphism) A bijective linearmap f : V — Wiis
called a (vector space) isomorphism. If an isomorphism 7 : V — W exists, then the
K-vector spaces V and W are called isomorphic.
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3.4 — Generating sets

By the definition of surjectivity,amap f : V — W is surjective if and only if Im(f) = W.
Combining this with Lemma 3.31 gives:

Proposition 3.34 Alinearmap f : V — W isanisomorphism if and only if Ker(f) =
{Oy}andIm(f) = W.

3.4 Generating sets

Definition 3.35 (Linear combination) Let V be a K-vector space, k € N and
{v1, ..., v } a set of vectors from V. A linear combination of the vectors {vy, ..., vx }
is a vector of the form

k
wW=5Vvs+ -+ Sv = E SiVj
i=1

forsomesy, ..., s, € K.

Example 3.36 For n € Nwith n > 2 consider V = P,(R) and the polynomials
p1, P2, p3 € P,(R) defined by the rules p;(x) = 1, pa(x) = x, p3(x) = x> for all
x € R. Alinear combination of {p1, p2, p3} is a polynomial of the form p(x) =
ax? 4+ bx + cwhere a, b, c € R.

Definition 3.37 (Subspace generated by a set) Let V beaK-vectorspaceandS C V
be a non-empty subset. The subspace generated by S is the set span(S) whose
elements are linear combinations of finitely many vectors in S. The set span(S) is
called the span of S. Formally, we have

k
span(S) = {VG V)v:Zs;v;,kGN,sl,...,sk ceK v, ..., v ES}.
i=1

Remark 3.38 The notation (S) for the span of S is also in use.

Proposition 3.39 Let V be a K-vector space and S C V be a non-empty subset.
Then span(S) is a vector subspace of V.

Proof Since S is non-empty it contains some element, say u. Since v itself is a linear
combination of {u}, it follows that span(S) is non-empty. Let k € Nand vy = tyw; +
<o+ tewy for ty, ...t € Kand wy, ..., wyx € S be alinear combination of vectorsin S.
Furthermore, letj € Nand v, = 1y + - + §w; for £y, ..., §jand Wy, ..., W; € S be
another linear combination of vectors in S. By Definition 3.21, it suffices to show that for
all s, s, € Kthe vector s;v; + s,y is a linear combination of vectors in S. Since

S1V1 + SHve = 51(t1W1 + -4 tka) +Sg(f1|7l\/1 + 4 i\'JWJ)

=sitiwi + -+ + S bWy + W+ -+ SEW;
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is a linear combination of the vectors {wy, ..., wi, W1, ..., W; } in S, the claim follows.

Remark 3.40 ForasubsetS C V,we may alternatively define span(S) to be the
smallest vector subspace of V that contains S. This has the advantage of S being
allowed to be empty, in which case span()) = {0y}, that is, the empty set is a

generating set for the zero vector space.

Definition 3.41 Let V be a K-vector space. Asubset S C V is called a generating
set if span(S) = V. The vector space V is called finite dimensional if V admits a
generating set with finitely many elements (also called a finite set). A vector space

that is not finite dimensional will be call infinite dimensional.

Example 3.42 Thinkingof afield K as aK-vector space, the set S = {1k} consisting
of the identity element of multiplication is a generating set for V = K. Indeed, for

every x € Kwe have x = x -y 1k.

Example 3.43 The standard basis S = {é}, ..., €,} is a generating set for K", since
forall X = (x;)1<i<n € K", we can write X = x1 €1 + - - - + x,&, so that X is a linear

combination of elements of S.

Example 3.44 LetE,; € M, ,(K)forl < k < mand1 < / < ndenote the m-by-n
matrix satisfying Ex; = (0«idjj)1<i<m1<j<n- FOr example, for m = 2 and n = 3 we

have

100 010 001
Eyq = Ei»= Eys—
Lt (0 0 0)’ b2 (0 0 0)' L3 (0 0 0)

000 000 000
E2'1<1 0 o>' E2'2<0 1 0)’ E“(o 0 1)'

and

Then S = {Ex,}1<k<mi<i<n IS @ generating set for M, ,(K), since a matrix A €

M, »(K) can be written as

A= Z Z AuEx

k=1 I=1
so that Ais a linear combination of the elements of S.

Example 3.45 The vector space P(R) of polynomials is infinite dimensional. In
order to see this, consider a finite set of polynomials {p1, ..., pn}, n € Nand let d;
denote the degree of the polynomial p; fori =1, ..., n. We set D = max{di, ..., d,}.
Since a linear combination of the polynomials {ps, ..., p,} has degree at most D, any
polynomial g whose degree is strictly larger than D will satisfy g ¢ span{py, ..., p, }-

It follows that P(R) cannot be generated by a finite set of polynomials.

O
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3.5 — Linear independence and bases

Lemma3.46 Letf : V — W belinearand S C V a generating set. If f is surjective,
then f(S) is a generating set for W. Furthermore, if f is bijective, then V is finite
dimensional if and only if W is finite dimensional.

Proof Let w € W. Since f is surjective there exists v € V such that f(v) = w. Since
span(S) = V, there exists k € N, as well as elements vy, ..., vx € Sandscalars sy, ..., sk
suchthatv = fo:l sjviand hence w = Zf.‘zl sif(v;), where we use the linearity of . We
conclude that w € span(f(S)) and since w is arbitrary, it follows that W = span(f(S)).

For the second claim suppose V is finite dimensional, hence we have a finite set S
with span(S) = V. The set f(S) is finite as well and satisfies span(f(S)) = W by the
previous argument, hence W is finite dimensional as well. Conversely suppose W is
finite dimensional with generating set 7 C W. Since f is bijective there exists an inverse
mapping f~1 : W — V which is surjective, hence V = span(f~*(7)) so that V is finite
dimensional as well. O

3.5 Linear independence and bases

A set of vectors where no vector can be expressed as a linear combination of the other
vectors is called linearly independent. More precisely:

Definition 3.47 (Linear independence) LetS C V be a non-empty finite subset so
that S = {vi, ..., v} for distinct vectors v; € V,i =1, ..., k. We say S is linearly
independent if

S1vi+ -+ seve = Oy <~ s1=:-=5=0,

where s1, ...,s, € K. If S is not linearly independent, then S is called linearly
dependent. Furthermore, we call a subset S C V linearly independent if every finite
subset of S is linearly independent. We will call distinct vectors vy, ..., v linearly
independent/dependent if the set {vi, ..., v } is linearly independent/dependent.

Remark 3.48 Instead of distinct, many authors write pairwise distinct, which means
that all pairs of vectors v;, v; with i # j satisfy v; # v;. Of course, this simply means
that the list v4, ..., v, of vectors is not allowed to contain a vector more than once.

Notice that if the vectors vy, ..., vx € V are linearly dependent, then there exist scalars
s1, ..., Sk, not all zero, so that Zf.;l s;v; = Oy. After possibly changing the numbering of
the vectors and scalars, we can assume that s; # 0. Therefore, we can write

k
Sj
Vi = — E () Vi,
s

i—2 N7l
so that v; is a linear combination of the vectors v», ..., vk.

Also, observe that a subset 7 of a linearly independent set S is itself linearly independent.
(Why?)
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Example 3.49 We consider the polynomials p1, p2, p3 € P(R) defined by the rules
pi(x) = 1, pa(x) = x, p3(x) = x*>forall x € R. Then {py, p, p3} is linearly inde-
pendent. In order to see this, consider the condition
(3.9) s1p1+ S2p2 + $3p3 = Opr) = 0
where o : R — R denotes the zero polynomial. Since (3.9) means that

s1p1(x) + s2p2(x) + s3p3(x) = o(x),
for all x € R, we can evaluate this condition for any choice of real number x. Taking
x = 0 gives

s1p1(0) + s2p2(0) + s3p3(0) = 0(0) = 0 = 1.

Taking x = 1and x = —1 gives

0=s5px(1) + s3p3(1) = 52 + 53,

0= sp2(—1) + s3p3(—1) = —s2 + s3,

so that s, = s3 = 0 as well. It follows that {p;, p2, p3} is linearly independent.
Remark 3.50 By convention, the empty set is linearly independent.

Definition 3.51 (Basis) A subset S C V which is a generating set of V and also
linearly independent is called a basis of V.

Video Basis

Example 3.52 Thinking of a field K as a K-vector space, the set {1k} is linearly
independent, since 1x # Ox. Example 3.42 implies that {1k } is a basis of K.

Example 3.53 Clearly, the standard basis {€;, ..., &,} of K" is linearly independent
since

51 0
518 + -+ 5,8, = =0k =1 — s=---=5,=0.
Sn 0

It follows together with Example 3.43 that the standard basis of K" is indeed a basis
in the sense of Definition 3.51.

Example 3.54 The matrices Ex; € M, ,(K)forl < k < mand1 < | < nare
linearly independent. Suppose we have scalars s, € K such that
. G cce G 0 --- 0

Z ZSkIEk,I == 5 o 2 | =
=1

m
k=1 I= Sml “ " Smn 0 --- 0
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3.5 — Linear independence and bases

sosy = 0foralll < k < mandalll </ < n. Itfollows together with Example 3.44
that {Ek,l}lgkgm,lglgn is a basis of Mm,n(K). We refer to {Ek,l}lgkgm,lglgn as the
standard basis of M, ,(K).

Example 3.55 Combining Remark 3.40 and Remark 3.50 we conclude that the
empty set is a basis for the zero vector space {0}.

Lemma 3.56 Letf : V — W be an injective linear map. Suppose S C V is linearly
independent, then f(S) C W is also linearly independent.

Proof Let {wq,...,wx} C f(S) be a finite subset for some k € N some and distinct
vectors w; € W, where 1 < i < k. Then there exist vectors vy, ..., v, with f(v;) = w;
for1 < i < k. Suppose there exist scalars s, ..., s, such that sywy + - - - + sewy = Opy.
Using the linearity of f, thisimplies

Ow =siwy + -+ + sgwi = sif(va) + -+ + sef(vie) = f(siva + -+ + skvk).

Since f isinjective we have Ker(f) = {0y } by Lemma 3.31. Since sy vy +- - -+, vk € Ker f

itfollowsthats;vi+- - -+sxvx = Oy, hences; = --- = s, = 0 bythelinearindependence
of S. It follows that f(S) is linearly independent as well. O
Exercises

Exercise 3.57 Let U C V be avector subspace and k € N with k > 2. Show that
foruy,...,ux € Uand sy, ..., s, € K,wehavesjuy + -+ + seu € U.

Exercise 3.58 (Planes through the origin) Let wy, wo # Ogs and wy # sw for all
s € R. Show that the plane

U= {51W/1 + SpWh ‘ 51,5 € R}

is a vector subspace of R3.

Exercise 3.59 (Polynomials) Letn € NU {0} and P,(R) denote the subset of P(R)
consisting of polynomials of degree at most n. Show that P,(RR) is a subspace of
P(R) foralln € NU {0}.

Exercise 3.60 Show that the K-vector space K" of column vectors with n entries is
isomorphic to the K-vector space K, of row vectors with n entries.
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3.6 — The dimension

.6 The dimension 7
3.6 The dimensio Q./rs
3.6.1 Defining the dimension

Intuitively, we might define the dimension of a finite dimensional vector space V to be
the number of elements of any basis of V, so that a line is 1-dimensional, a plane is 2-
dimensional and so on. Of course, this definition only makes sense if we know that there
always exists a basis of V' and that the number of elements in the basis is independent of
the chosen basis. Perhaps surprisingly, these facts take quite a bit of work to prove.

Theorem 3.64 Let V be a K-vector space.
(i) AnysubsetS C V generating V' admits a subset T C S that is a basis of V.
(ii) Any subset S C V that is linearly independent in V is contained in a subset
T C V thatis a basis of V.
(iii) If S1, S» are bases of V, then there exists a bijective map f : S; — So.
(iv) If V is finite dimensional, then any basis of V is a finite set and the number of
elements in the basis is independent of the choice of the basis.

Corollary 3.65 Every K-vector space V admits at least one basis.

Proof Since V isa generating set for V, we can apply (i) from Theorem 3.64to S = V' to
obtain a basis of V. O

Remark 3.66 Let X be a set with finitely many elements. We write Card(X’) - for
cardinality - for the number of elements of X.

Definition 3.67 The dimension of a finite dimensional K-vector space V/, denoted
by dim(V/) or dimgk (V/), is the number of elements of any basis of V.

Example 3.68
(i) The zero vector space {0} has the empty set as a basis and hence is 0-
dimensional.
(ii) Afield K -thought of as a K-vector space - has {1x } as a basis and hence is
1-dimensional.
(iii) The vector space K" has {éj, ..., €,} as a basis and hence is n-dimensional.
(iv) The vector space My, »(K) has Ex;forl < k < mand1 < / < nasa basis,
hence it is mn-dimensional.

We will only prove Theorem 3.64 for finite dimensional vector spaces. This will be done
with the help of three lemmas.

Lemma 3.69 Let V be a K-vector space, S C V linearly independent and vy € V.
Suppose vy ¢ span(S), then S U {wy} is linearly independent.
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Proof Let 7 be afinite subset of SU {w}. If vo & T, then T islinearly independent, as
Sislinearly independent. So suppose vy € 7. There exist distinct elements vy, ..., v, of
Ssothat 7 = {w, v, ..., Vs }. Suppose spvp + s1v1 + - - - + s,v, = Oy for some scalars
S0, S1, -+, Sn € K. If 59 # 0, then we can write
n s;
Vo = — Z gvn
i=1
contradicting the assumption that vp ¢ span(S). Hence we must have s = 0. Since
so = Oitfollows that s;vy + --- + s,v, = 0y sothats; = --- = s, = 0 by the linear
independence of S. We conclude that S U { v} is linearly independent. (|

Lemma3.70 Let V be a K-vectorspace and S C V agenerating set. If vo € span(S\
{w}), then S \ {w} is a generating set.

Proof Since vy € span(S \ {w}), there exist vectors vy, ..., v, € S with v; # v, and
scalars sy, ..., spsothat vy = s;vy + - - - + s,v,,. Suppose v € V. Since S is a generating
set, there exist vectors wy, ..., w, € S and scalars ty, ..., tx sothatv = tywy + --- +
tewk. If {wy, ..., wx} does not contain vy, then v € span(S \ {w}), so assume that
vo € {w, ..., wg }. After possibly relabelling the elements of {ws, ..., wyx } we can assume
that vy = wy. Hence we have

v=1t(sivi+ - FSpvp) + bows + - tewk

with vp # v;for1 <7< nand vy # w; for2 < j < k. It follows that v € span(S \ {w}),
as claimed. O

Lemma 3.71 Let V be a finite dimensional K-vector space and S C V a finite set
with n elements which generates V. If T C V has more than n elements, then T is
linearly dependent.

Proof We show that if 7 has exactly n + 1 elements, then it is linearly dependent. In the
other cases, T contains a subset with exactly n + 1 elements and if this subset is linearly
dependent, then sois 7.

We prove the claim by induction on n > 0. Let .A(n) be the following statement: “For any
K-vector space V, if there exists a generating subset S C V with n elements, then all
subsets of V' with n + 1 elements are linearly dependent.”

We first show that .A(0) is true. A subset with zero elements is the empty set (). Hence
V = span(()) = {0y } is the zero vector space. The only subset of { VV} with 1 element is
{0y }. Since sOy = 0y forall s € K, the set {0y } is linearly dependent, thus showing
that .A(0) is correct.

Suppose n > 1 and that A(n — 1) is true. We want to argue that A(n) is true as well. Sup-
pose V is generated by the set S = {v1, ..., v, } with nelements. Let T = {wy, ..., Wpi1}
be a subset with n + 1 elements. We need to show that 7 is linearly dependent. Since S
is generating, we have scalarss; € Kwith1 </ < n+1and1l < < nsothat

n

(3.10) W= sy
j=1

forall1 <7 < n+ 1. We now consider two cases:
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Casel. Ifs;3 =+ =sp111 = 0,then (3.10) givesforall1 </ < n+1

n
w; = E SUVJ
j=2

Notice that the summation now starts at j = 2. This implies that 7 C W, where
W = span{v, ..., v, }. We can now apply .A(n — 1) to the vector space W, the generating
set Sy = {va, ..., v, } and the subset with n elements being 7; = {wy, ..., w,}. It follows
that 77 is linearly dependent and hence so is T, as it contains 7;.

Case 2. Suppose there exists / so that s;; # 0. Then, after possibly relabelling the vectors,
we can assume that s;; # 0. For 2 < i < n+ 1 we thus obtain from (3.10)

w, Silw—w Sit ESV_ESV Sit Esv
i o W= Wwi= Vi | — ivi— 1jVj
S11 S11 — — S11 —
j=1 j=1 j=1
n
= E (s S'Ils )v
= [/ VIl I
— S11
Jj=1
n
Si1 Si1
=\|si——-su|jvi+ E Sij— ——S1; | Y
S11 — S11
N , j=2
=0
n
= [/t VIl I
— S11
j=2
Hence, setting
~ Si1
(3.11) W= w — =wy
S11

for2<i<n+1land§; =s;— Z%isljforZ <i<n+1land?2 < j < n,weobtainthe
relations

Wi =) v

j=2
forall2 < i < n+ 1. Therefore, the set 7" = {Ws, ..., Wy,1} With n elements is contained
in W which is generated by n — 1 elements. Applying .A(n — 1), we conclude that 7 is

linearly dependent. It follows that we have scalars t5, ..., t,1 not all zero so that
bWy + -+ 4 thp1Wpt1 = Ov.

Using (3.11), we get

n+1 s nt+l s
1 i1
Zt,- (W"_,W1> - th’* wy 4 towp + - -+t Wi = Oy
s11 i 1

i=2
Since not all scalars ts, ..., t,11 are zero, it follows that wy, ..., w,, 1 are linearly depend-
entand hencesois 7. i

Proof of Theorem 3.64 We restrict to the case where V is finite dimensional. Hence
there exists an integer n > 0 so that V has a generating set Sp with n elements.

(i) Let S C V beasubset generating V. We consider the set X’ consisting of those integers
d > 0 for which there exists a linearly independent subset 7 C S with d elements. Since
 c S,we have0 € X, so X is non-empty. Furthermore, X is a finite set, as it cannot
contain any integer greater than nby Lemma 3.71. Let m € X be the largest integer and
T C S asetwith melements. We want to argue that 7 is a basis of V. Suppose 7T is not
a basis of V. Then there exists an element vy € S so that vy ¢ span(7), sinceif no such
element exists, we have S C span(7) and hence V = span(S) C span(T) contradicting
the assumption that 7 is not a basis of V. Applying Lemma 3.69, we conclude that
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T = {w} UT c Sislinearly independent. Since 7 has m + 1 elements, we have
m+ 1 € X, contradicting the fact that m is the largest integer in X. It follows that 7
must be a basis of V.

(i) Let S C V be a subset that is linearly independent in V. Let X denote the set
consisting of those integers d > 0 for which there exists a subset 7 C V with d elements,
which contains § and which is a generating set of V. Notice that S U & is such a set,
hence X is not empty. Let m denote the smallest element of X and 7 be a generating
subset of V containing S and with m elements. We want to argue that 7 is basis for V.
By assumption, 7 generates V, hence we need to check that 7 is linearly independent in
V. Suppose T is linearly dependent and write 7 = {vy, ..., v, } for distinct elements of
V. Suppose S = {wy, ..., vk} forsome k < m. This holds true since S C 7. Since T is
linearly dependent we have scalars sy, ..., sp, so that

Sivi+ -+ SpmVm = Oy

There must exist a scalar s; with i > k such that s; £ 0. Otherwise S would be linearly
dependent. After possibly relabelling the vectors, we can assume that s,+; # 0 so that

1
(3.12) Vi1 = e (s1vi 4+ 4 SkVic + SkroVis2 + - + SmVim) -
+1

Let T = {V1, .o\ Vky Vks2, oo, Vm }- Then S C 7 and (3.12) shows that v, € span('f').
Lemma 3.70 shows that 7 generates V/, contains S and has m— 1 elements, contradicting
the minimality of m.

