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CHAPTER 1

Fields and complex numbers
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1.1 Reminders on sets and mappings

This short section is not new material: all the concepts below are in the modules M01 Al-
gorithmics or M02 Statistics and Discrete Structures. It is just here as a quick reminder that
you can refer back to later in these lecture notes if necessary.

Mappings

Recall that forX ,Y sets, we have the notion of a mapping (or map or function) f : X →
Y ; formally this is a subset of X × Y with certain properties, but we think of it as some
kind of “rule” or “recipe” which produces, for each x ∈ X , an element f (x) ∈ Y .

• Two functions f1, f2 : X → Y are identical if they take the same values, i.e. f1 = f2 if
and only if f1(x) = f2(x) ∀x ∈ X .

• For any set X there is an identity map IdX , defined by IdX (x) = x ∀x ∈ X .
• Given f : X → Y and g : Y → Z , the composition g ◦ f is the function X → Z

defined by (g ◦ f )(x) = g(f (x)) ∀x ∈ X .
• We say f : X → Y is injective (or one-to-one) if different elements of X go to differ-

ent elements of Y ; so for x1, x2 ∈ X , if f (x1) = f (x2), then we must have x1 = x2.
• We say f : X → Y is surjective (or onto) if, given any y ∈ Y , there is some x ∈ X

with f (x) = y .
• We say f is bijective if it is both injective and surjective. In this case, for every y ∈ Y

there is a unique x ∈ X such that f (x) = y ; sending y to this unique x defines a
map f −1 : Y → X , the inverse mapping, with the property that f −1 ◦ f = IdX and
f ◦ f −1 = IdY .
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Images and preimages

We’ll also need the notion of images and preimages. Recall, if X ,W are sets, Y ⊂ X ,
Z ⊂ W subsets and f : X → W a mapping, then the image of Y under f is the set

f (Y) = {w ∈ W : there exists an element y ∈ Y with f (y) = w} ⊂ W,

consisting of all the elements in W which are hit by an element of Y under the mapping
f . In the special case where Y is all of X , that is, Y = X , it is also customary to write
Im(f ) instead of f (X ) and simply speak of the image of f .

Similarly, the preimage of Z under f is the set

f −1(Z) = {x ∈ X | f (x) ∈ Z} ⊂ X ,

consisting of all the elements in X which are mapped onto elements of Z under f .

Remark 1.1 Notice that f is not assumed to be bijective, hence the inverse map-
ping f −1 : W → X does not need to exist (and in fact the definition of the preim-
age does not involve the inverse mapping). Nonetheless the notation f −1(Z) for
the preimage is customary (and it agrees with “the image of Z under f −1” when a
function f −1 does exist).

Exercises

Optional, for review purposes. See website https://apptest.fernuni.ch/https://apptest.fernuni.ch/ for worked
solutions

Exercise 1.1 Which of the following functions are injective? Which are surjective?
Give a simple justification (detailed proofs are not required).

(i) The function N → N given by f (x) = x + 1.
(ii) The function R → R given by f (x) = x + 1.

(iii) The function R → R given by f (x) = x2.
(iv) The function R → R given by f (x) = x3.
(v) The function Q → Q given by f (x) = x3.

Exercise 1.2 Let f : X → Y be any function.
(i) Show that if there exists g : Y → X with g ◦ f = IdX , then f is injective. Give

an example to show that f need not be surjective.
(ii) Show that if there exists g : Y → X with f ◦ g = IdY , then f is surjective. Give

an example to show that f need not be injective.
(iii) If f : X → Y is injective, and g1, g2 : Y → X are functions with g1 ◦ f =

g2 ◦ f = IdX , does it follow that g1 = g2? Give a proof or counterexample as
appropriate.
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1.2 — Fields

Exercise 1.3 Suppose f : X → Y is a function.
(i) If f is injective, does there always exist a g : Y → X with g ◦ f = IdX ?

(ii) If f is surjective, does there always exist a g with f ◦ g = IdY?
(Warning: there is a trap for the unwary here!)