(iii) Suppose Sy is a basis of V with n; elements and S, is a basis of V with n, elements.
Since S is linearly independent and S; generates V, Lemma 3.71 implies that n, < nj.
Likewise, we conclude that n, > n;. It follows that n; = n, and hence there exists a
bijective mapping from S5 to S, as these are finite sets with the same number of elements.

(iv) is an immediate consequence of (iii). O
3.6.2 Properties of the dimension

Lemma 3.72 /somorphic finite dimensional vector spaces have the same dimension.

Proof Let V, W be finite dimensional K-vector spacesand f : V — W anisomorphism.
LetS C V beabasisof V,then f(S) C W isa basis of W, by combining Lemma 3.46 and
Lemma 3.56. Since S and f(S) have the same number of elements, we have dim(V) =
dim(W). O

Lemma 3.73 A subspace of a finite dimensional K-vector space is finite dimensional
as well.

Proof Let V be a finite dimensional K-vector space and U C V asubspace. Let S =
{v1,..., vy} be abasisof V. For1 < i < n, we define U; = U N span{vy, ..., v;}. By
construction, each U; isasubspaceand U; C U, C --- C U, = U, since S'is a basis of
V.

We will show inductively that all U; are finite dimensional. Notice that U; is a subspace

of span{v; }. The only subspaces of span{v; } are {0\ } and {tv; | t € R}, both are finite
dimensional, hence U is finite dimensional.
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Assume > 2. Wewill show next thatif U;_1 isfinite dimensional, thensois U;. Let T;_1 be
a basis of U;_1. If U; = U;_1, then U; is finite dimensional as well, so assume there exists
anon-zero vector w € U; \ U;_1. Since § is a basis of V and since w € span{vy, ..., v;},
there exist scalars sy, ..., s;sothatw = s;v; +- - - +s;v;. By assumption, w ¢ U;_1, hence
s; # 0. Any vector v € U, can be writtenasv = t;v; + - - - + tjv; forscalars ty, ..., t;. We
now compute

i i i
ti t; t
vV— —w= tkvk—fl (Zskvk> = (tk—l5k> Vi

S; Sj Sj

k=1 k=1 k=1

i—1

i t;

- Z te— sk ) vk
k=1 !

so that v — (t;/s;)w can be written as a linear combination of the vectors vy, ..., vi_1,
hence is an element of U;_;. Recall that 7;_; is a basis of U;_1, hence v — (t;/s;)w is
a linear combination of elements of 7;_;. It follows that any vector v € U; is a linear
combination of elements of 7;_; U{w}, thatis, 7;_; U{w} generates U;. Since T;_1 U{w}
contains finitely many vectors, it follows that U; is finite dimensional. O

Proposition 3.74 Let V be a finite dimensional K-vector space. Then for any sub-
space U C V

0 < dim(VU) < dim(V).
Furthermore dim(U) = 0ifand only if U = {0y } and dim(U) = dim(V/) ifand only
if vV =U.

Proof BylLemma 3.73, Uisfinite dimensional and hence by Corollary 3.65 admits a basis
S. By Theorem 3.64 (ii), there is a basis 7 of V which contains S. Therefore

0 < dim(U) = Card(S) < Card(T) = dim(V).

Suppose dim(V) = dim(U), then Card(S) = Card(7) and hence § = T since every ele-
ment of S is an element of 7 and S and 7 have the same number of elements. Therefore,
we get U = span(S) = span(7) = V. Sincedim U = 0if and only if the empty set is a
basis for U we have dim U = 0ifand only if U = {0y }. O

Definition 3.75 (Rank of a linear map and matrix) Let V', W be K-vector spaces
with W finite dimensional. The rank of a linear map f : V — W is defined as
rank(f) = dim Im(f).
If A € M, ,(K) is a matrix, then we define
rank(A) = rank(fa).

The nullity of a linear map f : V — W is the dimension of its kernel, nullity(f) =
dim Ker(f). The following important theorem establishes a relation between the nullity
and the rank of a linear map. It states something that is intuitively not surprising, namely
that the dimension of the image of a linear map f : V — W is the dimension of the
vector space V minus the dimension of the subspace of vectors that we “lose”, that is,
those that are mapped onto the zero vector of . More precisely:
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Theorem 3.76 (Rank-nullity theorem) Let V/, W be finite dimensional K-vector
spacesand f : V. — W a linear map. Then we have

dim(V) = dim Ker(f) + dim Im(f) = nullity(f) + rank(f).

Proof Let d = dimKer(f) and n = dim V, so that d < n by Proposition 3.74. Let
{1, ..., vq} be abasis of S = Ker(f). By Theorem 3.64 (ii) we can find linearly independ-
entvectors S = {vg41,..., vo} sothat T = S U S is a basis of V. Now U = span(S)isa
subspace of V of dimension n — d. We consider the linear map

g:U—=1Im(f), v f(v).

We want to show that g is an isomorphism, since then dim Im(f) = dim(U) = n— d, so
that
dimIm(f) = n—d = dim(V) — dim Ker(f),

as claimed.

We first show that g is injective. Assume g(v) = 0. Since v € U, we can write v =
Sd+1Vd4+1 + « -+ + spv, for scalars sg1, ..., sp. Since g(v) = Oy we have v € Ker(f),
hence we can also write v = syv; + - - - + sqgvy for scalars sy, ..., sq, subtracting the two
expressions for v, we get

Ov =s1vi + -+ S¢Vg — Sg41Vd+1 — =+ — SnVp.

Since {v1, ..., v, } is a basis, it follows that all the coefficients s; vanish, where 1 < i < n.
Therefore we have v = 0y and g is injective.

Second, we show that g is surjective. Suppose w € Im(f) so that w = f(v) for some
vectorv € V. We writev = 27:1 s;v; for scalars sy, ..., s,. Using the linearity of f, we

compute
n

W:f(V):f(iS,’V,) Zf( 5iVi):f(‘7)
i=1 i=d+1
H,A—/

where ¥ € U. We thus have an element ¥ with g(?) = w. Since w was arbitrary, we
conclude that g is surjective. O

Corollary 3.77 Let V, W be finite dimensional K-vector spaces with dim(V) =
dim(W)and f : V — W alinear map. Then the following statements are equivalent:
(i) fisinjective;
(i) f is surjective;
(iii) f is bijective.

Proof (i) = (ii) By Lemma 3.31,the map f isinjectiveifand only if Ker(f) = {0y } so that
dim Ker(f) = 0 by Example 3.68 (i). Theorem 3.76 implies that dim Im(f) = dim(V) =
dim(W) and hence Proposition 3.74 implies that Im(f) = W, that s, f is surjective.

(ii) = (iii) Since f is surjective Im(f) = W and hence dim Im(f) = dim(W) = dim(V).
Theorem 3.76 implies that dim Ker(f) = 0 so that Ker(f) = {0y} by Proposition 3.74.

Applying Lemma 3.31 again shows that f is injective and hence bijective.

(iiif) = (i) Since f is bijective, it is also injective. O

46



3.6 — The dimension

Corollary 3.78 Let V, W be finite dimensional K-vector spacesand f : V. — W a
linear map. Then rank(f) < min{dim(V), dim(W)} and

rank(f) = dim(V) <= fisinjective,

rank(f) = dim(W) <= f issurjective.

Proof For the first claim it is sufficient to show that rank(f) < dim(V) and rank(f) <
dim(W). By definition, rank(f) = dim Im(f) and since Im(f) C W, we have rank(f) =
dim Im(f) < dim(W) with equality if and only if f is surjective, by Proposition 3.74.

Theorem 3.76 implies that rank(f) = dim Im(f) = dim(V) — dim Ker(f) < dim(V) with
equality if and only if dim Ker(f) = 0, that is, when f is injective (as we have just seen in
the proof of the previous corollary). O

Corollary 3.79 Let V, W be finite dimensional K-vector spacesand f : V. — W a
linear map. Then we have
(i) Ifdim(V) < dim(W), then f is not surjective;
(ii) Ifdim(V) > dim(W), then f is not injective. In particular, there exist non-zero
vectors v € V with f(v) = Ow.

Proof (i) Suppose dim(V) < dim(W), then by Theorem 3.76
rank(f) = dim(V) — dim Ker(f) < dim(V) < dim(W)
and the claim follows from Corollary 3.78.
(i) Suppose dim(V) > dim(W), then
rank(f) < dim(W) < dim(V)

and the claim follows from Corollary 3.78. O

Proposition 3.80 Let V/, W be finite dimensional K-vector spaces. Then there exists
an isomorphism © : V — W ifand only if dim(V) = dim(W).

Proof = This was already proved in Lemma 3.72.

< Letdim(V) = dim(W) = n € N. Choose abasis T = {ws, ..., w, } of W and consider
the linear map

O:K"—= W, X xqwy+- -+ XaWy,

where X = (x;)1<i<n Notice that © isinjective. Indeed, if O(X) = xywi +- - - +x,w,, = Oy,
thenx; = --- = x, = 0, since {wy, ..., w,, } are linearly independent. We thus conclude
Ker © = {0y} and hence Lemma 3.31 implies that © is injective and therefore bijective
by Corollary 3.77. The map © is linear and bijective, thus an isomorphism. Likewise, for a
choice of basis S = {w, ..., v, } of V, we obtain an isomorphism ¢ : K" — V. Since the
composition of bijective maps is again bijective, the map © o ®~1 : V — W is bijective
and since by Proposition 3.16 the composition of linear maps is again linear, the map
©od1:V - Wisanisomorphism. O
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Corollary 3.81 Suppose A € M,, ,(K) is invertible with inverse A=1 € M, »(K).
Then n = m, hence A is a square matrix.

Proof Consider fy : K" — K™. By Proposition 3.17, fa is bijective and hence an iso-
morphism. Proposition 3.80 implies that n = m. O

48



3.7 — Matrix representation of linear maps

3.7 Matrix representation of linear maps %Z?r
6

Notice that Proposition 3.80 implies that every finite dimensional K-vector space V is
isomorphic to K", where n = dim(V/). Choosing an isomorphism from V' to K" allows to
uniquely describe each vector of V in terms of n scalars, its coordinates.

Definition 3.82 (Linear coordinate system) Let V' be a K-vector space of dimension
n € N. Alinear coordinate system is an injective linear map ¢ : V — K". The entries
of the vector ¢o(v) € K" are called the coordinates of the vector v € V with respect
to the coordinate system ¢.

We only request that ¢ is injective, but the mapping ¢ is automatically bijective by
Corollary 3.77.

Example 3.83 (Standard coordinates) On the vector space K" we have a linear
coordinate system defined by the identity mapping, that is, we define (V) = v for
all v € K". We call this coordinate system the standard coordinate system of K".

Example 3.84 (Non-linear coordinates) In Linear Algebra we only consider linear
coordinate systems, but in other areas of mathematics non-linear coordinate systems
are also used. An example are the so-called polar coordinates

p:R2\ {0} — (0,00) x (—m, 7] CR2, X <¢’)> - ( (X;);(;)(X”z) ,

where arg(x) = arccos(x1/r) for x, > 0 and arg(X) = — arccos(x1/r) for x, < 0.
Notice that the polar coordinates are only defined on R? \ {Og:}. For further details
we refer to the Analysis module.

A convenient way to visualise a linear coordinate system ¢ : R? — R? is to consider the
preimage ¢~ 1(C) of the standard coordinate grid

(3.13) C={sé1+ké&|scR kecZ}U{kéi+s&|scR keZ}

under ¢. The first set in the union (3.13) of sets are the horizontal coordinate lines and
the second set the vertical coordinate lines.

Example 3.85 (see Figure 3.1) The vector v = G) has coordinates <i) with

respect to the standard coordinate system of R2. The same vector has coordinates
4 . . 2

p(V) = ( 1> with respect to the coordinate system ¢ <<:1>> = (Vl + V2).
- 2

—Vi+ w

While K" is equipped with the standard coordinate system, in an abstract vector space V
there is no preferred linear coordinate system and a choice of linear coordinate system
amounts to choosing a so-called ordered basis of V.
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FIGURE 3.1. The coordinates of a vector with respect to different co-
ordinate systems.

Definition 3.86 (Ordered basis) Let V be a finite dimensional K-vector space. An
(ordered) n-tuple b = (v, ..., v,,) of vectors from V is called an ordered basis of V if
theset {vi, ..., v,} is a basis of V.

That there is a bijective correspondence between ordered bases of V and linear coordin-
ate systems on V is a consequence of the following very important lemma which states
in particular that two linear maps f, g : V — W are the same if and only if they agree on
a basis of V.

Lemma 3.87 Let V, W be finite dimensional K-vector spaces.

(i) Suppose f,g : V — W are linear maps andb = (v, ..., v,) is an ordered basis
of V. Then f = gifandonlyif f(v;) = g(v;) forall1 < i< n.

(i) IfdimV = dimW and b = (vi,...,v,) is an ordered basis of V and ¢ =
(wi, ..., wy) an ordered basis of W, then there exists a unique isomorphism
f:V — Wsuchthatf(v;) = w;foralll < i< n

Proof (i) = If f = gthenf(v;) = g(v;)foralll < i < n. <Letv € V. Sincebis
an ordered basis of V there exist unique scalars sy, ..., s, € Ksuchthatv = Zle Sivj.
Using the linearity of f and g, we compute

f(V) =f <ZS,‘V,‘> = Zs;f(v,-) = ZS;g(V,') =8 (ZS,‘V,‘) = g(V)

sothatf = g.

(ii) Let v € V. Since {wy, ..., v, } is a basis of V there exist unique scalars s, ..., s, such
thatv = Y7 | sjv;. We define f(v) = Y7 sjw;, so that in particular f(v;) = w; for
1 < i< n.Since{w, ..., w,} arelinearly independent we have f(v) = O if and only if
sy =---=s, =0,thatis v = 0y. Lemma 3.31 implies that f is injective and hence an
isomorphism by Corollary 3.77. The uniqueness of f follows from (i). O

Remark 3.88 Notice that Lemma 3.87 is wrong for maps that are not linear. Con-
sider

f:R?> > R, (il) — X1X0
2
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and
g R25R Cl) > (a — 1)(x — 1).
2

Then f(e1) = g(é1) and f(&) = g(&), but f # g.

Given an ordered basisb = (v, ..., v,) of V, the previous lemma implies that there is a
unique linear coordinate system 3 : V — K" such that

(3.14) B(vi) = €&

for1 < i < n, where {é, ..., &} denotes the standard basis of K". Conversely, if
B :V — K"is alinear coordinate system, we obtain an ordered basis of V

b=(87"(&) ... 87(&))

and these assignments are inverse to each other. Notice that forall v € V we have

B(v)=1: — V=351vi 4+ Sy

Sn

Remark 3.89 (Notation) We will denote an ordered basis by an upright bold Roman
letter, such asb, c, d or e. We will denote the corresponding linear coordinate system
by the corresponding bold Greek letter 3,7, or &, respectively.

Example 3.90 Let V = K®and e = (&, &, &) denote the ordered standard basis.
Then forall X = (x;)1<i<3 € R® we have

e(x) =X
where € denotes the linear coordinate system corresponding to e. Notice that e

is the standard coordinate system on K". Considering instead the ordered basis
b = (v, 5, 3) = (&1 + &3, &, & — €1), we obtain

X1 + Xo
,6()?) = X3 — X1 — X2
X2
since

X1 1 0 -1

X=|x|= (X1 aF X2) 0 +(X3 — X1 — X2) 0] +x 1

X3 1 1 0

=V =V2 =V3

Fixing linear coordinate systems - or equivalently ordered bases - on finite dimensional
vector spaces V, W allows to describe each linear map g : V. — W in terms of a matrix:

Definition 3.91 (Matrix representation of a linear map — Video) Let V, W be finite
dimensional K-vector spaces, b an ordered basis of V and c an ordered basis of V.
The matrix representation of a linear map g : V. — W with respect to the ordered
bases b and c is the unique matrix M(g, b, ¢) € M, »(K) such that

7cM(g,b,c) =77°8° /8_11
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where 3 and ~ denote the linear coordinate systems corresponding to b and c,
respectively.

The role of the different mappings can be summarised in terms of the following diagram:

v —& 5w

S

fM b,c
K" (g.b.c) Km
In practise, we can compute the matrix representation of a linear map as follows:

Proposition 3.92 Let V, W be finite dimensional K-vector spaces, b = (v, ..., v,)
an ordered basis of V, ¢ = (wa, ..., wy,) an ordered basis of W and g : V — W a
linear map. Then there exist unique scalars A;j € K, wherel < i< m,1<j<n
such that

(3.15) g(v) =Y _Ajw, 1<j<n

Furthermore, the matrix A = (Ajj)1<i<m,1<j<n Satisfies
fa=~ogoB!

and hence is the matrix representation of g with respect to the ordered bases b and c.

Remark 3.93 Notice that we sum over the first index of A in (3.15).

Proof of Proposition 3.92 Forall1 < j < nthe vector g(v;) is an element of W and
hence a linear combination of the vectors ¢ = (w4, ..., wy,), as cis an ordered basis of W.
We thus have scalars A € Kwith1 < i < m,1<j < nsuchthatg(v;) =Y Ajw;.
If A,-j € Kwith1 < i< m,1<j < nalsosatisfy g(v;) = >, ﬁ,-,-w;,then subtracting
the two equations gives
g(v) —g(v) = 0w =Y (A; — Aj)w
i=1

sothat0 = A; — A;j forl < i< m,1<j< n,sincethevectors (wy, ..., wy,) are linearly
independent. It follows that the scalars Aj; are unique.

We want to show that fa o 3 = « o g. Using Lemma 3.87 it is sufficient to show that
(faoB)(vj)) = (yog)(vy)forl < j < n. Let{e, ..., &} denote the standard basis of
K" so that 3(v;) = €& and {di, ..., d} the standard basis of K™ so that v(w;) = d;. We
compute

(fa o B)(vj) = fa(&) = A& = ZA,,d = ZA,,»Y w;) = (ZAUW,>
=(g(v)) = (vog)(vj-)

where we have used the linearity of v and (3.15). O

This all translates to a simple recipe for calculating the matrix representation of a linear
map, which we now illustrate in some examples.
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Example 3.94 Let V = Py(R) and W = P;(R) and g = L. We consider the
ordered basisb = (v, v»,3) = ((1/2)(3x*> — 1),x,1)of Vand ¢ = (w1, wp) =
(x,1)of W.

(i) Compute the image under g of the elements v; of the ordered basis b.

g (;(3x2 — 1)) = % (;(3x2 - 1)) = 3x

g0 = (=1

g)=Sm=o

(ii) Write the image vectors as linear combinations of the elements of the ordered
basis c.
3x=3-w;y+0-ws

0=0-w1+0-w

(iii) Taking the transpose of the matrix of coefficients appearingin (3.16) gives the
matrix representation

d 3 00
m(goe)=(5 3 o)

of the linear map g = i with respect to the bases b, c.

Example 3.95 Lete = (é,...,€,)andd = (071, o Jm) denote the ordered stand-
ard basis of K” and K™, respectively. Then for A € M,, ,(K), we have

A = M(fp, e, d),
that is, the matrix representation of the mapping fa : K” — K™ with respect to the
standard bases is simply the matrix A. Indeed, we have
fa(§) =Ag=| : | = Ayd.
Anmj i=1

Example 3.96 Lete = (&, &) denote the ordered standard basis of R?. Consider

1 5 T ’

We want to compute Mat(7a, b, b), where b = (v, %) = (€ + &, & — &) is not
the standard basis of R2. We obtain

. . 5 1)\ /1 6 . .
fa(1) Av—<1 5> <1>—(6>—6'V]_+0'V2
5 1 -1 —4 s 5

M(fa, b, b) — ((6) 2) .

=

fa() = A

N

Therefore, we have
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Proposition 3.97 Let V', W be finite dimensional K-vector spaces, b an ordered
basis of V with corresponding linear coordinate system (3, c an ordered basis of W
with corresponding linear coordinate system ~ and g : V. — W a linear map. Then
forall v € V we have

v(g(v)) = M(g. b, c)B(v).

Proof By definition we have forall X € K" and A € M, ,(K)
AX = fa(X).
Combining this with Definition 3.91, we obtain forallv € V
M(g. b, €)B(v) = fugbe)(B(v)) = (Yo g 0 B7)(B(v)) = v(g(v)),

as claimed.

Remark 3.98 Explicitly, Proposition 3.97 states the following. Let A = M(g, b, c)
and let v € V. Since b is an ordered basis of V, there exist unique scalars s; € K,
1 </ < nsuchthat
V=5V +" -+ SV
Then we have
g(v)=tiwi + -+ tWpm,
where
t1 S1
=A

tm Sn

Example 3.99 (Example 3.94 continued) With respect to the ordered basisb =
(2(3x? — 1), x, 1), the polynomial ax? + a1x + ag € V = P»(R) is represented by
the vector

2

392

ﬁ(a2X2 + a1x + a) = a
% I do

Indeed

2 1
ax® + ajx +ag = 3% (2(3x2 = 1)) + a1 x + (% 4 ao) 1.

Computing M(L, b, €)B(ax? + a1x + ap) gives

2
(3 0 o) 3:2 B <2az>
1 v
0 0 %2 + 2 dl

and this vector represents the polynomial 2a, - x +a; - 1 = %(azx2 + a1x + ao)
with respect to the basis ¢ = (x, 1) of P1(R).

As a corollary to Proposition 3.92 we obtain:

Corollary 3.100 Let Vq, V5, V3 be finite dimensional K-vector spaces and b; an
ordered basis of V;fori = 1,2,3. Letgy : Vi — Voand g : Vo — V3 be linear maps.
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Then
M(g2 o g1, b1, b3) = M(g2, bz, b3)M(g1, by, by).

Proof Let us write C = M(g» o g1, by, b3) and A; = M(gy, by, by) as well as A, =
M(g>, by, bs). Using Proposition 2.20 and Theorem 2.21 it suffices to show that fc =
fa,a, = fa, o fa,. Now Proposition 3.92 gives

fa,ofa, =Bs0g083, 0Br0gi0Bi =Bs0gog 0By = fc.

Proposition 3.101 Let V, W be finite dimensional K-vector spaces, b an ordered
basis of V' and c an ordered basis of W. Alinear map g : V — W is bijective if and
only if M(g, b, ) is invertible. Moreover, in the case where g is bijective we have

M(g™" c.b) = (M(g,b.c))".

Proof Letn = dim(V)and m = dim(W).

= Letg : V — W be bijective so that g is an isomorphism and hence n = dim(V) =
dim(W) = m by Proposition 3.80. Then Corollary 3.100 gives

M(g %, c,b)M(g,b,c) = M(g 0 g,b,b) = M(Idy, b,b) = 1,
and
M(g,b,c)M(g !, c,b) =M(gog™' ¢ c) =M(ldw,c,c) =1,
so that M(g, b, ¢) is invertible with inverse M(g 1, c, b).
< Conversely suppose A = M(g, b, c) is invertible with inverse A1, It follows that n =

mby Corollary 3.81. We consider h = 3 *ofa-10y : W — V andsince fa = yogo3™*
by Proposition 3.92, we have

goh:'yfloonﬁoﬁ_lofAfl 07:7710fAA,1 oy = Idy .
Likewise, we have
hog:[)'_lofAfl o'yo'y*loonﬁ:ﬁ_lofAfle,B: Idy,

showing that g admits an inverse mapping h : W — V and hence g is bijective. O

Recall that a mapping f : X — ) between sets X', ) is said to admit a left inverse if there
existsamapping g : Y — X suchthatgof = Idy. Likewise, a right inverse is a mapping
h:Y — Xsuchthatf o h=Idy.

We now have:

Proposition 3.102 Let n € Nand A € M, ,(K) a square matrix. Then the following
statements are equivalent:

(i) The matrix A admits a left inverse, that is, a matrix B € M, ,(K) such that

BA =1,
(i) The matrix A admits a right inverse, that is, a matrix B € M, ,(K) such that
AB =1,

(iii) The matrix A is invertible.
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Proof By the definition of the invertability of a matrix, (iii) implies both (i) and (ii).

(i) = (iii) Since BA = 1, we have fg o fa = f1, = ldg» by Theorem 2.21 and hence fg
is a left inverse for fa. Therefore, by the above exercise, fa is injective. Corollary 3.77
implies that fa is also bijective. Denoting the ordered standard basis of K” by e, we have
M(fa, e, e) = A and hence Proposition 3.101 implies that A is invertible.

(ii) = (iii) is completely analogous to (i) =- (iii). O

3.7.1 Change of basis

It is natural to ask how the choice of bases affects the matrix representation of a linear
map.

Definition 3.103 (Change of basis matrix) Let V be a finite dimensional K-vector
space and b, b’ be ordered bases of V with corresponding linear coordinate systems
B, B'. The change of basis matrix from b to b’ is the matrix C € M, ,(K) satisfying

fc=080p7"

We will write C(b, b") for the change of basis matrix from b to b’.

Remark 3.104 Notice that by definition
C(b,b’) = M(ldy, b, b’).

Since the identity map Idy : V — V is bijective with inverse (Id\)~! = Idy,
Proposition 3.101 implies that the change of basis matrix C(b, b’) is invertible with
inverse

C(b,b")"! =C(b’,b).

Example 3.105 Let V = R? and e = (&}, &) be the ordered standard basis and
b = (%, %) = (é + &, & — &) another ordered basis. According to the recipe
mentioned in Example 3.94, if we want to compute C(e, b) we simply need to write
each vector of e as a linear combination of the elements of b. The transpose of the
resulting coefficient matrix is then C(e, b). We obtain

c 1., 1,
= -V — =V
1 21 22:
5=l ls
62—21 22,

so that
1 1

ceb)=(7 7).

2 2

Reversing the role of e and b gives C(b, e)
i =1é& + 18,
v, = —1é + 18,

so that
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Notice that indeed we have
C(e,b)C(b,e) = (

sothat C(e,b)~! = C(b, e).

N|—=
N
NN =

Theorem 3.106 Let VV, W be finite dimensional K-vector spaces and b, b’ ordered
bases of V and ¢, ¢’ ordered bases of W. Let g : V — W be a linear map. Then we
have

M(g,b’, ¢’) = C(c,c')M(g, b, c)C(b’, b)
In particular, for a linearmap g : V. — V we have
M(g,b’,b’) = CM(g,b,b)C?,
where we write C = C(b, b’).

Proof We write A = M(g,b,c)and B = M(g,b’,c’)and C = C(b,b’) and D =
C(c, ). By Remark 3.104 we have C~! = C(b’, b), hence applying Proposition 2.20 and
Theorem 2.21 and Corollary 2.22, we need to show that

fg = fp ofpofc-r.
By Definition 3.91 we have
fa=~yogoB T,
fs =~ ogo(8)"
and by Definition 3.103 we have
fer =Bo(8)71

fo=7"0r""
Hence we obtain
fpofaofca :q/oqfloﬂyogoﬁ_loﬁo(ﬂl)*l:7'0go(,3’)71: fg,

as claimed. The second statement follows again by applying Remark 3.104. O

—

Example 3.107 (Example 3.96 and Example 3.105 continued) Lete = (&, &) de-
note the ordered standard basis of RZ and

A= (? ;) = M(fa, e, e).

Letb = (& + &, & — €). We computed that

M(fs, b, b) = (g Z)

i 1 1 -1
C(e,b) = ( 2 %) and C(b,e) = ( ) :
—2 2 11
According to Theorem 3.106 we must have

M(fa,b,b) = C(e,b)M(fa, e, e)C(b, e)

69-GDEIET)

as well as

and indeed
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Finally, we observe that every invertible matrix can be realised as a change of basis
matrix:

Lemma 3.108 Let V be a finite dimensional K-vector space, b = (w1, ..., v,) an
ordered basis of V. and C € M, ,(K) an invertible n x n-matrix. Define v{ =
S, Civiforl < i < n Thenb’ = (v{,...,v}) is an ordered basis of V and

C(b/,b) = C.

Proof Itis sufficient to prove that the vectors {v;, ..., v/} are linearly independent. In-
deed, if they are linearly independent, then they span a subspace U of dimension nand
Proposition 3.74 implies that U = V, so that b’ is an ordered basis of V. Suppose we
have scalars sy, ..., s, such that

n n

OV = ZSJVJ/ = ZZSJCUV; = Z (Z C,JSJ)V,
j=1

j=1 i=1 =1 j=1
Since{vy, ..., v, } is a basis of VV we must have ZJ'.’ZI Cjjsj = Oforalli =1, ..., n. In matrix
notation this is equivalent to the conditon C5' = Ok», where 5 = (s;)1<i<n. Since Cis
invertible, we can multiply this last equation from the left with C~! to obtain C™1C5 =
C 10k~ which is equivalent to § = Oa. It follows that b’ is an ordered basis of V. By
definition we have C(b’, b) = C. O

Exercises

Exercise 3.109 Letldy : V — V denote the identity mapping of the finite dimen-
sional K-vector space V and letb = (v, ..., v,,) be any ordered basis of V. Show
that M(ldy, b, b) = 1,.

Exercise 3.110 Showthatf : X — ) admits a left inverse if and only if f is injective
and that f : X — ) admits a right inverse if and only if f is surjective.

Exercise 3.111 Let V be a finite dimensional K-vector space and b, b’ be ordered
bases of V. Show that for all v € V we have

B'(v) = C(b,b")3(v).
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CHAPTER 4

Applications of Gaussian elimination

4.1 Gaussian elimination %Z“/r
>

In the Algorithmics module M01 you learned how to use Gaussian elimination to solve a
system of equations of the form

(4.1) AX=b

for some given matrix A € l\/lm,n(K),vectorE € K™and unknown x € K". Many concrete
problems in Linear Algebra lead to systems of the form (4.1). A few sample problems that
can be solved with Gaussian elimination are discussed below.

Solving equation of the type (4.1) hinges on the elementary observation that a vector
X € K" solves AX = b if and only if it solves BAX = Bb, where B € M,, ,,(K) is any
invertible m-by-m matrix.

In the Gaussian elimination algorithm, the matrix B is chosen among three types of
matrices:

Definition 4.1 (Elementary matrices — Video) Let m € N. The elementary matrices
of size m are the square matrices

Lii(s) = 1m +sEx,
Di(s) = 1m + (s — 1)Exx,
Pvi=1n—Exk — B+ Bk +Epg,
wherel < k, I < mwith k # [, Ex ) € My m(K) and s € Kwith s # 0.

Example 4.2 For m = 4 we have for instance

1000 100 0
01 s 0 0100

L _ D (s) —
23(5)= 19 0 1 0 =10 0 1 o0
000 1 000 s

and
100 0
000 1
P:
2~ 1o o010
0100

As an exercise in matrix multiplication, we compute the effect of left multiplication with
elementary matrices.
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For A = (Ajj)i<ij<m € Mm n(K), we obtain

- Aj+sA; =k
[LkI(S)A]U = Z (5,} + 55,‘;(5/,) Arj = AU + Sé,‘kA/j = { u A,J y ; ?é k

r=1
where we use that [1,,]; = d; and [E j]ir = di0yr. Therefore, multiplying the matrix A
with L /(s) from the left, adds s times the /-th row of A to the k-th row of A and leaves A
unchanged otherwise.

Likewise, we obtain

” sA; =k
[De(s)Al; =D (8ir + (s — 1)dudir) Ag = { AUJ -y

r=1
Therefore, multiplying the matrix A with D (s) from the left, multiplies the k-th row of A
with s and leaves A unchanged otherwise.

Finally,

m

[P/A]; = Z(5ir — OikOkr — 0itO1r + O + itk ) Ay
r=1
= Aj — dikAwj — 0iAjj + Oic Ay + 0iAxj

Aj Q=
= Ajj + Oik (A — Aig) + 6ir (A — Ay) = { Ag  i=1
Aj iEki#l

Therefore, multiplying the matrix A with Py ; from the left, swaps the k-th row of A with
the /-th row of A and leaves A unchanged otherwise.

These calculations immediately imply:

Proposition 4.3 The elementary matrices are invertible with
Lk,/(5)71 = Lk,/(—S) and Dk(s)il = Dk(l/s) and (Pk’/)il = Pk’/.

The sceptical reader may also verify this fact by direct computation with the help of the
following lemma:

Lemma4.4 Letme N. Forl < k, I, p, g < m, we have

_ Evg p=1
Ek,/Ep,q - { 0m,m P 7é /

Proof By definition, we have

S Ek, p= /
Ek,/Ep'q = <Z 5ik6/r6rp6qj> = 6/p (6ik5qj)1§i,j<m — { q ) 7& |
1<i

r=1 .. Om,m
- <ijsm

O

For each row in a matrix, if the row does not consist of zeros only, then the leftmost
nonzero entry is called the leading coefficient of that row.

Definition 4.5 (Row echelon form) A matrix A € M, ,(K) is said to be in row
echelon form (REF) if
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- all rows consisting of only zeros are at the bottom;

- the leading coefficient of a nonzero row is always strictly to the right of the leading
coefficient of the row above it.

The matrix A is said to be in reduced row echelon form (rREF) if furthermore

« all of the leading coefficients are equal to 1;
« in every column containing a leading coefficient, all of the other entries in that
column are zero.

Gaussian elimination from the Algorithmics module M01 implies the following statement:

Theorem 4.6 (Gauss-Jordan elimination) Let A € M, ,(K) then there exists
N € Nand an N-tuple of elementary matrices (By, ..., By) such that the matrix
ByBn_1 - BoBiAisin reduced row echelon form.

Proof Applying Gaussian elimination implies the existence of N € N and elementary
matrices By, ..., Bg sothat ByBy_; - - - B2B1 A is REF. After possibly further multiplying
this matrix from the left with elementary matrices of the type D(s), we can assume that
all leading coefficients are 1. By choosing suitable left multiplications with matrices of
the type L (s), we find a natural number N > N and elementary matrices (By, ..., By)
sothat ByBy_1---B>B;Aisin reduced row echelon form. O

4.2 Applications

4.2.1 Compute the inverse of a matrix

An algorithm using Gaussian elimination for computing the inverse of an invertible matrix
relies on the following fact:

Proposition 4.7 Let A € M, ,(K) be a square matrix. Then the following statements
are equivalent:

(i) Aisinvertible;

(i) the row vectors of A are linearly independent;
(iii) the column vectors of A are linearly independent.

Proof Part of an exercise sheet. O

Suppose the matrix A € M, ,(K) is invertible. Applying Gauss-Jordan elimination to
A, we cannot encounter a zero row, since the occurrence of a zero row corresponds to a
non-trivial linear combination of row vectors which gives the zero vector. This is excluded
by the above proposition. Having no zero row vectors, the Gauss-Jordan elimination
applied to A must give the identity matrix 1,,. Thus we can find a sequence of elementary
matrices By, ..., By, N € N, so that

1, =ByBy_;---ByBjA.

In other words, ByBy_1 - - - BoBj is the inverse of A. This gives the following recipe for
computing the inverse of A:
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We write the matrix A and 1, next to each other, say A on the left and 1, on the right. We
then perform Gauss-Jordan elimination on A. At each step, we also perform the Gauss-
Jordan elimination step to the matrix on the right. Once Gauss-Jordan elimination
terminates, we thus obtain ByBy_1 - - - BoBiA onthe leftand ByBy_1---ByB11,0n

the right. But since ByBy_1---B2B;1, = ByBy_1 - - - BoBj (notice the absence of 1,
after the equality sign), the right hand side is the inverse of A.

Example 4.8 (Inverse of a matrix — Video) We want to compute the inverse of
1 -2
A= :
(5 %)
1 -2 1 0
-3 4 0 1)
Adding 3-times the first row to the second row gives

1 -2 10
0 -2| 3 1)

Dividing the second row by —2 gives
( 1 -2 ‘ 1 0 )
3 i )-
0 1] -3 —3
Finally, adding the second row twice to the first row gives

(10—2—1)
01| -3 -4/

A= (‘

4.2.2 Compute a basis of a subspace

Write

so that

Niw N
I
Nl= =
N~

Gaussian elimination can also be used to compute a basis for a vector subspace U of
a finite dimensional K-vector space V. We assume that U = span{vy, ..., v} for some
vectorsv; € V,1 <7 < k. We assume thatdim U > 1 so that not all vectors are the zero
vector.

We first consider the special case where V is the space K, of row vectors of length n and
with entries in K. Recall that we denote the row vectors by small Greek letters. We write
K™ for the m-fold Cartesian product (K,)™ of K,.. Clearly, we have a bijective mapping

which simply writes the row vectors (71, ..., 7,) into a matrix with the k-th row vector
from the m-tuple of row vectors becoming the k-th row of the matrix.

Example 4.9
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We have
L (s)Qt, ..., Um) = Q(i4, ..., Vk—1, Uk + ST), Dkt oo Um)
Di(s)Qw1, ..., Um) = Q (4, ..., Uk—1, SVk, Uk41, -, Um) ,

P Qi ..., Um) = Q(0h, ..., Uk, Ut Ukt ooy Di—1, Uk, Dig1s ov s Um) -

Notice that all these operations do not change the span of the vectors 7y, ..., 7,,. More pre-
cisely, if (¢4, ..., Uy) is an n-tuple of row vectors and if Q (&1, ..., &m) = BQ(A, ..., Um)
for some elementary matrix B, then

span{ii, ..., Um} = span{dy, ..., &m}.
Applying Gaussian elimination to the matrix Q(#, ..., ¥) gives a list of elementary
matrices By, ..., By such that
ByBy_1---BB1Q(i, ..., V) = Qs ..., &), Ok, ..., Ok,)

where 1 < r < mand Ok, denotes the zero vector in K,,. By construction, the matrix
A = Q(dy, ..., &, Ok, ..., Ok, ) is REF. Since the leading coefficient of &; is always strictly
to the right of the leading coefficient of &J;_1, it follows that the vectors &y, ..., &, are
linearly independent. Therefore, a basis of span{#, ..., U, } is given by {1, ..., &, }.

The general case can be treated with the help of the following facts:

Proposition 4.10 Let V/, W be finite dimensional K-vector spacesand ® : V — W
an isomorphism. Then S C V/is a basis of V if and only if ®(S) is a basis of W.

Proof = Since S is a basis, the set S is linearly independent and since ® is injective, so
is ®(S) by Lemma 3.56. Since S is a basis, S is a generating set and since ¢ is surjective,
the subset (S) C W is a generating set for W by Lemma 3.46.

< We apply the above implicationto ®~1 : W — V and the basis $(S) c W. O

Corollary 4.11 Let V, W be finite dimensional K-vector spaces, © : V — Wan
isomorphism and U C V a vector subspace. Then S C U is a basis of U if and only if
©(S8) is a basis of O(U).

Proof Apply Proposition 4.10 to the vector space V = U, the vector space W = ©(U)
and the isomorphism® = 0|, : V — W. O

We now describe a recipe to treat the general case of a subset U = span{vi, ..., v} of a
finite dimensional K-vector space V:

(i) Fixanisomorphism® : V — K, and write 7; = ®(v;)for1 < i< m.
(i) Apply Gaussian elimination to the matrix Q(#4, ..., ¥,,) to obtain a set of new vectors
(&1, ..., 3, 0k,, ..., Og,) for some r € N.
(iii) Apply the inverse isomorphism ®~! to the obtained list of vectors. This gives the
desired basis {®~1(d1), ..., 1(d,)} of U.