1.2 Fields

Definitions

A field K is roughly speaking a number system in which we can add, subtract, multiply
and divide, so that the expected properties hold. We will only briefly state the definition
and some basic facts about fields. For a more detailed account, we refer to the Algebra
module.

Definition 1.2 A field consists of a set K containing distinguished elements 0K ̸=
1K, as well as two binary operations, addition +K : K×K → K and multiplication
·K : K×K → K, so that the following properties hold:
• Commutativity of addition

(1.1) x +K y = y +K x for all x , y ∈ K.

• Commutativity of multiplication

(1.2) x ·K y = y ·K x for all x , y ∈ K.

• Associativity of addition

(1.3) (x +K y) +K z = x +K (y +K z) for all x , y , z ∈ K.

• Associativity of multiplication

(1.4) (x ·K y) ·K z = x ·K (y ·K z) for all x , y , z ∈ K.

• 0K is the identity element of addition

(1.5) x +K 0K = 0K +K x = x for all x ∈ K.

• 1K is the identity element of multiplication

(1.6) x ·K 1K = 1K ·K x = x for all x ∈ K.

• For any x ∈ K there exists an element y ∈ K such that

(1.7) x +K y = 0K.

It follows that there is a unique such element, for any given x ; and we denote it
by (−x), the additive inverse of x .

• For any x ∈ K \ {0K} there exists an element y such that

(1.8) x ·K y = y ·K x = 1K.

Again, this element is necessarily uniquely determined and we denote it by x−1

or 1
x , the multiplicative inverse of x ,

• Distributivity of multiplication over addition

(1.9) (x +K y) ·K z = x ·K z +K y ·K z for all x , y , z ∈ K.
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Remark 1.3
(i) It is customary to simply speak of a field K, without explicitly mentioning 0K,

1K, +K and ·K.
(ii) When K is clear from the context, we often simply write 0 and 1 instead of 0K

and 1K. Likewise, it is customary to write + instead of +K and · instead of ·K.
Often ·K is omitted entirely so that we write xy instead of x ·K y .

(iii) We refer to the elements of a field as scalars.
(iv) The set K \ {0K} is usually denoted by K∗.
(v) For all x , y ∈ K we write x − y = x +K (−y) and for all x ∈ K and y ∈ K∗ we

write x
y = x ·K 1

y = x ·K y−1.
(vi) A field K containing only finitely many elements is called finite. Algorithms in

cryptography are typically based on finite fields.

Example 1.4
(i) The rational numbers or quotients Q, and the real numbers R, are both fields

(equipped with the usual addition and multiplication). The same is true of the
complex numbers C, which we will study more carefully below.

(ii) The integers Z (with usual addition and multiplication) are not a field, as only
1 and −1 admit a multiplicative inverse.

(iii) Considering a set F2 consisting of only two elements that we may denote by 0
and 1, we define +F2 and ·F2 via the following tables

+F2 0 1

0 0 1

1 1 0

and
·F2 0 1

0 0 0

1 0 1

For instance, we have 1+F2 1 = 0 and 1 ·F2 1 = 1. Then, one can check that F2

equipped with these operations is indeed a field.
(A way to remember these tables is to think of 0 as representing the even

numbers, while 1 represents the odd numbers. So for instance, a sum of two
odd numbers is even and a product of two odd numbers is odd. Alternatively,
we may think of 0 and 1 representing the boolean values FALSE and TRUE. In
doing so,+F2 corresponds to the logical XOR and ·F2 corresponds to the logical
AND.)

(iv) Considering a setF4 consisting of four elements, say {0, 1, a, b}, we define+F4

and ·F4 via the following tables

+F4 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

and

·F4 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

Again one can check that F4 equipped with these operations is indeed a field.
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1.2 — Fields

First properties

Lemma 1.5 (Field properties) In a field K we have the following properties:
(i) 0K ·K x = 0K for all x ∈ K.