Example 4.12 (Basis of a subspace — Video) Let V = P3(R) so thatdim(V) = 4
and

U:span{x3—|—2x2—x,4x3+8x2—4x—3,x2+3x—|—4,2x3+5x+x+4}.
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We want to compute a basis of U. We choose the isomorphism  : V — R, defined
by

<I>(a3x3 + apx® + aix + ag) = (33 a» a ao) :
Wethushavesy = (1 2 -1 0),ib=(4 8 —4 -3),i5=(0 1 3 4)
and;=(2 5 1 4).
Applying Gaussian elimination to the matrix

1 2 -1 O
oL L 4 8 —4 -3
Q(th, ta, V3, Uy) = 01 3 4
2 5 1 4
yields
1 0 -7 0
01 3 0
0 0 0 1
00 0 O

Here we applied Gauss-Jordan elimination, but Gaussian elimination is good
enough. This gives the vectors@; = (1 0 -7 0),& = (0 1 3 0),
@3=(0 0 0 1).
Our basis of U is thus

{071(@1), @ 1), @1 (@3)} = {x® — Tx,x* +3x,1},
where we use that

ot ((33 a» a ao)) = a3x3 + ax® + a;x + ao.

4.2.3 Compute the image and rank of a linear map

Let V, W be finite dimensional K-vector spaces and f : V — W a linear map. By
computing the image of a linear map f, we mean computing a basis of Im(f).

In order to compute a basis for Im(f) we use the following lemma:

Lemma 4.13 Let V, W be finite dimensional K-vector spacesand f : V. — W a
linear map. If {v1, ..., v} is a basis of V, then

Im(f) = span{f(v1), ..., f(va)}-

Proof Letw € Im(f)sothatw = f(v)forsomev € V.Wehavescalarss;forl <i<n
sothatv = Y"1, s;v;. We obtain

o= )= (3aw) - et

so that w is a linear combination of the vectors {f(v), ..., f(v»)}. On the other hand, a
linear combination of the vectors f(v;) € Im(f) lies in the image of f as well, since Im(f)
is a vector subspace. Hence we have Im(f) = span{f(v1), ..., f(va)}, as claimed. O

Knowing that Im(f) = span{f(v1), ..., f(v,)} we can apply the recipe from Section 4.2.2
to U = span{f(v1), ..., f(v,)}. By definition, the number of basis vectors for Im(f) is the
rank of f.
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Example 4.14 Let
1 -2 0 4
3 1 1 0
-1 -5 -1 8
3 8 2 -12
Compute a basis for the image of f : R* — R* and the rank of fa. By Lemma 4.13
we have

A =

U= Im(fA) = span{Aé’l, Agz, Aéé, Aé;} = span{é’l, 52, 53, 54},
where {& }1<;<4 denotes the standard basis of R* and {3; }1<;<4 the column vectors
of A. Comparing with the general setup described above, we are in the case where
V =R*andv; = Aé;fori = 1,2, 3, 4.

(i) Fortheisomorphism ¢ : V = R* — R, we usually choose the transpose (but
any other isomorphism would work too). We thus have 7/} = (1 3 -1 3),
h=(-2 1 -5 8),i5=(0 1 -1 2)andiz=(4 0 8 -12).

(i) Applying Gaussian elimination to the matrix

1 3 -1 3
—2 1 -5 8
5 o o oY AT
Q(th, o, 13, 04) = A" = 0 1 -1 2
4 0 8 -—12
yields
10 2 -3
01 -1 2
00 0 O
00 0 O
Here again, we applied Gauss-Jordan elimination, but Gaussian elimina-
tion is good enough. This gives the vectors@; = (1 0 2 -3),& =
(01 -1 2).
(iii) Our basis of Im(f) is thus
1 0
1,4 14 0 1
{07 (@), o7 (@)} = : ,
2 -1
—3 2
where we use that the transpose is its own inverse. We also conclude that

rank(fa) = 2.

Remark 4.15 In the special case where we want to compute a basis for the image
of fa for some matrix A, the recipe thus reduces to the following steps. Take the
transpose of A, perform Gauss elimination, take the transpose again, write down
the nonzero column vectors. This gives the desired basis.

4.2.4 Compute the kernel and nullity of a linear map

In order to find a recipe for computing the kernel and nullity of a linear map, we first start
with a related problem. Let A € M,, ,,(K) be an n x m-matrix and

U:{EeKn|£A:0Km},
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where A is defined via matrix multiplication of the row vector £ € K, = My »(K) and
the matrix A € M, (K). Notice that 0x € U andif&;, & € U, then 5161 + 26 € Ufor
all s1, s, € K. By Definition 3.21, it follows that U is a vector subspace of K,,. We want to
compute a basis for U. Applying Gauss elimination to the matrix A, we obtain r € N and
elementary matrices By, ..., By so that

By - BiA=Q(&, ..., &, 0k, ..., O, )

for some linearly independent row vectors (&, ..., @,) € Kp,. Since the matrix By - - - By
is invertible, we also obtain a basis {3, ..., £, } of K, so that

—

BN"'Bl = Q(f_i, 15")'

We now claim that S = {E,H, e 5,,} is a basis of U. The set S is linearly independent,
hence we only need to show that span(S) = U. Since we have

—

Q& ... EVA =Q(&y, ..., &y, Ok, ..., Ok ),

the definition of matrix multiplication implies thatg_;A =w;forl <i<rand f_;A = Ok,
forr +1 < i < n. Any vector in U can be written as 7 = 27:1 si&;. The condition
VA = Ok, thenimpliesthats; = --- = s, = 0, hence S is generating.

We can use this observation to compute the kernel and nullity of a linear map K" — K™
because of the following lemma whose proof is left as an exercise.

Lemma 4.16 Let C € M, ,(K) and fc : K" — K" be the associated linear map.
Then X € Ker(fc) ifand only if XTCT = Ok, .

We simply apply the above procedure to the matrix A = C’ and compute the vectors
{&r+1, ..., €n}- The basis of Ker(fc) is then given by {E,TH, LETY

The nullity of fc is given by the number of basis vectors of Ker(fc).

Example 4.17 (Kernel of a linear map — Video) Let

1 0 1 7
C=|-2 -3 1 2
7 9 -2 1

In order to compute Ker(fc) we apply Gaussian elimination to C whilst keeping
track of the relevant elementary matrices as in the algorithm for computing the
inverse of a matrix. That is, we consider

1 -2 7 1 0 0O
0 -3 9 01 00
1 1 210010
7 2 1 0 0 0 1
Gauss-Jordan elimination (again, Gaussian elimination is enough) gives

2 1

1 0 1 0 0 —75 31

01 -3, 00 15; _§

0 0 O N

0 0 O 0 1 % —%

=

Thevectorsé& = (1 0 8 —%)and&:(o 1 2 —3)thusspan the sub-

space of vectors ¢ satisfying ECT = Og,. A basis S for the kernel of fc is thus given
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by

S:

| ols o

W
| R = o

cllw

and fc satisfies nullity(fc) = 2.

Remark 4.18 Section 4.2.3 and Section 4.2.4 can be combined to compute Ker(fa)
and Im(fa) for A € M,, ,(K) by a single application of Gaussian elimination.

Remark 4.19 In order to compute the kernel of a linear map g : V — W between
finite dimensional vector spaces, we can fix an ordered basis b of V and an ordered
basis c of W, compute C = M(g, b, c), apply the above procedure to the matrix C
in order to obtain a basis S of Ker(fc). The desired basis of Ker(g) is then given by
B71(S). While this algorithm can always be carried out, it is computationally quite
involved. In many cases it is therefore advisable to compute Ker(g) by some other
technique.
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CHAPTER 5

The determinant

5.1 Axiomatic characterisation %Z?r
8

Surprisingly, whether or not a square matrix A € M, ,(K) admits an inverse is captured
by a single scalar, called the determinant of A and denoted by det A or det(A). That is,
the matrix A admits an inverse if and only if det A is nonzero. In practice, however, it is
often quicker to use Gauss-Jordan elimination to decide whether the matrix admits an
inverse. The determinant is nevertheless a useful tool in linear algebra.

The determinant is an object of multilinear algebra, which - for ¢ € N - considers map-
pings from the ¢-fold Cartesian product of a K-vector space into another K-vector space.
Such a mapping f is required to be linear in each variable. This simply means that if
we freeze all variables of f, except for the k-th variable, 1 < k < ¢, then the resulting
mapping gk of one variable is required to be linear. More precisely:

Definition 5.1 (Multilinear map — Video) Let V, W be K-vector spaces and ¢ € N.
Amapping f : V! — W is called ¢-multilinear (or simply multilinear) if the mapping
gV = W,v e (v, ..., Vk_1,V, Vki1, ..., v¢) is linear forall 1 < k < £ and for
all ¢-tuples (vy, ..., v) € V-

We only need an (¢ — 1)-tuple of vectors to define the map gi, but the above definition is
more convenient to write down.

Two types of multilinear maps are of particular interest:

Definition 5.2 (Symmetric and alternating multilinear maps) Let V, W be K-vector

spacesand f : V¢ — W an ¢-multilinear map.

« The map f is called symmetric if exchanging two arguments does not change the
value of f. That is, we have

f(vi, oo, ve) = F(Va, ooy Viet, V), Vigds ooy Vi1, Vi, Vg, -n, Ve)
forall (vy, ..., v) € V4
« The map f is called alternating if f(v1, ..., v¢) = Ow whenever at least two argu-
ments agree, that is, there exist i # j with v; = v;. Alternating ¢-multilinear maps
are also called W-valued ¢-forms or simply ¢-forms when W = K.

1-multilinear maps are simply linear maps. 2-multilinear maps are called bilinear and
3-multilinear maps are called trilinear. Most likely, you are already familiar with two
examples of bilinear maps:
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Example 5.3 (Bilinear maps)

(i) Thefirst one isthe scalar product of two vectors in R® (or more generally R").
So V = R3and W = R. Recall that the scalar product is the mapping

V2=R’xR® >R, (X, ¥) = Xy =x1y1 + xop2 + x3y3,

where we write X = (x;)1<i<3 and ¥ = (yi)1<i<3. Notice that forall s, s, € R
and all 51, %, ¥ € R3 we have

(s51X1 + $2%0) - ¥ = s1(X1 - ¥) + 2% - ¥),
so that the scalar product is linear in the first variable. Furthermore, the scalar
product is symmetric, X - y = y - X. It follows that the scalar product is also
linear in the second variable, hence it is bilinear or 2-multilinear.

(ii) The second one is the cross product of two vectors in R3. Here VV = R3 and
W = R3. Recall that the cross product is the mapping

X2Y3 — X3)2
V2:R3XR3—)R3, ()?,y)H)?X }7: X3y1 — X1Y3
X1Y2 — Xoy1

Notice that for all s;, s, € Rand all X, %>, ¥ € R3 we have
(51%1 + 2%0) X ¥ = s1(X1 X ¥) + 5% x y),

so that the cross product is linear in the first variable. Likewise, we can check
that the cross product is also linear in the second variable, hence it is bilinear
or 2-multilinear. Observe that the cross product is alternating.

Example 5.4 (Multilinear map) Let V = Kand consider f : V! = K, (xq, ..., x¢) —
X1x2 -+ - xg. Then f is /-multilinear and symmetric.

Example 5.5 Let A € M, ,(R) be a symmetric matrix, AT = A. Notice that we
obtain a symmetric bilinear map

f:R"xR" >R, (x,y)— XAy,

where on the right hand side all products are defined by matrix multiplication.

The Example 5.5 gives us a wealth of symmetric bilinear maps on R”. As we will see
shortly, the situation is quite different if we consider alternating n-multilinear maps on
K, (notice that we have the same number n of arguments as the dimension of K,,).

Let {1, ..., &y} denote the standard basis of K, so that Q(&1, ..., &,) = 1,.

Theorem 5.6 Let n € N. Then there exists a unique alternating n-multilinear map
fn o (K,)" — Ksatisfying f,(¢1, ..., €n) = 1.

Recall that we have bijective mapping Q : (K,,)" — M, ,(K) which forms an n x n-matrix
from n row vectors of length n. For the choice V = K, the notion of n-multilinearity
thus also makes sense for a mapping f : M, ,(K) — K which takes an n x n matrix as an
input. Here the multilinearity means the the mapping is linear in each row of the matrix.
Since Q(&1, ..., €,) = 1,, we may phrase the above theorem equivalently as:
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Theorem 5.7 (Existence and uniqueness of the determinant) Let n € N. Then
there exists a unique alternating n-multilinear map f, : M, ,(K) — K satisfying
fn(1,) =1

Definition 5.8 (Determinant — Video) The mapping f, : M, ,(K) — K provided
by Theorem 5.7 is called the determinant and denoted by det. For A € M, ,(K) we
say det(A) is the determinant of the matrix A.

Remark 5.9 (Abuse of notation) It would be more precise to write det, since the
determinant is a family of mappings, one mapping det, : M, ,(K) — K for each
n € N. Itis however common to simply write det.

Example 5.10 For n = 1 the condition that a 1-multilinear (i.e. linear) map f; :
M, 1(K) — Kis alternating is vacuous. So the Theorem 5.7 states that there is a
unique linear map f; : M; 1(K) — K that satisfies f,((1)) = 1. Of course, this is just
the map defined by the rule f;((a)) = a, where (a) € M; 1(K) is any 1-by-1 matrix.

Example 5.11 For n = 2 and a,b,c,d € K we consider the mapping f,
M, »(K) — K defined by the rule

(5.1) % <(f_ Z)) — ad — cb.

We claim that £, is bilinear in the rows and alternating. The condition that £, is
alternating simplifies to f(A) = 0 whenever the two rows of A € M, »(K) agree.
Clearly, f; is alternating, since

() w-men

Furthermore, f, needs to be linear in each row. The additivity condition applied to
the first row gives that we must have

2207 207)=a((2 9)=((F %)

forall a1, ap, by, by, ¢, d € K. Using the definition (5.1), we obtain

f ((al—(i:—az bl-gbz)) = (a1 + a2)d — c(by + by)

= a1d — cby + axd — cb»

-a((2 9)+=(( 2))

so that f; is indeed additive in the first row. The 1-homogeneity condition applied to
the first row gives that we must have

+((2 9)-=(C 2)
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foralla, b, ¢, d € Kand s € K. Indeed, using the definition (5.1), we obtain

6((55 sdb>)—sad—csb—s(ad—cb)—sfz(c Z))

so that £, is also 1-homogeneous in the first row. We conclude that £, is linear in the
first row. Likewise, the reader is invited to check that % is also linear in the second
row. Furthermore, we can easily compute that f,(1,) = 1. The mapping £, thus
satisfies all the properties of Theorem 5.7, hence by the uniqueness statement we
must have f, = det and we obtain the formula

(5.2) det ((i Z)) =ad —cb

foralla, b, c,d € K.

5.2 Uniqueness of the determinant

So far we have only shown that the determinant exists for n = 1 and n = 2. However, we
need to show the existence and uniqueness part of Theorem 5.7 in general. We first show
the uniqueness part. We start by deducing some consequences from the alternating
property:

Lemma 5.12 Let V, W be K-vector spaces and ¢ € N. An alternating ¢-multilinear
map f : V¥ — W satisfies:
(i) interchanging two arguments of f leads to a minus sign. That s, for 1 < i,j < ¢
and i # j we obtain
f(vi, oo, ve) = —F(Vi, oo Vie1, Vi, Vi, ooy Vi1, Viy Vi, ., Vi)

forall (v, ..., v) € V4
(ii) if the vectors (v1, ..., v¢) € V¢ are linearly dependent, then f(vy, ..., v¢) = Ow;
(iii) forall 1 < i < ¢, for all (-tuples of vectors (vy, ..., v,) € V*and scalars
s, ..., s € K, we have

F(Va, oo Vie, Vi W, Vig, o, Vo) = F(Va, e, Vi)

where w = Zf:L i Sjvj- Thatis, adding a linear combination of vectors to

some argument of f does not change the output, provided the linear combination
consists of the remaining arguments.

Proof (i) Since f is alternating, we have forall (v1, ..., vy) € V*
f(vi, o, Vi1, Vi 4+ V), Vigt, o, Vim1, Vi 4 V), Viga, -, Vo) = O
Using the linearity in the i-th argument, this gives

Ow = f(V1, oo, Vie1, Vi, Vig1, -0 Vie1, Vi + Vj, Vi, -, Vi)

+ (Ve ooy Vi1, Vi Vigds -y Vie1, Vi 4+ Vi Vigd, e, Vo).

Using the linearity in the j-th argument, we obtain

OW = f(Vl, e Vi1, Vi Vi1, ey ijl, Vi, Vj+1, ceey Vg)
+ (Ve ooy Vie1, Viy Vigds ooy Vim1, Vj, Vigd,s oe s Vo)
+ f(Vl, e, Vi, Vj, Vigly ooy Vj,1, Vi, Vj+1, ey Vz)
F (Ve ooy Vi1, V) Vidd, ooy Vie1, V), Vigd, e s Ve)-
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5.2 — Uniqueness of the determinant

The first summand has a double occurrence of v; and hence vanishes by the alternating
property. Likewise, the fourth summand hasa double occurrence of v; and hence vanishes
as well. Since the second summand equals (v, ..., v¢), we thus obtain

f(vi, oo, ve) = —F(Vi, oo Vie1, Vj, Vigd, ooy Vi1, Via Vi, ., Vi)

as claimed.

(i) Suppose {v1, ..., v} are linearly dependent so that we have scalars s; € K not all
zero,1 <j < {,sothats;vy +---+ spvp = 0y. Suppose s; # 0forsomeindex1 < 7 < /.

Then
¢ <
J
vi=— = v
-3 ()
J=1j#i
and hence by the linearity in the i-th argument, we obtain

‘
s
j
flvi, .o vier, — E (s) Vi Vigl, oo Ve
/]

J=1j#

- Z < ) Lo Vi1 Vi Vit 0 Ve) = Ow,

J=L1j#i

where we use that foreach 1 < j < £ withj # i, the expression
f(Va, ooy Vie1, V), Vigt, oo, Vi)

has a double occurrence of v; and thus vanishes by the alternating property.

(iii) Let (v1,...,v) € V¥and (s,...,s)) € K Then, using the linearity in the i-th
argument, we compute

¢
f(va, ..., vic1, vi + Z SjVj, Vidd, ey V2)
J=Lii
¢
=f(v1,....,ve) + Z Sif (Vi ooy Vic1Vj, Vigt, oo, Vi) = F(va, o ve),
=L

where the last equality follows exactly as in the proof of (ii). O

The alternating property of an n-multilinear map £, : M, ,(K) — K together with the
condition £,(1,) = 1 uniquely determines the value of 7, on the elementary matrices:

Lemma 5.13 Letn € Nand f, : M, ,(K) — K an alternating n-multilinear map
satisfying f,(1,) = 1. Thenforall 1 < k, | < nwith k # I and all s € K, we have

(53) fn(Dk(S)) =S, fn(Lk'/(S)) = 1, fn(Pk'/) = —1.
Moreover, for A € M, ,(K) and an elementary matrix B of size n, we have
(5.4) fa(BA) = £,(B)f,(A).

Proof Recall that D4(s) applied to a square matrix A multiplies the k-th row of A with
s and leaves A unchanged otherwise. We write A € M, ,(K) as A = Q(&y, ..., ap) for
a; € K,,1 < i < n. Hence we obtain

n)-

a
The linearity of f in the k-th row thus gives f,(D(s)A) = sf,(A). In particular, the choice
A =1, together with £,(1,) = 1implies that f,(D«(s)) = f(D«(s)1,) = sfa(1,) = s.

Dy (s)A = Q(d, ..., Gk—1, 50k, Ci1, .-,
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Therefore, we have
fo(Di(s)A) = f2(Di(s))fa(A).
Likewise we obtain
Lk'/(S)A = Q(&l, e, Ok_1, 0k + say, 07k+1, e, 07,,)

and we can apply property (iii) of Lemma 5.12 for the choice w = sa to conclude that
fu(Lk(s)A) = f,(A). In particular, the choice A = 1,, together with £,(1,) = 1implies
f,,(Lk,/(s)) = fn(Lk'/(S)ln) = fn(].,,) =1.

Therefore, we have
fn(Lk’/(S)A) = fn(Lk[(S))fn(A)

Finally, we have
Pr /A =Q(d1, ..., Ak—1, 0, Ori1, ..., Gj—1, Ok, Qg1 ..., Op)
so that property (ii) of Lemma 5.12 immediately gives that
fa(Pi, A) = —1fa(A).

In particular, the choice A = 1,, together with £,(1,) = Limplies ,(Px,;) = f(Px/1,) =
—f(1,) = —1.

Therefore, we have f,(Py /A) = f,(Px,/)f.(A), as claimed. O
We now obtain the uniqueness part of Theorem 5.7.

Proposition 5.14 Letn € Nand f,, f M, »(K) — K be alternating n-multilinear
maps satisfying f,(1,) = f,(1,) = 1. Then f, = f,.

Proof We need to show that for all A € M, ,(K), we have f,(A) = £,(A). Suppose
first that A is not invertible. Then, by Proposition 4.7, the row vectors of A are linearly
dependent and hence property (ii) of Lemma 5.12 implies that f,(A) = f,,(A) =0.

Now suppose that A is invertible. Using Gauss-Jordan elimination, we obtain N € N and
a sequence of elementary matrices By, ..., By sothat By - - - B; = A. We obtain

fo(A) = (B ---B1) = f,(By)fo(By_1---B1) = fo(By)fu(By_1- - B1),

where the second equality uses (5.4) and the third equality uses that (5.3) implies that
#2(B) = f,(B) for all elementary matrices B. Proceeding in this fashion we get

fo(A) = Fo(By)F(Br_1) - - Fo(B1) = Fuo(Bn)F(By_1) - - Fo(B2By) = - --
= l?n(BNBNq --By) = fn(A)

5.3 Existence of the determinant

It turns out that we can define the determinant recursively in terms of the determinants
of certain submatrices. Determinants of submatrices are called minors. To this end we
first define:
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5.3 — Existence of the determinant

Definition 5.15 Let n € N. For a square matrix A € M, ,(K)and 1 < k,/ < nwe
denote by A(k) the (n — 1) x (n — 1) submatrix obtained by removing the k-th row
and /-th column from A.

Example 5.16

We use induction to prove the existence of the determinant:

Lemma 5.17 Letn € Nwithn > 2and f,_; : M,_1 ,—1(K) — K an alternating
(n — 1)-multilinear mapping satisfying f,_1(1,—1) = 1. Then, for any fixed integer |
with1 < | < n, the mapping

f,, : Mnn(K) — K, A — Z(_l)/—‘rk[A]kIf‘ L (A(k,l))
k=1
is alternating, n-multilinear and satisfies f,(1,) = 1.

Proof of Theorem 5.6 For n = 1 we have seenthat i : M;1(K) — K, (a) — ais
1-multilinear, alternating and satisfies f;(1;) = 1. Hence Lemma 5.17 implies that for
all n € N there exists an n-multilinear and alternating map f,, : M, ,(K) — K satisfying
f»(1,) = 1. By Proposition 5.14 there is only one such mapping for each n € N. O

Proof of Lemma 5.17 We take some arbitrary, but then fixed integer / with1 < / < n.

Step 1. We first show that 7,(1,) = 1. Since [1,]x = dx/, we obtain

L) = 1 s (169) = (<17hs (109) = o (L)~ 1

k=1
where we usethat 1) = 1,_; and foc1(lpm1) = 1.

Step 2. We show that £, is multilinear. Let A € M, ,(K) and write A = (Ayj)1<k,j<n- We
first show that 7, is 1-homogeneous in each row. Say we multiply the i-th row of A with s
so that we obtain a new matrix A = (Axj)1<k j<n With

Ao A ki
g sAy, k=1.

We need to show that £,(A) = sf,(A). We compute

fo(A) = (—1)/T*Ayf, 1 (AKD)
k=1

= (=1)"sAif 1 (AUD) 4 > (1) TFAuf, 1 (AKD),
k=1 k#i
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Now notice that A() = A since A and A only differ in the i-th row, but this is
the row that is removed. Since f,_; is 1-homogeneous in each row, we obtain that
fo_1 (AN = sf, 1 (AkD) whenever k # i. Thus we have
fo(A) = s(=1) Ay 1 (AUD) 45 Y (—1)TFALf, 1 (ALD)
k=1,ki
n

=53 (~1) K Afy (A("”)) — sf,(A).

k=1

We now show that £, is additive in each row. Say the matrix B = (Byj)1<«,j<n is identical
to the matrix A, except for the i-th row, so that

Ay k#i
By=14
o {Bj k=i

for some scalars Bj with 1 < j < n. We need to show that £,(C) = f,(A) + f,(B), where

C= (ij)lgk,jgn with
ij _ { Akj k 75 1

Aj+B k=i
We compute

n

fn(C) = (_1)l+i(Aﬂ + B/)fn,1(c(i'l)) + Z (—1)l+kAk/fn,1(C(k’l)).
k=1,k£i

As before, since A, B, C only differ in the i-th row, we have A(") = B("/) = C(i), Using
that f,_1 is linear in each row, we thus obtain

n

fn(C) _ (—1)I+iB[ﬁ171(B(i'l)) + Z (_1)I+kAklfn71(B(k'l))
k=1k#i

n

+ (D) Ao 1 (AU £ T (1) AGf, 1 (ARD) = £,(A) + £,(B).
k=1,k#i

Step 3. We show that f,, is alternating. Suppose we have 1 < /,j < nwithj > iandso
that the i-th and j-th row of the matrix A = (A;;)1</ j<n are the same. Therefore, unless
k = ior k = j, the submatrix A(*) also contains two identical rows and since f,_1 is
alternating, all summands vanish except the one for k = j and k = j, this gives

F(A) = (1) Anfy 1 (ACD) + (-1 Ay, 1 (AUD)
= Ai(-1) ((—1)"fn71(A(’7’)) + (—1)ffn,1(A(j,/))>

where the second equality sign follows because we have A; = Aj foralll < / < n(the
i-th and j-th row agree). The mapping f,_1 is alternating, hence by the first property of
the Lemma 5.12, swapping rows in the matrix AU+ leads to a minus sign in f,_1(AUD).
Moving the i-th row of AU:) down by j — i — 1 rows (which corresponds to swapping
j — i — 1times), we obtain A("/) hence

fo-1(AUD) = (=172, (ACD).
This gives

o(A) = An(=1)' ((=1)fo-1(ATD) + (~1) 2, 1 (ACD)) <o,
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5.3 — Existence of the determinant

Remark 5.18 (Laplace expansion — Video) As a by-product of the proof of
Lemma 5.17 we obtain the formula

(55) det(A) — i(il)H»k[A]k/ det (A(k,/)) ,

k=1
known as the Laplace expansion of the determinant. The uniqueness state-
ment of Theorem 5.7 thus guarantees that for every n x n matrix A, the scalar
Sor_1(=1)*k[A] det (AkD) is independent of the choice of / € N, 1 < / < n.In
practice, when computing the determinant, it is thus advisable to choose / such that
the corresponding column contains the maximal amount of zeros.

Example 5.19 For n = 2 and choosing / = 1, we obtain

det ((i Z)) = adet (A(l'l)) — cdet (A(2'1)> = ad — cb,

in agreement with (5.1). For A = (Ajj)1<ij<3 € Ms3(K) and choosing | = 3 we
obtain

Au A A

det A21 A22 A23 = A13 det < (221 222>>
Az Az Ass no

Au A12>> ((All A12>>
— Aoz det + Aszz det
* <<A3l A3z 3 Ay Ax

so that
det A = A13(A21As2 — A31Ax) — Axz(AnAs2 — As1Arp)
+ As3(A11A2 — A2 Ar)
= An1AxnAszz — A11A23As3 — ApAz Asz
+ A12A23A31 + A13A21 A3z — A13AxnAzr.
Exercises

Exercise 5.20 (Trilinear map) Let V = R3 and W = R. Show that the map
fFV3ias W, (Ry29)e-(Xxy) 2

is alternating and trilinear.
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5.4 Properties of the determinant %Z?r
9

Proposition 5.21 (Product rule) For matrices A, B € M, ,(K) we have
det(AB) = det(A) det(B).

Proof We first consider the case where A is not invertible, then det(A) = 0 (see the
proof of Proposition 5.14). If A is not invertible, then neither is AB. Indeed, if AB were
invertible, then there exists a matrix C such that (AB)C = 1,,. Butsince, by Corollary 2.22,
the matrix product is associative, this also gives A(BC) = 1,, so that BC is the inverse
of A, a contradiction. Hence if A is not invertible, we must also have det(AB) = 0, which
verifies that det(AB) = 0 = det(A) det(B) for A not invertible.

If Ais invertible, we can write it as a product of elementary matrices and applying the
second part of Lemma 5.13, we conclude that det(AB) = det(A) det(B). O

Corollary 5.22 Amatrix A € M, ,(K)isinvertibleifand only ifdet(A) # 0. Moreover,
in the case where A is invertible, we have

1

det (A1)

~ detA’

Proof We have already seen thatif Aisnotinvertible, thendet(A) = 0. Thisis equivalent
to saying that if det(A) # 0, then A is invertible. It thus remains to show that if A is
invertible, then det(A) # 0. Suppose A is invertible, then applying Proposition 5.21
gives

det(1,) = det (AA™") = det(A)det (A7!) =1

sothatdet(A) # 0and det (A~!) = 1/ det(A). a

Remark 5.23 (Product symbol) Recall that for scalars xi, ..., x, € K, we write

n
HX,‘ = X1X2 ***Xp.
=il

Proposition5.24 Letn € Nand A = (Ajj)i<ij<n € M n(K) be anupper triangular
matrix so that A;; = 0 fori > j. Then

n
(5.6) det(A) = HAii = AnA - Ann.

i=1

Proof We use induction. For n = 1 the condition A; = 0for/ > jisvacuous and (5.6) is
trivially satisfied, thus the statement is anchored.

Inductive step: Assume n € Nand n > 2. We want to show that if (5.6) holds for upper
triangular (n — 1) x (n — 1)-matrices, then also for upper triangular n x n-matrices. Let
A = (Aj)i<ij<n € My n(K) be an upper triangular matrix. Choosing / = 1in the formula

78



5.5 — Permutations

for det(A), we obtain

n

det(A) = Z(_l)kHAkl det (A(k'l)) = Ap det (A(l’l)) + z”: Ay det (A("'l))

k=1 k=2
— Ay det (A(“)) ,

where the last equality uses that Ay; = 0 for k > 1. We have A(MY) = (A;)o¢; i<, and
since A is an upper triangular matrix, it follows that A1) isan (n — 1) x (n — 1) upper
triangular matrix as well. Hence by the induction hypothesis, we obtain

det(ACV) = T Ai.
i=2

We conclude that det(A) = [, Ay, as claimed. O

5.5 Permutations

Arearrangement of the natural numbers from 1 up to nis called a permutation:

Definition 5.25 (Permutation — Video) Letn € Nand X, = {1,2,3,...,n}. A
permutation is a bijective mapping o : X, — X,. The set of all permutations of X,
is denoted by S,,.

Remark5.26 If 7,0 : X, — X, are permutations, it is customary to write ro or 7 - o
instead of 7 o . Furthermore, the identity mapping Id v, is often simply denoted by
1. A convenient way to describe a permutation o € S, is in terms of a2 x n matrix

(o),

which we denote by o. For instance, for n = 4, the matrix
S (1234
~\2 31 4
corresponds to the permutation o satisfying (1) = 2,0(2) = 3,0(3) = 1,0(4) =
4.

Permutations which only swap two natural numbers and leave all remaining numbers
unchanged are known as transpositions:

Definition 5.27 (Transposition) Let n € Nand 1 < k,/ < nwith k # /. The
transposition T ; € S, is the permutation satisfying

(k) =1, )=k (i) =iifi¢ {k I}

Every permutation o € S, defines a linear map g : K" — K" satisfying g(&/) = &y,
where {e, ..., €} denotes the standard basis of K". Since g is linear, there exists a unique
matrix P, € M, ,(K) so that g = fp_. Observe that the column vectors of the matrix P,
are given by €,(1), €,(2), - €5(n)-
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Definition 5.28 (Permutation matrix) We call P, € M, ,(K) the permutation matrix
associatedtoo € S,,.

Example 5.29 Let n = 4. Forinstance, we have

0 010
U:<1 2 3 4) P _ 1 0 0 O
2 3 1 4 7 01 0O
0 0 0 1
and
1 0 0O
7_24<1 2 3 4) P _ 0 0 0 1
1 4 3 2 T2a 0 01 0
01 00
Remark 5.30 Notice that P, = Py, where P, belongs to the elementary

matrices of size n, c.f. Definition 4.1.

Assigning to a permutation its permutation matrix turns composition of permutations
into matrix multiplication:

Proposition 5.31 Letn € N. Then P, = 1, andforall o, ® € S, we have
P,,=P.P,.

In particular, for all o € S, the permutation matrix P, is invertible with (P,)~! =
P, .

Example 5.32 Considering n = 3. For

0—123 and 71-—123 we have 71-0-—123
S \3 1 2 ~\1 3 2 \2 1 3)°

as well as

0 10 1 0 010
P,=10 0 1], P.=[0 0 1 and P,,=1|1 0 0
1 00 0 1 0 0 1
Thus we obtain
0 1 0 10 0 1 0
P,e.=11 0 0]=({0 0 1 0 0 1|=P,P,,
0 01 0 1 1 00
as claimed by Proposition 5.31.

Proof of Proposition 5.31 The matrix P; has column vectors given by €, ..., é,, hence
P,=1,.
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Using Proposition 2.20 and Theorem 2.21 it is sufficient to show that for all 7, 0 € S, we
havefp_ = fp_ofp_ .Foralll < i< n,weobtain

—

fo, (fo,(&)) = fo. (&) = Ex(o(i)) = Em-o)(i) = TPr.. (&)
The two maps thus agree on the ordered basise = (éi, ..., €,) of K", so that the second

claim follows by applying Lemma 3.87.

We have
P,,-1=P1=1,=P,P_

showing that P, is invertible with inverse (P,) ™1 = P, .. O

Definition 5.33 (Signature of a permutation) Foro € S, we call sgn(o) = det(P,)
its signature.

Remark 5.34
(i) Combining Proposition 5.21 and Proposition 5.31, we conclude that
sgn(m - o) = sgn(7) sgn(o)

forallw, o € S,.
(ii) SinceP,,, = P, anddetP,, = —1 by Lemma 5.13, we conclude that

sgn(Tk,/) =-1

for all transpositions 74 ; € S,,.

Similarly to elementary matrices being the building blocks of invertible matrices, trans-
positions are the building blocks of permutations:

Proposition 5.35 Let n € Nand o € S,. Then there exists m > 0 and m transposi-
tions Ty, 1y, -+ Tk iy € SpSUchthato = 7y, . - - - Tk, 1, Where we use the convention
that 0 transpositions corresponds to the identity permutation.

Example 5.36 Let n = 6 and o the permutation defined by the matrix
o (1 2 3 45 6)
352 46 1)°
To express it as a product of transposition, we write
352 46 1

3 2 5 4 6 1 723
1 2 5 4 6 3 71,6
1 25 4 3 6|76
1 2 3 4 5 6 73,5

sothato = 73575 671,672,3-

Proof of Proposition 5.35 We use induction. For n = 1 we have X, = {1} and the only
permutation is the identity permutation 1, so the statement is trivially true and hence
anchored.
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Inductive step: Assume n € N and n > 2. We want to show that if the claim holds for
Sn—1,thenalsofor S,. Let o € S, and define k = o(n). Then the permutation oy = 7, ko
satisfies o1(n) = 7 k0(n) = 7, k(k) = nand hence does not permute n. Restricting oy
to the first n — 1 elements, we obtain a permutation of {1, ..., n — 1}. By the induction
hypothesis, we thus have m € Nand 7y, 4, ... 7« 71, € Snsuch that

o1 = kanvlm .. .Tklyll = T,,’kCT.

Since 7-3',( = 1, multiplying from the left with 7, x gives o = 7, kT« 1. - - Thy 1, the claim
follows with m = m + 1. O

Combining Definition 5.33, Remark 5.34 and Proposition 5.35, we conclude:
Proposition 5.37 Letn € Nand o € S,. Then sgn(o) = £1. If o is a product of m

transpositions, then sgn(c) = (—1).

Remark 5.38 Permutations with sgn(o) = 1 are called even and permutations with
sgn(o) = —1 are called odd, since they arise from the composition of an even or
odd number of transpositions, respectively.

5.6 The Leibniz formula

Besides the Laplace expansion, there is also a formula for the determinant which relies
on permutations. As a warm-up, we first consider the case n = 2. Using the linearity of
the determinant in the first row, we obtain

a b a 0 0 b
det<c d)det<c d)+det<c d>'

where a, b, ¢, d € K. Using the linearity of the determinant in the second row, we can
further decompose the two above summands

a b a 0 a 0 0 b 0 b
det (c d) = det (c 0) + det (0 d> + det (c 0> + det <0 d)
a o0 0 b
=det =det
(c d) <c d>

The first and fourth summand are always zero due to the occurrence of a zero column.
The second and third summand are possibly nonzero (it might still happen that they are
zero in the case where some of a, b, ¢, d are zero). In any case, we get

a b a o0 0 b
det(c d)—det<0 d>+det(c 0).
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5.6 — The Leibniz formula

We can proceed analogously in general. Let A = (Ajj)i<ij<n € My n(K). We denote the
rows of A by {dy, ..., @, }. Using the linearity of det in the first row, we can write

Air 0 0 --- 0 0 A, 0 --- 0
0_22 522
det A = det . + det ] 4.
ap Qp
0 0 O Ain
Qi
-+ 4 det .
ap

We can now use the linearity in the second row and proceed in the same fashion with
each of the above summands. We continue this procedure until the n-th row. As a result,
we can write

(5.7) detA = " det M,

k=1
where each of the matrices M, has exactly one possibly nonzero entry in each row.
As above, some of the matrices M, will have a zero column so that their determinant
vanishes. The matrices M, without a zero column must have exactly one possibly nonzero
entry in each row and each column. We can thus write the matrices M, with possibly

nonzero determinant as
n
Mk = Z Aa(i)iEa(/) i
i=1

for some permutation o € S,,. Every permutation of {1, ..., n} occurs precisely once in
the expansion (5.7), hence we can write

detA = det (Z Aq(i)iE >

oc€S,
wherethe notation ) | s meansthatwe sumoverall possible permutationsof {1, ..., n}.
We will next write the matrix -7 ; A, (;);E, ;) differently. To this end notice that for all

o € S,, the permutation matrix P, can be wrltten as P, Z,:l o(i),i- Furthermore,
the diagonal matrix

As(1)1
Ao’ 2)2
D, — (2
Aa(n)n

can bewrittenas D, = > 7 | A(;,E; ;. Therefore, using Lemma 4.4, we obtain

ZE ZAUO JJ—ZZAU(, a()/u—ZA

i=1 j=1
We thus have the formula
detA = Z det (P,D,) Z sgn(o) det(D,),
o€S, oc€ES,

where we use the product rule Proposition 5.21 and the definition of the signature of a
permutation. By Proposition 5.24, the determinant of a diagonal matrix is the product of
its diagonal entries, hence we obtain

detA = sgn(o HA

c€ES,
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Finally, writing m = 01, we have
n

n
[T A = [T Ao
=1

j=1
We have thus shown:

Proposition 5.39 (Leibniz formula for the determinant) Let n € Nand A =
(A,‘j)lyg,',jg,, € M,,',,(K). Then we have

(5.8) det(A) = Y sgn(o) [ [ Aoiii = D sen(m) [ [ Airer)-
i=1 y=1

o€ES, TES,

Example 5.40 For n = 3 we have six permutations

(123 oo (123 o (1
17\ 2 3) 7271 3 2/ 272
(123 (123 . (1
=23 1) P31 2) 77 \3

For A = (Ajj)i<ij<s € Ms3(K), the Leibniz formula gives

NN =N
= W
N—

det(A) = sgn(o1)A11A2A33 + sgn(o2)A11A23A32 + sgn(o3)A12A21 Asz
+ 5gn(04)A12A23A31 + 5gn(05)A13A2 Azx + sgn(06)A13AxnAsg,

so that in agreement with Example 5.19, we obtain

det A = A1 Ax»Ass — A11AxAsz — ApArAsz
+ A12A23A31 + A13A2 Asp — A13AxnAs;.