(ii) −x = (−1K) ·K x for all x ∈ K.
(iii) For all x , y ∈ K, if x ·K y = 0K, then x = 0K or y = 0K.
(iv) −0K = 0K.
(v) (1K)

−1 = 1K.
(vi) (−(−x)) = x for all x ∈ K.

(vii) (−x) ·K y = x ·K (−y) = −(x ·K y).
(viii) (x−1)−1 = x for all x ∈ K∗.

Proof We will only prove some of the items, the rest are an exercise for the reader.

(i) Using (1.51.5), we obtain 0K +K 0K = 0K. Hence for all x ∈ K we have

x ·K 0K = x ·K (0K + 0K) = x ·K 0K +K x ·K 0K,

where the second equality uses (1.91.9). Adding the additive inverse of x ·K 0K, we get

x ·K 0K − x ·K 0K = (x ·K 0K +K x ·K 0K)− x ·K 0K

using the associativity of addition (1.31.3) and (1.71.7), this last equation is equivalent to

0K = x ·K 0K

as claimed.

(iii) Let x , y ∈ K such that x ·K y = 0K. If x = 0K then we are done, so suppose x ̸= 0K.
Using (1.81.8), we have 1K = x−1 ·K x . Multiplying this equation with y we obtain

y = y ·K 1K = y ·K (x ·K x−1) = (y ·K x) ·K x−1 = 0K ·K x−1 = 0K

where we have used (1.61.6), the commutativity (1.21.2) and associativity (1.41.4) of multiplica-
tion as well as (i) from above.

(v) By (1.61.6), we have 1K ·K 1K = 1K, hence 1K is the multiplicative inverse of 1K and since
the multiplicative inverse is unique, it follows that (1K)−1 = 1K. □

Remark 1.6 (Characteristic of a field) For n ∈ N and an element x of a field K, we
write

nx = x +K x +K x +K · · ·+K x︸ ︷︷ ︸
n summands

.

(We understand this as nx = 0K if n = 0.) Note that the field F2 has the property
that 2x = 0 for all x ∈ F2.
For a field K, we define the characteristic of K to be the smallest positive integer p
such that px = 0K for all x ∈ K, if such an integer exists. If no such integer exists
the field is said to have characteristic 0.
So Q,R,C are fields of characteristic 0, while F2 and F4 both have characteristic 2.
It can be shown that the characteristic of any field is either 0 or a prime number.

A subset F of a field K that is itself a field, when equipped with the multiplication and
addition of K, is called a subfield of K.

11



CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Example 1.7
(i) The rational numbers Q form a subfield of the real numbers R. Furthermore,

as we will see below, the real numbers R can be interpreted as a subfield of
the complex numbers C.

(ii) F2 may be thought of as the subfield of F4 consisting of {0, 1}.

Mappings between fields

Generally, whenever we define some kind of ‘set with extra structure’ – like a group or a
field – it’s interesting to look at mappings which preserve these structures. This leads to
the notion of a field embedding:

Definition 1.8 (Field embedding) LetFandKbe fields. A field embedding is a map-
ping ι : F → K satisfying the conditions ι(1F) = 1K, ι(0F) = 0K, and

ι(x +F y) = ι(x) +K ι(y) and ι(x ·F y) = ι(x) ·K ι(y)

for all x , y ∈ F.

Example 1.9
• The obvious inclusion of Q inside R is a field embedding.
• From the above tables we see that ι : F2 → F4 defined by ι(1F2) = 1F4 and
ι(0F2) = 0F4 is a field embedding.

Remark 1.10
(i) A field embedding is always injectiveaa. Suppose x , y ∈ F satisfy ι(x) = ι(y)

so that ι(x − y) = 0K. Assume w = x − y ̸= 0F, then ι(w) ·K ι(w−1) =

ι(1F) = 1K. Since by assumption ι(w) = 0K, we thus obtain 0K ·K ι(w−1) =

1K, contradicting Lemma 1.5Lemma 1.5 (i). It follows that x = y and hence ι is injective.
(ii) It turns out that we don’t actually need to require the condition ι(0F) = 0K in

the definition of a field embedding; it is implied by the other three conditions.
Indeed, if ι satisfies the other conditions, then we have

ι(0F) = ι(0F +F 0F) = ι(0F) +K ι(0F).