Remark 5.41 Exercise 5.49 has two important consequences. Since the transpose
turns the rows of a matrix into columns and vice versa, we conclude:

(i) the determinant is also multilinear and alternating, when thought of as a map
(K" — K, that is, when taking n columns vectors as an input. In particular,
the determinant is also linear in each column;

(i) the Laplace expansion is also valid if we expand with respect to a row, that is,
forA € M, ,(K)and 1 < / < n,we have
det(A) = S (= 1)%[A] x det (A(”k)) :
k=1

Example 5.42 (O - not examinable) For n € Nand avector X = (x;)1<i<n € K" we
can form a matrix Vg = (Vjj)1<ij<n € Mp n(K) with Vj; = x{_l, that is,

1 X1 (X1)2 cee (Xl)"_l
1 x (X2)2 2o o (Xg)n_l
Vo= |1 x5 (e - (e)"!

i );n (x,;)2 (xn)"’_1



5.7 — Cramer’s rule

Such matrices are known as Vandermonde matrices and the determinant of a Van-
dermonde matrix is known as a Vandermonde determinant, they satisfy

det(Ve) = [ (5—x)

1<i<j<n

Sketch of a proof We can define a function f : K" — K, X — det(Vyx). By the Leibniz
formula, the function f is a polynomial in the variables x; with integer coefficients. If we
freeze all variables of f except the ¢-th variable, then we obtain a function g, : K — K
of one variable x;. For 1 < i < nwith i # ¢ we have g¢(x;) = 0, since we compute the
determinant of a matrix with two identical rows, the ¢-th row and the i-th row. Factoring
the zeros, we can thus write g¢(x¢) = ge(x¢) H1<i<n,i¢e(Xﬂ — x;) for some polynomial gy.
We can repeat this argument for all £ and hence can write det(V) = q(X) [ [;<;;<,(X —
x;) for some polynomial g(x). The Leibniz formula implies that the sum of the exponents
of all the factors x; in det(Vz) must be Zn(n — 1). The same holds true for [licici<n
It follows that g must be a constant. Using the Leibniz formula again, we see that the
summand of det(Vy) corresponding to the identity permutation is the product of the
diagonal entries of Vg, that is, x2(x3)? - - - (x,)"~ 1. Taking the first term in all factors of
[Ticicjcn(3) — xi), we also obtain x(x3)? - - - (x,)"~ ', hence det(Vy) = [Ty (5 —
X;), as claimed.

5.7 Cramer’srule

The determinant can be used to give a formula for the solution of a linear system of
equations of the form AX = b for an invertible matrix A € M, »(K), b € K" and
unknowns X € K". This formula is often referred to as Cramer’s rule. In order to derive it
we start with definitions:

Definition 5.43 (Adjugate matrix — Video) Letn € Nand A € M, ,(K) be a square
matrix. The adjugate matrix of A is the n x n-matrix Adj(A) whose entries are given
by (notice the reverse order of / and j on the right hand side)

[Adj(A)]; = (—1)™ det (AU-")) . 1<ij<n

Example 5.44
11 2 4 2 -3
Adj((a s>>_<_d _b>, Adi{lo 2 1]]=[1 o -1
¢ € 2 10 2 5 1P

The determinant and the adjugate matrix provide a formula for the inverse of a matrix:

Theorem 5.45 Letn € Nand A € M, ,(K). Then we have
Adj(A)A = A Adj(A) = det(A)1,,.
In particular, if A is invertible then

1
Al = Adi(A).
n )
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Proof Let A = (Aj)i<ij<n- Forl < i< nwe obtain for the i-th diagonal entry

[Adi(A)AL; = S(~1)"* det (ALD) A = det(A),
k=1
where we use the Laplace expansion (5.5) of the determinant. The diagonal entries of
Adj(A)A arethusall equaltodet A. For1 < /,j < nwith / # j we have
n
Adi(A)A]; = > (~1)7Hk (det A("")) Ay,
k=1

We would like to interpret this last expression as a Laplace expansion. We consider a
new matrix A = (AA,'J')lg,"jgn which is identical to A, except that the i-th column of A is
replaced with the j-th column of A, that is, for 1 < k < n, we have

Ag, =1,
Ag, 1410,
Then, forall 1 < k < nwe have A(k) = Ak} since the only column in which A and A

are different is removed in A(<1)_ Using (5.9), the Laplace expansion of A with respect to
the i-th column gives

(5.9) Ay = {

det A = En:(—l)('“)A“k,- det (AW")) - En:(—1)"+k (det AW)) Al
k=1 k=1
= [Adj(A)A];

The matrix A has a double occurrence of the i-th column, hence its column vectors are
linearly dependent. Therefore A is not invertible by Proposition 4.7 and so detA =
[Adj(A)A]; = 0 by Corollary 5.22. The off-diagonal entries of Adj(A)A are thus all zero
and we conclude Adj(A)A = det(A)1,,. Using the row version of the Laplace expansion
we can conclude analogously that A Adj(A) = det(A)1,,.

Finally, if Aisinvertible, then det A # 0 by Corollary 5.22,sothat A=! = Adj(A)/ det(A),
as claimed. O

As a corollary we obtain:

Corollary 5.46 Letn € Nand A € M, ,(K) be an invertible upper triangular matrix.
Then A~1 is also an upper triangular matrix.

Remark 5.47 Taking the transpose also implies: Let A € M, ,(K) be an invertible
lower triangular matrix. Then A~1 is also a lower triangular matrix.

Proof of Corollary 5.46 Write A = (A;j)1<ij<n- Using Theorem 5.45 it suffices to show
that Adj(A) is an upper triangular matrix. If A is an upper triangular matrix, then A;; = 0
forall i > j. By definition we have

[Adj(A)]; = (~1)™ det (AW)) . 1<ij<n

Notice that for i > j every element below the diagonal of AU-/) is also below the diagonal
of A and hence must be zero. It follows that AU-7) is an upper triangular matrix as well.
Proposition 5.24 implies that the determinant of AU+) is the product of its diagonal
entries. Since AU arises from the upper triangular matrix A by removing a row and a
column, at least one of the diagonal entries of AU+) must be zero and thus det AU = 0
fori > j. We conclude that A~1 is an upper triangular matrix as well. O
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5.7 — Cramer’s rule

We now use Theorem 5.45 to obtain a formula for the solution of the linear system Ax = b
for an invertible matrix A. Multiplying from the left with A=1, we get

- 1 -

¥=A"1b=—— Adj(A)b.

X det A i(A)

Writing X = (x;)1<i<n, multiplication with det A givesfor1 </ < n

n n
xidetA = S [Adj(A)]ubk = 3 (~1)"* det (A(k")) by
k=1 k=1
We can again interpret the right hand side as a Laplace expansion of the matrix A, ob-
tained by replacing the i-th column of A with b and leaving A unchanged otherwise.
Hence,we haveforalll <i<n
- det A,’

M7 detA”
This formula is known as Cramer’s rule. While this is a neat formula, it is rarely used in
computing solutions to linear systems of equations due to the complexity of computing
determinants.

Example 5.48 (Cramer’s rule) We consider the system Ax = b for

2 1 1 -2
A=[1 2 1 and b=| 2
11 2 4
Here we obtain
-2 1 1 2 -2 1 2 1 -2
Al=[2 2 1|, Ab=|1 2 1|, A;=|1 2 2
4 1 2 1 4 2 11 4

We compute det A = 4, det A; = —12,det A, = 4and det A5 = 12 so that Cramer’s
rule gives indeed the correct solution

—12 -3
1
12

Exercises
Exercise 5.49 Use the Leibniz formula to show that

det(A) = det(AT)
forall A € M, ,(K).
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CHAPTER 6

Endomorphisms

6.1 Sums, direct sums and complements %Z?r
20

In this chapter we study linear mappings from a vector space to itself.

Definition 6.1 (Endomorphism — Video) Alinearmap g : V — V from a K-vector
space V to itself is called an endomorphism. An endomorphism that is also an
isomorphism is called an automorphism.

Before we develop the theory of endomorphisms, we introduce some notions for sub-
spaces.

Definition 6.2 (Sum of subspaces — Video) Let V be a K-vector space, n € N and
Ui, ..., U, be vector subspaces of V. The set

D U=U+U++Uy={veVlv=u+u+ - +u,fory € U}
i=1
is called the sum of the subspaces U;.

Recall that by Proposition 3.27, the intersection of two subspaces is again a subspace,
whereas the union of two subspaces fails to be a subspace in general. However, subspaces
do behave nicely with regards to sums:

Proposition 6.3 The sum of the subspaces U; C V, i = 1..., nis again a vector
subspace.

Proof The sum 27:1 U; is non-empty, since it contains the zero vector Oy. Let v and
v/ € 37, Uisothat
/

V=vi+ v+t and Vi=vi+ v+ 4V

forvectors v;, v/ € U;,i =1, ..., n. Each U; is a vector subspace of V. Therefore, for all
scalars s, t € K, the vector sv; + tv/ is an elementof U;,i = 1, ..., n. Thus

sv+tv =svy + tv] + -+ sy, + tv,

isan element of U; + - - - + U,,. By Definition 3.21, it follows that U; + - - - + U,, is a vector
subspace of V. O

Remark 6.4 Noticethat U;+- - -+ U, isthe smallest vector subspace of V containing
all vector subspaces U;,i =1, ..., n.
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If each vector in the sum is in a unique way the sum of vectors from the subspaces we say
the subspaces are in direct sum:

Definition 6.5 (Direct sum of subspaces) Let V be a K-vector space, n € N and
Ui, ..., U, bevector subspaces of V. The subspaces Uy, ..., U, are said to be in direct
sum if each vectorw € W = U; + - - - + U, isin a unique way the sum of vectors
vi € Uforl < i< n Thatis,ifw=wv+w+--+v,=v+vi+--+ v for
vectors v;, v/ € U;, then v; = v/ forall1 < i < n. We write

PDu
i=1

in case the subspaces Uy, ..., U, are in direct sum.

Example 6.6 Letn € Nand V = K" aswell as U; = span{é&;}, where {€, ..., €,}
denotes the standard basis of K”. Then K" = @', U,.

Remark 6.7

(i) Two subspaces U, U, of V are in direct sum if and only if U; N U, = {0y }.
Indeed, suppose U; N U, = {0y} and considerw = vy + v» = v{ + v}
with v;, v/ € U;fori = 1,2. Wethen have vy — vy = v — v» € Us, since
U, is a subspace. Since U, is a subspace as well, we also have v; — v{ € U;.
Since v; — vj lies both in U; and U,, we must have vi — v{ = 0y = v — va.
Conversely, suppose Uy, U, are in direct sum and let w € (U; N U,). We can
writew = w + 0y = 0y + w, sincew € U; and w € U,. Since Uy, U, are in
direct sum, we must have w = 0y, hence U; N U, = {0y }.

(ii) Observe that if the subspaces Uy, ..., U, are in direct sum and v; € U; with
v; # 0y for 1 < i < n, then the vectors {vy, ..., v, } are linearly independent.
Indeed, if 51, ..., s, are scalars such that

sivi+ Sva + -+ 55V, =0y =0y + 0y + -+ - + Oy,

then s;v; = 0y forall1 < 7/ < n. By assumption v; # 0y and hence s; = 0 for
alll <i<n.

Proposition 6.8 Let n € N, V be a finite dimensional K-vector space and Uy, ..., U,
be subspaces of V. Let b; be an ordered basis of U; for 1 < i < n. Then we have:

(i) The tuple of vectors obtained by listing all the vectors of the bases b; is a basis of
Vifandonlyif V = @', U;.

(ii) dim(Uy + - -+ U,) < dim(U1) + - - - + dim(U,) with equality if and only if the
subspaces Uy, ..., U, are in direct sum.

Proof Part of an exercise. O

Definition 6.9 (Complement to a subspace) Let V be a K-vector spaceand U C V
a subspace. A subspace U’ of V such that V = U & U’ is called a complement to U.
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Example 6.10 Notice that a complement need not be unique. Consider V = R?
and U = span{é;}. Let v € V. Then the subspace U’ = span{v} is a complement
to U, provided €&}, v are linearly independent.

Corollary 6.11 (Existence of a complement) Let U be a subspace of a finite dimen-
sional K-vector space V. Then there exists a subspace U’ sothat V = U & U'.

Proof Suppose (vi, ..., Vi) is an ordered basis of U. By Theorem 3.64, there exists a
basis {vi, ..., Vi, Vm+1, .., Vo } Of V. Defining U’ = span{vi,11, ..., Vo }, Proposition 6.8
implies the claim. U

The dimension of a sum of two subspaces equals the sum of the dimensions of the
subspaces minus the dimension of the intersection:

Proposition 6.12 Let V be a finite dimensional K-vector space and Uy, U, subspaces
of V. Then we have

dim(U1 EE U2) = d|m(U1) aF dlm(UQ) = dim(U1 N U2)

Proof Letr = dim(U; N Uy) and let {uy, ..., u, } be a basis of U; N U,. These vectors
are linearly independent and elements of Uy, hence by Theorem 3.64, there exist vectors
Vi, oo, Vm—r SO that Sy = {u1, ..., U, v1, ..., Vm—, } is a basis of U;. Likewise there exist
vectors wy, ..., w,_, such that S, = {uy, ..., uy, wy, ..., wp_, } is a basis of U,. Here m =
dim U; and n = dim Us.

Now consider theset S = {u1, ..., Uy, V1, ..., Vm—r, Wi, ..., Wy—, } CONsisting of r + m —
r+n—r = n-+ m— rvectors. If this set is a basis of U; + Us, then the claim follows,
sincethendim(U; + Up) = n+ m — r = dim(U;) 4 dim(U) — dim(U; N Uy).

We first show that S generates U; + Us. Lety € U; + U, sothat y = x; + x, for vectors
x1 € Uy and xo € Us. Since Sy is a basis of Uy, we can write x; as a linear combination of
elements of S;. Likewise we can write x, as a linear combination of elements of S,. It
follows that S generates U; + Us.

We need to show that S is linearly independent. So suppose we have scalars sy, ..., s/,
t1, ..., tm—r,and ry, ..., ro—,, so that

s+ Fsu v+ o+t Vmr tAWL A M W = 0V~

=u =v =w
Equivalently, w = —u — v sothat w € U;. Since w is a linear combination of elements of
S», we also have w € U,. Therefore, w € U; N U, and there exist scalars 31, ..., 5, such
that
w=38§u +---+5u

=i

Thisis equivalent to w — i = 0y, or written out
nwy+ - A e Wp—y — S1U1 — - -+ + S,u, = Oy

Since the vectors {uy, ..., uy, wa, ..., w,_,} are linearly independent, we conclude that

n=-+--=r_,=5=---=5 =0. Itfollows that w = 0y and hence u + v = Oy.
Again, since {uy, ..., Uy, v1, ..., vo—,} are linearly independent, we conclude that s; =
cvo=s5, =t =+ = tp_, = 0and we are done. O
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6.2 Invariants of endomorphisms

Let V be afinite dimensional vector space equipped with an ordered basisband g : V —
V an endomorphism. Recall from Theorem 3.106 that if we consider another ordered
basis b’ of V, then

M(g,b’,b’) = CM(g,b,b)C ™,
where we write C = C(b, b’) for the change of basis matrix. This motivates the following
definition:

Definition 6.13 (Similar / conjugate matrices) Letn € Nand A, A’ € M, ,(K). The
matrices A and A’ are called similar or conjugate over K if there exists an invertible
matrix C € M, ,(K) such that

A’ =CAC™

Similarity of matrices over K is an equivalence relation:

Proposition 6.14 Letn € Nand A, B, X € M, ,(K). Then we have
(i) Aissimilar to itself;
(ii) Ais similar to B then B is similar to A;
(iii) If A'is similar to B and B is similar to X, then A is also similar to X.

Proof (i) WetakeC =1,.

(i) Suppose A is similar to B so that B = CAC ™! for some invertible matrix C € M, ,(K).
Multiplying with C~! from the left and C from the right, we get

c'BC=cCc!cACciCc=A,

so that the similarity follows for the choice € = C1.

(iii) We have B = CAC~! and X = DBD ! for invertible matrices C, D. Then we get
X =DCAC D!,

so that the similarity follows for the choice € = DC. O

Remark 6.15

- Because of (ii) in particular, one can say that two matrices A and B are similar
without ambiguity.

» Theorem 3.106 shows that A and B are similar if and only if there exists an endo-
morphism g of K” such that A and B represent g with respect to two ordered
bases of K",

One might wonder whether there exist functions f : M, ,(K) — Kwhich are invariant un-
der conjugation, that is, f satisfies f(CAC~!) = f(A) forall A € M, ,(K) and all invert-
ible matrices C € M, ,(K). We have already seen an example of such a function, namely
the determinant. Indeed using the product rule Proposition 5.21 and Corollary 5.22, we
compute

det (CAC™!) = det(CA)det (C™') = det(C) det(A) det (C™ 1)

61 = det(A).
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Because of this fact, the following definition makes sense:

Definition 6.16 (Determinant of an endomorphism) Let V be a finite dimensional
K-vector space and g : V — V an endomorphism. We define

det(g) = det (M(g, b, b))

where b is any ordered basis of V. By Theorem 3.106 and (6.1), the scalar det(g) is
independent of the chosen ordered basis.

Another example of a scalar that we can associate to an endomorphism is the so-called
trace. Like for the determinant, we first define the trace for matrices. Luckily, the trace is
a lot simpler to define:

Definition 6.17 (Trace of a matrix) Letn € Nand A € M, ,(K). Thesum }_7_, [Al;
of its diagonal entries is called the trace of A and denoted by Tr(A) or Tr A.

Example 6.18 Forall n € N we have Tr(1,) = n. For

)
2 11
A=|1 2 1
1 1 3
we have Tr(A) =2+2+4+3=T.

The trace of a product of square matrices is independent of the order of multiplication:

Proposition 6.19 Letn € Nand A, B € M, ,(K). Then we have
Tr(AB) = Tr(BA).

Proof Let A = (A[j)lgi,jgn and B = (Bij)lgi,jgn- Then

[AB]U = ZAikBkj and [BA]kJ = Z Bk,'A,'j,
k=1 i=1

so that

Tr(AB) = Xn: Xn: A,'kBk,' = zn: zn: Bk,'A,'k = TI’(BA)

i=1 k=1 k=1 i=1

Using the previous proposition, we obtain
(6.2) Tr(CAC™') =Tr (ACT'C) = Tr(A).
As for the determinant, the following definition thus makes sense:

Definition 6.20 (Trace of an endomorphism) Let V be a finite dimensional K-vector
spaceand g : V — V an endomorphism. We define

Tr(g) = Tr(M(g, b, b))
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where b is any ordered basis of V. By Theorem 3.106 and (6.2), the scalar Tr(g) is
independent of the chosen ordered basis.

The trace and determinant of endomorphisms behave nicely with respect to composition
of maps:

Proposition 6.21 Let V be a finite dimensional K-vector space. Then, for all endo-
morphisms f, g : V. — V we have

(i) Tr(fog) =Tr(gof);
(ii) det(f o g) = det(f)det(g).

Proof (i) Fix an ordered basis b of V. Then, using Corollary 3.100 and Proposition 6.19,
we obtain
Tr(f o g) = Tr(M(f o g, b, b)) = Tr (M(f, b, b)M(g, b, b))
=Tr(M(g,b,b)M(f,b,b)) =Tr(M(gof,b,b)) =Tr(gof).

The proof of (ii) is analogous, but we use Proposition 5.21 instead of Proposition 6.19. [

We also have:

Proposition 6.22 Let V be a finite dimensional K-vector spaceand g : V — V an
endomorphism. Then the following statements are equivalent:
(i) g isinjective;
(i) g is surjective;
(iii) g is bijective;
(iv) det(g) # 0.

Proof The equivalence of the first three statements follows from Corollary 3.77. We fix
an ordered basis b of V. Suppose g is bijective with inverse g=! : V — V. Then we have

det(g o g~ ') = det(g) det (g7!) = det (Idy) = det (M(Idv, b, b)) = det (Lgimv) = 1.
It follows that det(g) # 0 and moreover that

1
det (g71) = .
€ (g ) detg
Conversely, suppose that detg # 0. Then det M(g, b,b) # 0 so that M(g, b, b) is
invertible by Corollary 5.22 and Proposition 3.101 implies that g is bijective. O

Remark 6.23 Notice that Proposition 6.22 is wrong for infinite dimensional vector
spaces. Consider V = K*°, the K-vector space of sequences from Example 3.6. The
endomorphism g : V — V defined by (x1, x2, x3, ...) — (0, x1, X2, X3, ...) is injective
but not surjective.
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6.3 Eigenvectors and eigenvalues ‘”er
Q2

Mappings g that have the same domain and codomain allow for the notion of a fixed
point. Recall that an element x of a set X is called a fixed point of a mappingg : X — X
if g(x) = x, that is, x agrees with its image under g. In Linear Algebra, a generalisation of
the notion of a fixed point is that of an eigenvector. Avector v € V is called an eigenvector
of the linearmap g : V — Vif v is merely scaled when applying g to v, that is, there
exists a scalar A € K - called eigenvalue - such that g(v) = Av. Clearly, the zero vector
0y will satisfy this condition for every choice of scalar \. For this reason, eigenvectors
are usually required to be different from the zero vector. In this terminology, fixed points
v of g are simply eigenvectors with eigenvalue 1, since they satisfy g(v) = v = 1v.

Itis natural to ask whether a linear map g : V — V always admits an eigenvector. In the
remaining part of this chapter we will answer this question and further develop our theory
of linear maps, specifically endomorphisms. We start with some precise definitions.

Definition 6.24 (Eigenvector, eigenspace, eigenvalue — Video) Letg : V — V be
an endomorphism of a K-vector space V.

« An eigenvector with eigenvalue A € K is a non-zero vector v € V such that
g(v) = Av.

- If A € Kis an eigenvalue of g, the A\-eigenspace Eig, () is the subspace of vectors
v € V satisfying g(v) = Av.

+ The dimension of Eig,(\) is called the geometric multiplicity of the eigenvalue .

 The set of all eigenvalues of g is called the spectrum of g.

« For A € M, ,(K) we speak of eigenvalues, eigenvectors, eigenspaces and spec-
trum to mean those of the endomorphism 7 : K" — K”.

Remark 6.25 By definition, the zero vector 0y is not an eigenvector, it is however
an element of the eigenspace Eigg(A) for every eigenvalue \.

Example 6.26

(i) The scalar 0 is an eigenvalue of an endomorphism g : V — V if and only if
the kernel of g is different from {0\ }. In the case where the kernel of f does
not only consist of the zero vector, we have Ker g = Eig,(0) and the geometric
multiplicity of 0 is the nullity of g.

(i) The endomorphism fp : K" — K" associated to a diagonal matrix with distinct
diagonal entries

AL
A2
D=
AI‘l
has spectrum {);,...,\,} and corresponding eigenspaces Eig; ()\;) =
span{ée;}.
(ili) Consider the R-vector space P(R) of polynomials and f = & : P(R) —

P(R) the derivative by the variable x. The kernel of f consists of the constant
polynomials and hence 0 is an eigenvalue for f. For any non-zero scalar A we
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cannot have polynomials p satisfying ip = Ap, as the left hand of this last
expression has a smaller degree than the right hand side.

Previously we defined the trace and determinant for an endomorphismg : V — V
by observing that the trace and determinant of the matrix representation of g are in-
dependent of the chosen basis of V. Similarly, we can consider eigenvalues of g and
eigenvalues of the matrix representation of g with respect to some ordered basis of V.
Perhaps unsurprisingly, the eigenvalues are the same:

Proposition 6.27 Letg : V — V be an endomorphism of a finite dimensional K-
vector space V. Let b be an ordered basis of V' with corresponding linear coordinate
system (3. Then v € V is an eigenvector of g with eigenvalue A € K if and only if
B(v) € K" is an eigenvector with eigenvalue A of M(g, b, b). In particular, conjugate
matrices have the same eigenvalues.

Proof Write A = M(g, b, b). Recall that by an eigenvector of A € M, ,(K), we mean an
eigenvector of fa : K" — K". By Definition 3.91, we have fp = Bogo B1. Suppose
A € Kis an eigenvalue of g so that g(v) = Av for some non-zero vector v € V. Consider
the vector X = B(v) € K" whichis non-zero, since 3 : V — K" is anisomorphism. Then

fa(x) = B(g(B7'())) = Blg(v)) = B(\) = AB(v) = AX,
so that X'is an eigenvector of fa with eigenvalue A.

Conversely, if A is an eigenvalue of fa with non-zero eigenvector x, then it follows as
above that v = B7(X) € V is an eigenvector of g with eigenvalue \.

By Remark 6.15, if the matrices A, B are similar, then they represent the same endo-
morphism g : K” — K" and hence have the same eigenvalues. O

The “nicest” endomorphisms are those for which there exists an ordered basis consisting
of eigenvectors:

Definition 6.28 (Diagonalisable endomorphism)

« An endomorphism g : V — V is called diagonalisable if there exists an ordered
basis b of V such that each element of b is an eigenvector of g.

« Forn € N, amatrix A € M, ,(K) is called diagonalisable over K if the endo-
morphism fa : K” — K" is diagonalisable.

Example 6.29
(i) We consider V = P(R) and the endomorphism g : V — V which replaces the
variable x with 2x. For instance, we have
g(x* —2x+3) = (2x)> = 2(2x) + 3 = 4x®> — 4x + 3.

Then g is diagonalisable. The vector space P(R) has an ordered basisb =
(1,x,x2,x3, ...). Clearly, for all k € NU {0} we have g(x¥) = 2kxk, so that x*
is an eigenvector of g with eigenvalue 2.
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(ii) Fora € (0, ) consider
R, — (c?sa —sin a) .
Sin &« COos «
Recall that the endomorphism fr. : R? — R2 rotates vectors counter-

clockwise around the origin Og2 by the angle a.. Since o € (0, 7), the endo-
morphism fgr,, has no eigenvectors and hence is not diagonalisable.

Remark 6.30 Applying Proposition 6.27, we conclude that in the case of a finite
dimensional K-vector space V, an endomorphism g : V — V is diagonalisable if
and only if there exists an ordered basis b of V such that M(g, b, b) is a diagonal
matrix. Moreover, A € M, ,(K) is diagonalisable if and only if A is similar over K to
a diagonal matrix.

Recall, if X', YV are sets, f : X — Y amappingand Z C X asubset of X', we can consider
the restriction of f to Z, usually denoted by f| z, which is the mapping

flz: Z2=Y, z= f(2).

So we simply take the same mapping f, but apply it to the elements of the subset only.

Closely related to the notion of an eigenvector is that of a stable subspace. Let v € V be
an eigenvector with eigenvalue X of the endomorphism g : V — V. The 1-dimensional
subspace U = span{v} is stable under g, that is, g(U) C U. Indeed, since g(v) = Av
and since every vector u € U can be written as u = tv for some scalar t € K, we have
g(u) = g(tv) = tg(v) = tAv € U. This motivates the following definition:

Definition 6.31 (Stable subspace) Asubspace U C V is called stable or invariant
under the endomorphism g : V. — V'if g(U) C U, thatis g(u) € U for all vectors
u € U. In this case, the restriction g|y of g to U is an endomorphism of U.

Remark 6.32 Notice that a finite dimensional subspace U C V is stable under g if
andonly if g(v;) € Ufor1l < i< m,where{vy, ..., vy, } is a basis of U.

Example 6.33
(i) Every eigenspace of an endomorphism g : V — V is a stable subspace. By
definition g|Eigg(,\) : Bigg(A\) — Eigg(A) is multiplication by the scalar A € K.
(ii) We consider V = R3 and

cosae —sina 0
R, = |sinae cosa 0
0 0 1

fora € (0, ). The endomorphism fg_ : R® — R3 is the rotation by the angle
a € R around the axis spanned by &. Then the plane U = {X¥ = (xi)1<i<3 €
R3|x3 = 0} is stable under f = fg_. Here f|n : 1 — M is the rotation in the
plane U around the origin with angle c.
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Moreover, the vector €3 is an eigenvector with eigenvalue 1 so that

Eig/(1) = span{&}.

(iii) We consider again the R-vector space P(R) of polynomials and f = d% :
P(R) — P(R) the derivative by the variable x. For n € N let U, denote the
subspace of polynomials of degree at most n. Since U,,_1 C U,, the subspace

U, is stable under f.

Stable subspaces correspond to zero blocks in the matrix representation of linear maps.
More precisely:

Proposition 6.34 Let V be a K-vector space of dimensionn € Nand g : V — V an
endomorphism. Furthermore, let U C V be a subspace of dimension 1 < m < nand
b an ordered basis of U and ¢ = (b, b’) an ordered basis of V. Then U is stable under
g ifand only if the matrix A = M(g, c, ) has the form

~

A *
A= <0n—m,m *>

for some matrix A € M m(K). In the case where U is stable under g, we have
A = M(g|u, b, b) € My, (K).

Proof Writeb = (v, ..., vy,) forvectors v; € Uandb’ = (wy, ..., w,_,) for vectors
w; € V.

= Since U is stable under g, we have g(u) € U for all vectors u € U. Since b is a basis of
U, there exist scalars Aj; € Kwith 1 </, j < msuch that

g(v) = Ay
i=1

forall1 < j < m. By Proposition 3.92, the matrix representation of g with respect to the
ordered basis ¢ = (b, b’) of V thus takes the form

N

A *
A= <0n—m,m *)

where we write A = (AA,'J')lg,'ng = M(g|U, b, b)

< Suppose

~

A- (o A :) — M(g,c,c)

n—m,m

is the matrix representation of g with respect to the ordered basis c of V. Write A =
(Aj)i<ij<m Then, by Proposition 3.92, g(v;) = 7", A;v; € Uforall1 < j < m, hence
U is stable under g, by Remark 6.32. O

From Proposition 6.34 we can conclude:

Remark 6.35 Suppose V is the direct sum of subspaces Us, Us, ..., Uy, all of which
are stable under the endomorphism g : V — V. If b; is an ordered basis of U; for
i =1,..., m. Then the matrix representation of g with respect to the ordered basis
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c = (by, ..., by,) takes the block form

A,
A,

where A; = M(g|y;, b;, b;) fori =1, ..., m.

6.4 The characteristic polynomial

The eigenvalues of an endomorphism are the solutions of a polynomial equation:

Lemma 6.36 Let V be a finite dimensional K-vector spaceand g : V. — V an
endomorphism. Then A € K is an eigenvalue of g if and only if

det (Aldy — g) = 0.
Moreover if \ is an eigenvalue of g, then Eig,(\) = Ker(Aldy — g).

Proof Letv € V. We may write v = Idy(v). Hence
glv)=Av = 0Oy=(Ndyv—g)(v) <= veKer(Aldy—g)

It follows that Eig,(\) = Ker(Aldy — g). Moreover A € Kiis an eigenvalue of g if
and only if the kernel of Aldy — g is different from {0/} or if and only if Aldy — g is
not injective. Proposition 6.22 implies that A € K is an eigenvalue of g if and only if
det (Aldy — g) = 0. O

Definition 6.37 (Characteristic polynomial — Video) Letg : V — V be an endo-
morphism of a finite dimensional K-vector space V. The function

charg : K = K, x— det(xldy — g)

is called the characteristic polynomial of the endomorphism g.

In practice, in order to compute the characteristic polynomial of an endomorphism
g : V. — V,we choose an ordered basis b of VV and compute the matrix representation
A = M(g, b, b) of g with respect to b. We then have

charg(x) = det (x1, — A).

By the characteristic polynomial of a matrix A € M,, ,(K), we mean the characteristic
polynomial of the endomorphism fa : K" — K", that is, the function x — det (x1, — A).

A zero of a polynomial f : K — Kisascalar A € Ksuch that f(\) = 0. The multiplicity
of a zero A is the largest integer n > 1 such that there exists a polynomial f:K—Kso
that f(x) = (x — \)"#(x) for all x € K. Zeros are also known as roots.

Example 6.38 The polynomial f(x) = x> — x> — 8x + 12 can be factorised as
f(x) = (x — 2)?(x + 3) and hence has zero 2 with multiplicity 2 and —3 with
multiplicity 1.
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Definition 6.39 (Algebraic multiplicity) Let A bean eigenvalue of the endomorphism
g : V — V. The multiplicity of the zero A of char, is called the algebraic multiplicity
of \.

Example 6.40
(i) We consider

(i)

Then
x—1 =5
chara(x) = chary, (x) = det (x1, — A) = det
-5 x-1
= (x—1)>—=25=x%—2x — 24 = (x + 4)(x — 6).
Hence we have eigenvalues A, = 6 and A» = —4, both with algebraic multipli-

city 1. By definition we have

Eiga(6) = Eigy, (6) = {V € K*|AV = 6V}

and we compute that
Eiga(6) = span { (1) }

Since dim Eiga (6) = 1, the eigenvalue 6 has geometric multiplicity 1. Likewise

we compute
Eiga(—4) = span { <_11) }

so that the eigenvalue —4 has geometric multiplicity 1 as well. Notice that we
have an ordered basis of eigenvectors of A and hence A is diagonalisable, c.f.

Example 3.96.
2 1
A =
(6 2)

(i) We consider
Then chara(x) = (x — 2)? so that we have a single eigenvalue 2 with algebraic
multiplicity 2. We compute

ceu = { ()}

so that the eigenvalue 2 has geometric multiplicity 1. Notice that we cannot
find an ordered basis consisting of eigenvectors, hence A is not diagonalisable.

The determinant and trace of an endomorphism do appear as coefficients in its charac-
teristic polynomial:

Lemma6.41 Letg : V — V be an endomorphism of a K-vector space V of dimen-
sion n. Then chary is a polynomial of degree n and

charg(x) = x" — Tr(g)x" ! + - + (~1)"det(g).
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Proof We fix an ordered basis b of V. Writing M(g, b,b) = A = (Aj)1<ij<n» and using
the Leibniz formula (5.8), we have

charg(x Z sgn(o )ﬁ Bio (i),
i=1

c€eS,
where
B; — { x = Aii, l=J
—Aj, T #]
Therefore, char, is a finite sum of products containing x at most n times, hence char, is
a polynomial in x of degree at most n. The identity permutation contributes the term
]_[7:1 B;; in the Leibniz formula, hence we obtain

charg(x) = H(X — Aii) + Z sgn(o) H Bis i)

i=1 €Sy, 0#1 i=1

We now use induction to show that

H(X — A,',') =x" - TI’(A)Xn_l + C,,_gx”_2 + -4+ ax+ o

i=1
for scalars C,_», ..., cg € K. For n = 1 we obtain x — A;1, so that the statement is
anchored.

Inductive step: Suppose
n—1

n—1
[IG—An)=x"1 = <Z An‘) X"+ Cuax" P4 4 ax+ q,
i=1

i=1
for coefficients C,_», ..., ¢, then

n n—1
H(X = Aii) = (x = Ann) [an - (Z Aii> X2 4 CuoxX" 4+ ax + o
i—1

i=1
n
=x"— (Z A,-,-) x""1 4 lower order terms in x,
i=1
so the induction is complete.

We next argue that >- s ., sen(o) [T}, Bis(y) has at most degree n — 2. Notice that
each factor B, (;y of [;_; Bj(i) for which i # o(i) does not contain x. So suppose that
> ves, o4158n(0 ) [T Bio(i) has degree bigger or equal than n — 1. Then we have n — 1
integers i with 1 < 7 < nsuchthati = o(/). Letj denote the remaining integer. Since o is
injective, it follows that for any i # j we must have i = (i) # o(j). Therefore, o(j) = j
and hence o = 1, a contradiction.

In summary, we have shown that

charg(x) = x" — Tr(g)x" ' + Coox" 1+ + ax +

for coefficients C,_», ..., g € K. It remains to show that ¢g = (—1)"det(g). We have
co = charg(0) = det( ) = det(—A). Since the determinant is linear in each row of A,
this gives det(—A) = (—1)" det(A), as claimed. O

Remark 6.42 In particular, for n = 2 we have char,(x) = x> — Tr(g)x + det(g).
Compare with Example 6.40.
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6.5 Properties of eigenvalues ‘”er
2

We will argue next that an endomorphism g : V — V of a finite dimensional K-vector
space V has at most dim( V') eigenvalues. We first need:

Theorem 6.43 (Little Bézout’s theorem) For a polynomial f € P(K) of degree n > 1
and xy € K, there exists a polynomial g € P(K) of degree n — 1 such that for all
x € Kwe have f(x) = f(x0) + g(x)(x — xo).

Proof We will give an explicit expression for the polynomial g. If one is not interested in
such an expression, a proof using induction can also be given. Write f(x) = > _; axx*
for coefficients (ao, ..., a,) € K™ For0 < j < n— 1 consider

n—j—1
(6.3) bj: Z ak+j+1Xé<

and the polynomial
n—1
=D b
j=0

of degree n — 1. We have

n—1n—j—1 n—1n—j—1
g(x)(x — xo) = E (3k+1+1Xo Xt E 3k+1+1Xo XJ)
j=0 k=0 j=0 k=0
n n—j n—1 n—j
= E ak_;,_JXOX E E ak+JX0X
j=1 k=0 j=0 k=1
n—1
= a,x" + g ajpx) 4+ ag — a0 — E ax = f(x) = f(x0).
j=1 k=1

From this we conclude:

Proposition 6.44 Let f € P(K) be a polynomial of degree n. Then f has at most n
(distinct) zeros or f is the zero polynomial.

Proof We use induction. The case n = Qis clear, hence the statement is anchored.

Inductive step: Suppose f € P(K) is a polynomial of degree n with n + 1 distinct zeros
AL, ooy Ang1. Since f(Ap41) = 0, Theorem 6.43 implies that

f(x) = (x — Ans1)g(x)
for some polynomial g of degree n — 1. For 1 < i < n, we thus have
0= f(A7) = (A — Ant1)g(Ni)-

Since \; # Ap41 it follows that g();) = 0. Therefore, g has n distinct zeros and must be
the zero polynomial by the induction hypothesis. It follows that f is the zero polynomial
as well. O

This gives:
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Corollary 6.45 Letg : V — V beanendomorphism of a K-vector space of dimension
n € N. Then g has at most n (distinct) eigenvalues.

Proof By Lemma 6.36 and Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial. The characteristic polynomial of g has degree n. The claim follows
by applying Proposition 6.44. O

Proposition 6.46 (Linear independence of eigenvectors) Let V be a finite dimen-
sional K-vector space and g : V — V an endomorphism. Then the eigenspaces
Eig,(\) of g are in direct sum. In particular, if vy, ..., v, are eigenvectors correspond-
ing to distinct eigenvalues of g, then {1, ..., vi, } are linearly independent.

Proof We use induction on the number m of distinct eigenvalues of g. Let { A1, ..., A}
be distinct eigenvalues of g. For m = 1 the statement is trivially true, so the statement is
anchored.

Inductive step: Assume m — 1 eigenspaces are in direct sum. We want to show that then
m eigenspaces are also in direct sum. Let v;, v/ € Eig,()\;) be eigenvectors such that
(6.4) Vitvatt V=V Vst Vs
Applying g to this last equation gives
(6.5) AMvi+Xva+ o ApVm = Av) + AV + - A Ve
Subtracting \,, times (6.4) from (6.5) gives

M=)+ + Amet = A1 = (A1 = Am)vi + -+ Ame1 — Am) Vi1

Since m — 1 eigenspaces are in direct sum, this implies that (A\; — Ap)v; = (Aj — Ap)V/
forl < i < m — 1. Since the eigenvalues are distinct, we have A\; — \,, # 0 for all
1<i<m-—1landhencevy; =v/foralll < i< m—1. Now (6.5) implies that v,, = v
as well and the inductive step is complete.