Adding the additive inverse of ι(0F) in K, we conclude that 0K = ι(0F).

aThis is why the name ‘field embedding’ is used: in algebra, ‘X embedding’ generally means ‘injective
map preserving X kind of structure’

1.3 Complex numbers

Motivation

You’ve almost certainly encountered the complex numbers, defined as something like
“numbers of the form a + b · i , where a, b ∈ R and i2 = −1”. However, if you think
formally about this, it’s problematic as a definition: what does the “+” in a + bi mean?
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1.3 — Complex numbers

We haven’t defined the operations yet! So if we want to define the complex numbers,
we’re going to have to take a slightly different approach.

Definitions

A complex number is an ordered pair (x , y) of real numbers x , y ∈ R. We denote the set
of complex numbers by C. We equip C with the addition defined by the rule

(x1, y1) +C (x2, y2) = (x1 + x2, y1 + y2)

for all (x1, y1) and (x2, y2) ∈ C and where + on the right denotes the usual addition +R
of real numbers. Furthermore, we equip C with the multiplication defined by the rule

(1.10) (x1, y1) ·C (x2, y2) = (x1 · x2 − y1 · y2, x1 · y2 + y1 · x2).

for all (x1, y1) and (x2, y2) ∈ C and where · on the right denotes the usual multiplication
·R of real numbers.

Definition 1.11 (Complex numbers) The setC together with the operations+C, ·C
and 0C = (0, 0) and 1C = (1, 0) is called the field of complex numbers.

Let’s verify that this really is a field, by verifying the field axioms are satisfied. Most of
these are easy: for example, commutativity of addition – if x = (x1, x2) and y = (y1, y2),
then we compute

x +C y = (x1 +R y1, x2 +R y2) = (y1 +R x1, y2 +R x2) = y +C x .

Here we’ve used the commutativity-of-addition axiom forR, which is OK, since we already
know R is a field. We can check almost all the other axioms by similar routine calcula-
tions (exercise!).

The one which is not routine is existence of inverses. The trick is to notice that if (x , y) ∈
C \ {0C}, then x and y aren’t both zero; so x2 + y2 > 0 (strictly) and hence x2 + y2 ̸= 0

in R. So ( x
x2+y2 ,

−y
x2+y2 ) is a well-defined element of C, and we can compute

(x , y) ·C ( x
x2+y2 ,

−y
x2+y2 ) = (1, 0),

and ( x
x2+y2 ,

−y
x2+y2 ) is an inverse of (x , y).

Putting R inside C

The mapping ι : R → C, x 7→ (x , 0) is a field embedding. Indeed,
ι(x1 +R x2) = (x1 +R x2, 0) = (x1, 0) +C (x2, 0) = ι(x1) +C ι(x2),

ι(x1 ·R x2) = (x1 ·R x2, 0) = (x1, 0) ·C (x2, 0) = ι(x1) ·C ι(x2),

for all x1, x2 ∈ R and ι(1) = (1, 0) = 1C.

This allows to think of the real numbersRas the subfield{(x , 0) : x ∈ R}of the complex
numbers C. Because of the injectivity of ι, it is customary to identify11 x with ι(x), hence
abusing notation, we write (x , 0) = x .

Notice that (0, 1) satisfies (0, 1) ·C (0, 1) = (−1, 0) and hence is a square root of the
real number (−1, 0) = −1. The number (0, 1) is called the imaginary unit and usually

1We can’t completely forget, though, that R has its own separate definition: if we tried to define R as a
subfield of C, and to define C as the set of ordered pairs of elements of R, then that would be circular logic.
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

denoted by i. Sometimes the notation
√
−1 is also used. Every complex number (x , y) ∈

C can now be written as

(x , y) = (x , 0) +C (0, y) = (x , 0) +C i ·C (y , 0) = x + iy ,

where we follow the usual custom of omitting ·C and writing+ instead of+C on the right
hand side.