Since the eigenspaces are in direct sum, the linear independence of eigenvectors with
respect to distinct eigenvalues follows from Remark 6.7 (ii). O

In the case where all the eigenvalues are distinct, we conclude that g is diagonalisable.

Proposition 6.47 Letg : V — V be an endomorphism of a finite dimensional K-
vector space V. Suppose the characteristic polynomial of g has dim( V') distinct zeros
(that is, the algebraic multiplicity of each eigenvalue is 1), then g is diagonalisable.

Proof Let n = dim(V). Let Ay, ..., A, denote the distinct eigenvalues of g. Let 0y #
v € Eigg(A,-) fori = 1,..., n. Then, by Proposition 6.46, the eigenvectors are linearly
independent, it followsthat (vy, ..., v, ) isan ordered basis of V consisting of eigenvectors,
hence g is diagonalisable. O

Remark 6.48 Proposition 6.47 gives a sufficient condition for an endomorphism
g : V — V to be diagonalisable, it is however not necessary. The identity endo-
morphism is diagonalisable, but its spectrum consists of the single eigenvalue 1
with algebraic multiplicity dim(V).
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Every polynomialin P(C) of degree at least 1 has at least one zero. This fact is known as
the fundamental theorem of algebra. The name is well-established, but quite misleading,
as there is no purely algebraic proof. You will encounter a proof of this statement in the
module MO7. As a consequence we obtain the following important existence theorem:

Theorem 6.49 (Existence of eigenvalues) Letg : V — V be an endomorphism of a
complex vector space V of dimension n > 1. Then g admits at least one eigenvalue.
Moreover, the sum of the algebraic multiplicities of the eigenvalues of g is equal to n.
In particular, if A € M, ,(C) is a matrix, then there is at least one eigenvalue of A.

Proof By Lemma 6.36 and Lemma 6.41, the eigenvalues of g are the zeros of the charac-
teristic polynomial and this is an element of P(C). The first statement thus follows by
applying the fundamental theorem of algebra to the characteristic polynomial of g.

Applying Theorem 6.43 and the fundamental theorem of algebra repeatedly, we find
k € N and multiplicities my, ..., mx € N such that

charg(x) = (x = A1) ™(x — A2)™ - (x — )™

where Ay, ..., Ax are zeros of char,. Since char, has degree n, it follows that fozl m; =
n. g

Example 6.50
(i) Recallthatthe discriminant of a quadratic polynomial x — ax?+bx+c € P(K)
is b> — 4ac, provided a # 0. If K = C and b? — 4ac is non-zero, then the
polynomial ax? + bx + c has two distinct zeros. The characteristic polynomial
of a 2-by-2 matrix A satisfies chara(x) = x? — Tr(A)x +det(A). Therefore, if A
has complex entries and satisfies (Tr A)>—4 det A # 0, thenitis diagonalisable.
If A has real entries and satisfies (Tr A)? — 4det A > 0, then it has a least one
eigenvalue. If (Tr A)? — 4det A > O then it is diagonalisable.
(i) Recall that, by Proposition 5.24, an upper triangular matrix A = (Aj)1<ij<n
satisfies det A = []]_, A;. It follows that
n
charA(x) = H(X — A,‘,’) = (X — A11)(X — A22) 0o D (X — Ann)-
i=1
Consequently, an upper triangular matrix has spectrum {A11, Az, ..., Ann}
and is diagonalisable if all its diagonal entries are distinct. Notice that by
Example 6.40 (ii) not every upper triangular matrix is diagonalisable.

Example 6.51 (Fibonacci sequences) We revisit the Fibonacci sequences, now
equipped with the theory of endomorphisms. A Fibonacci sequence is a sequence
¢ : NU {0} — Ksatisfying the recursive relation &, 2 = &, + £,+1. Consider the

matrix
(% &
A_(& @)'

Then, using induction, we can show that

n fn—l gn
A" =
( gn §n+1>

forall n € N. We would like to compute A" for the initial conditions £ = 0 and
& = 1. Suppose we can find an invertible matrix C so that A = CDC~! for some
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diagonal matrix D. Then
A"=cDCc'cDC'...cDC ' =cCD"C™*

and we can easily compute A", as the n-th power of a diagonal matrix D is the
diagonal matrix whose diagonal entries are given by the n-th powers of diagonal
entries of D. We thus want to diagonalise the matrix

0 1
A= :
G )
We obtain chara(x) = x2 — x — 1 and hence eigenvalues \; = (1 + 1/5)/2 and
X2 = (1 — /5)/2. From this we compute

Eiga(A\1) = span { (/\11) } and Eiga(A2) = span { (/\12> }

Lete = (&, &) denote the standard basis of R? and consider the ordered basis

() ()

of eigenvectors of fa. We have

wa@m:(? i):D

and the change of base matrix is

czqua=<; i)

1 A -1
-1 o 2
Cc _C(e,b)_)\z_)\1 </\1 1).

Therefore A = CDC~! and hence A” = CD"C~! so that

o ) (6 ) (B 3)- (3 &)
)\2—)\1 /\1 /\2 0 /\'27 —/\1 1 §n §n+1 -

This yields the formula

and

_M-X

§n—)\1_/\2.

Proposition 6.52 Let g : V — V be an endomorphism of a finite dimensional
K-vector space V of dimension n > 1.

(i) Let \ be an eigenvalue of g. Then its algebraic multiplicity is at least as big as its
geometric multiplicity.

(i) If K = C, then g is diagonalisable if and only if for all eigenvalues of g, the
algebraic and geometric multiplicity are the same.

Proof (i) Let dim Eig,(\) = m and b be an ordered basis of Eig, (). Furthermore, let
b’ be an ordered tuple of vectors such that ¢ = (b, b’) is an ordered basis of V. The
eigenspace Eig, () is stable under g and

M(glEig, (1), b, b) = ALp,.

By Proposition 6.34, the matrix representation of g with respect to the basis c takes the

form
M(g, ¢, c) = <0)\1m *)

m—nm B
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for some matrix B € M,,_,, —m(K). We thus obtain

B (x =M1, *
charg(x) = det ( Op v x1, m—B

Applying the Laplace expansion (5.5) with respect to the first column, we have

(x =), * )
charg(x) = (x — A\) det
g( ) ( ) ( m—n,m—1 xl,_m—B
Applying the Laplace expansion again with respect to the first column, m-times in total,
we get
charg(x) = (x — A\)"det(x1,_m — B) = (x — X)" charg(x).

The algebraic multiplicity of A is thus at least m.

(i) Suppose K = C and that g : V — Vis diagonalisable. Hence we have an ordered
basis (v, ..., v,) of V consisting of eigenvectors of g. Therefore,
charg(x) = H(X —A)
i=1

where ); is the eigenvalue of the eigenvector v;, 1 < 7 < n. For any eigenvalue )}, its
algebraic multiplicity is the number of indices i with \; = ;. For each such index i, the
eigenvector v; satisfies g(v;) = \jv; = \jv; and hence is an element of the eigenspace
Eig, (). The geometric multiplicity of each eigenvalue is thus at least as big as the
algebraic multiplicity, but by the previous statement, the latter cannot be bigger than
the former, hence they are equal.

Conversely, suppose that for all eigenvalues of g, the algebraic and geometric multi-
plicity are the same. Since K = C, by Theorem 6.49, the sum of the algebraic multipli-
cities is n. The sum of the geometric multiplicities is by assumption also n. Since, by
Proposition 6.46, the eigenspaces with respect to different eigenvalues are in direct sum,
we obtain a basis of V consisting of eigenvectors of g. d

6.6 Special endomorphisms

6.6.1 Involutions

Amapping . : X — X from aset X into itself is called an involution, if L o t = Id x. In the
case where X is a vector space and ¢ is linear, then ¢ is called a linear involution.

Example 6.53 (Involutions)

(i) Let V be a K-vector space. Then the identity mappingIdy : V — Visalinear

involution.

(ii) Forall n € N, the transpose M, ,(K) — M, ,(K) is a linear involution.

(iii) For n € N, let X denote the set of invertible n x n matrices. Then the matrix
inverse ~! : X — X is aninvolution. Notice that X' is not a vector space.

(iv) For any K-vector space V, the mapping: : V — V,v — —visa linear
involution. Considering F(/, K), the K-vector space of functions on the interval
I C R, we obtain a linear involution of F(V/, K) by sending a function f to f o ¢.

(v) If A € M, ,(K) satisfies A2 = 1,,, then f : K" — K" is a linear involution.

The spectrum of an involution is a subset of {—1, 1}.
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Proposition 6.54 Let V be a K-vector space and v : V. — V a linear involution.
Then the spectrum of v is contained in {—1,1}. Moreover V = Eig,(1) & Eig,(—1)
and ¢ is diagonalisable.

Proof Suppose A € Kis an eigenvalue of ¢ so that «(v) = Av for some non-zero vector
v € V.Then(i(v)) = v = A(v) = A?v. Hence (1 — A\?)v = 0y and since v is non-zero,
we conclude that A = +1. By Proposition 6.46, the eigenspaces Eig,(1) and Eig,(—1)
arein direct sum.

Forv € V we write
1 1
v =S+ )+ 5 (v = (V)

EEig, (1) EEig, (—1)
hence V' = Eig,(1) @ Eig,(—1). Take an ordered basis b, of Eig,(1) and an ordered basis
b_ of Eig,(1). Then (b, b_) is an ordered basis of V consisting of eigenvectors of c. [

6.6.2 Projections
Alinear mapping I : V — V satisfying [1 o 1 = Iis called a projection.

Example 6.55 Consider VV = R3 and

Clearly, A2 = A and fa : R® — R3 projects a vector X = (x;)1<i<3 onto the plane
(% € R¥xs = 0).

In a sense there is only one type of projection. Recall from the exercises that for a projec-
tionl: V — V,wehave V = Ker [1& Im 1. Given two subspaces Uy, U, of V such that
V = U; @ U, , thereis aprojection1: V — V whose kernelis U; and whose image is
U,. Indeed, every vector v € V can be written as v = u; + w5 for unique vectors u; € U;
for i = 1, 2. Hence we obtain a projection by defining M(v) = u, forallv € V.

Denote by X the set of projections from V to V and by ) the set of pairs (U, U,) of
subspaces of V that are in direct sum and satisfy V. = U; @ U,. Then we obtain a
mapping A : X — Y defined by f — (Ker f, Im f).

Similar to Proposition 6.54, we obtain:

Proposition 6.56 Let V/ be a K-vector space and I : V — V a projection. Then
the spectrum of I is contained in {0,1}. Moreover VV = Eign(0) & Eign(1), M is
diagonalisable and Im 1 = Eigp(1).

Proof Let v € V be an eigenvector of the projection I with eigenvalue A. Hence we
obtain M(M(v)) = A2v = MN(v) = v, equivalently, A\(A — 1)v = Oy. Since v is non
zero, it follows that A = 0 or A = 1. Since I is a projection, we have V = Ker 1 & ImI1.
Since Ker N = Eigp(0), we thus only need to show that Im M = Eigp(1). Let v € Im M so
that v = IN(¥) for some vector ¥ € V. Hence (v) = MN(M(?)) =MN(?) = vand visan
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eigenvector with eigenvalue 1. Conversely, suppose v € V is an eigenvector of [1 with
eigenvalue 1. Then M(v) = v = M(MN(v)) and hence v € Im 1. We thus conclude that
Im M = Eigp(1). Choosing an ordered basis of Ker I and an ordered basis of Im I gives
a basis of V consisting of eigenvectors, hence I is diagonalisable. O

Exercises

Exercise 6.57 Derive the formula (6.3) for the coefficients b;.

Exercise 6.58 Show that A is a bijection.

Exercise 6.59 Show thatifll1: V — V isa projectionthenldy, —:V — Visa
projection with kernel equal to the image of [1 and image equal to the kernel of 1.
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CHAPTER 7

Quotient vector spaces

7.1 Affine mappings and affine spaces %Z?r
3

Previously we saw that we can take the sum of subspaces of a vector space. In this final
chapter of the Linear Algebra | module we introduce the concept of a quotient of a vector
space by a subspace.

Translations are among the simplest non-linear mappings.

Definition 7.1 (Translation) Let V be a K-vector space and vy € V. The mapping
T,:V =V, Vi v+ vy

is called the translation by the vector vy.

Remark 7.2 Notice that for vy # 0y, a translation is not linear, since T,,(0y) =
Ov + vo = vp # Oy.

Takings; = land s, = —1in (3.6), we see that a linear map f : V — W between
K-vector spaces V, W satisfies f(vy — vo) = f(v1) — f(v2) forall vy, vo € V. In particular,
linear maps are affine maps in the following sense:

Definition 7.3 (Affine mapping) A mapping f : V — W is called affine if there
existsalinearmap g : V. — Wsothat f(v1) — f(v2) = g(v1 — vo) forall vy, vo € V.
We call g the linear map associated to f.

Affine mappings are compositions of linear mappings and translations:

Proposition 7.4 A mapping f : V. — W is affine if and only if there exists a linear
map g : V — W and a translation T, : W — W so thatf = T,, o g.

Proof < letg : V — W belinearand T, : W — W be a translation for some
vector wp € W sothat T,,(w) = w+ wy forallw € W. Letf = T,, o g sothat
f(v) =g(v) + wpforallv € V.Then

f(v1) — f(v2) = g(v1) + wo — g(v2) — wo = g(v1) — g(v2) = g(vi — v2),
hence f is affine.
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= Lletf: V — W beaffineand g : V — W its associated linear map. Since f is affine
we have forallv € V

f(v) = f(Ov) = g(v —0v) = g(v) — g(0v) = g(v)
where we use the linearity of g and Lemma 3.15. Writing wy = f(0y) we thus have
f(v) =g(v) + wo

so that f is the composition of the linear map g and the translation T, : W — W,
w = W+ w. O

Example 7.5 Let A € M,, ,(K), b € K™ and
fap K" K", X AX+b.

Then f, is an affine map whose associated linear map is fa. Conversely, combining

Lemma 3.18 and Proposition 7.4, we see that every affine map K” — K™ is of the
form f, ; for some matrix A € My, ,(K) and vector b € K™.

An affine subspace of a K-vector space V is a translation of a subspace by some fixed
vector v.

Definition 7.6 (Affine subspace) Let V be a K-vector space. An affine subspace of
V is a subset of the form

U+ v ={u+ wlue U},

where U C Vis a subspace and vy € V. We call U the associated vector space to
the affine subspace U + vy and we say that U + vy is parallel to U.

Example 7.7 Let V = R? and U = span{é; + &} = {s(é + &)|s € R} where
here, as usual, {&, &} denotes the standard basis of R?. So U is the line through
the origin Og: defined by the equation y = x. By definition, for all v € R? we have

U+ 7 ={V+sw|s € R},

where we write w = &} + &. So for each v € R?, the affine subspace U + Vis a line
in R?, the translation by the vector v of the line defined by y = x.

7.2 Quotient vector spaces

Let U be a subspace of a K-vector space V. We want to make sense of the notion of
dividing V by U. It turns out that there is a natural way to do this and moreover, the
quotient V' /U again carries the structure of a K-vector space. The idea is to define V /U
to be the set of all translations of the subspace U, that is, we consider the set of subsets

V/U={U+v|veV}

We have to define what it means to add affine subspaces U + v; and U + v, and what it
means to scale U + v by a scalar s € K. Formally, it is tempting to define 0y ,y = U+ 0y
and

(7.1) (U+ Vl) +v/u (U—|— V2): U+(V1—|—V2)
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forall vi, v» € V aswell as
(7.2) S~\//U (U+V):U+(SV)

forall v € V and s € K. However, we have to make sure that these operations are well
defined. We do this with the help of the following lemma.

Lemma 7.8 Let U C V be asubspace. Then any vector v € V belongs to a unique
affine subspace parallel to U, namely U+ v. In particular, two affine subspaces U + vy
and U + v; are either equal or have empty intersection.

Proof Since0y € U,wehavev € (U+v), henceweonly needtoshowthatifv € (U+7)
for some vector ¥, then U+ v = U+ ¥. Assume v € (U + V) sothat v = u + ¥ for some
vector u € U. Suppose w € (U + 7). We need to show that then also w € (U + v). Since
w € (U+ V) we have w = i+ ¥ for some vector i € U. Using that ¥ = v — u, we obtain

w=l+v—-—u=0—-u+v
Since U is a subspace we have i — u € Uand hencew € (U + v).

Conversely, suppose w € (U + v), it follows exactly as before that then w € (U + 7) as
well. O

We are now going to show that (7.1) and (7.2) are well defined. We start with (7.1). Let
vi, vo» € Vand wy, wo € V such that

U+rvi=U+wm and U+ v =U-+ w.

We need to show that U + (v; + v2) = U + (w1 + w,). By Lemma 7.8 it suffices to show
that wi + ws is an element of U + (v4 + v2). Since U + wy = U + v it follows that
wi € (U+ vp)sothat wy = uy + v4 for some element u; € U. Likewise it follows that
Wy = up + v, for some element u, € U. Hence

Wiy + Wo = Uy + Us + vy + vo.

Since U is a subspace, we have u; + up € U and thus it follows that wy + ws is an element
of U+ (V1 + Vz).

For (7.2) we need to show thatif v € Vand w € V aresuchthat U + v = U + w, then
U+ (sv) = U+ (sw)foralls € K. Again, applying Lemma 7.8 we only need to show that
sw € U+ (sv).Since U+ v = U + wit follows that there exists u € U withw = u + v.
Hence sw = su+sv and U being a subspace, we have su € U and thus sw liesin U+ (sv),
as claimed.

Having equipped V' /U with addition +,, defined by (7.1) and scalar multiplication -,y
defined by (7.2), we need to show that V /U with zero vector U + 0y is indeed a K-vector
space. All the properties of Definition 3.1 for V /U are however simply a consequence of
the corresponding property for V. For instance commutativity of vector addition in V' /U
follows from the commutativity of vector in addition in V, that is, forall v;, vo» € V we
have

(U+wv)+viu(U+tw)=U+(n+w)=U+(v+wv)=(U+wv)+yv,u(U+w).

The remaining properties follow similarly.

Notice that we have a surjective mapping

p:V—=>V/U v U+v.
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which satisfies
p(vi+v2)=U+(vi+w)=(U+wv)+vu(U+wv)=pvi)+vwp(va)
forall vy, v» € V and
p(sv) = U+ (sv) =s-v,u (U+Vv)=s-vup(v).
forall v € V and s € K. Therefore, the mapping pis linear.

Definition 7.9 (Quotient vector space) The vector space V /U is called the quotient
(vector) space of V by U. The linear map p : V — V/U is called the canonical
surjection from V to V /U.

The mapping p : V — V//U satisfies
p(v) =0yw=U+0y <= veU
and hence Ker(p) = U. This gives:

Proposition 7.10 Suppose the K-vector space V is finite dimensional. Then V' /U is
finite dimensional as well and

dim(V/U) = dim(V) — dim(U).

Proof Since pis surjective it follows that V/ /U is finite dimensional as well. Hence we
can apply Theorem 3.76 and obtain

dim V = dim Ker(p) 4+ dimIm(p) = dim U + dim(V//U),
where we use that Im(p) = V /U and Ker(p) = U. O

Example 7.11 (Special cases)

(i) Inthe case where U = V weobtain V/U = {0y ,y}.
(i) Inthe case where U = {0y } we obtain that VV//U is isomorphic to V.

Exercises

Exercise 7.12 Show that the image of an affine subspace under an affine map is
again an affine subspace and that the preimage of an affine subspace under an affine
map is again an affine subspace or empty (cf. Proposition 3.26).
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