With this convention, complex numbers can be manipulated as real numbers, we just
need to keep in mind that i satisfies i2 = −1. For instance, the multiplication of complex
numbers x1 + iy1 and x2 + iy2 gives

(x1 + iy1)(x2 + iy2) = x1x2 + i2y1y2 + i(x1y2 + y1x2) = x1x2 − y1y2 + i(x1y2 + y1x2)

in agreement with (1.101.10). Here we also follow the usual custom of omitting ·R on the
right hand side. We can now understand where the funny formula for inverses came
from:

1

x + iy
=

x − iy

(x + iy)(x − iy)
=

x − iy

x2 + y2
.

Remark 1.12 This last manipulation is a good way of remembering the formula for
inverses, but it’s not a proof in itself: we need to prove that inverses exist inCbefore
we can legally write down a fraction!

Definition 1.13 For a complex number z = x + iy ∈ C with x , y ∈ R we call
• Re(z) = x its real part;
• Im(z) = y its imaginary part;
• z̄ = x − iy the complex conjugate of z ;
• |z | =

√
zz =

√
x2 + y2 the absolute value or modulus of z .

The mapping z 7→ z̄ is called complex conjugation.

Remark 1.14
(i) For z ∈ C the following statements are equivalent

z ∈ R ⇐⇒ Re(z) = z ⇐⇒ Im(z) = 0 ⇐⇒ z = z .

(ii) We have |z | = 0 if and only if z = 0.

Example 1.15 Let z = 2+5i
6−i . Then

z =
(2 + 5i)(6− i)

(6− i)(6− i)
=

(2 + 5i)(6 + i)

|6− i|2
=

1

37
(7 + 32i),

so that Re(z) = 7
37 and Im(z) = 32

37 . Moreover,

|z | =

√(
7

37

)2

+

(
32

37

)2

=

√
29

37
.
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1.3 — Exercises

Remark 1.16
(i) We may think of a complex number z = a + ib as a point or a vector in the

plane R2 with x-coordinate a and y -coordinate b.
(ii) The real numbers form the horizontal coordinate axis (the real axis) and the

purely imaginary complex numbers {iy : y ∈ R} form the vertical coordinate
axis (the imaginary axis).

(iii) The point z is obtained by reflecting z along the real axis.
(iv) |z | is the distance of z to the origin 0C = (0, 0) ∈ C
(v) The addition of complex numbers corresponds to the usual vector addition.

(vi) For the geometric significance of the multiplication, we refer the reader to the
Calculus module.

i

z = a+ ibib

a |z |10

iR

R

z = a− ib−ib

FIGURE 1.1. The complex number plane C

We have the following elementary facts about complex numbers:

Proposition 1.17 For all z ,w ∈ C we have
(i) Re(z) = z+z

2 , Im(z) = z−z
2i ;

(ii) Re(z + w) = Re(z) + Re(w), Im(z + w) = Im(z) + Im(w);
(iii) z + w = z + w , zw = z w , z = z ;
(iv) |z |2 = |z |2 = zz = Re(z)2 + Im(z)2;
(v) |zw | = |z ||w |.

Proof Exercise. □

Exercises

See website https://apptest.fernuni.ch/https://apptest.fernuni.ch/ for worked solutions

Exercise 1.4 Check that C is indeed a field.
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CHAPTER 1 — FIELDS AND COMPLEX NUMBERS

Exercise 1.5 Show that the set of pairs (x , y) with x , y ∈ F2, and addition and
multiplication defined as in (1.101.10) above, is not a field.

Exercise 1.6 Let z ∈ C with |z | = 1. Show that there is a unique θ ∈ [0, 2π) such
that z = cos θ + i sin θ.

Exercise 1.7 Prove that there is no complex number z with |z | = z + i.
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In this chapter we’ll recall some things you learned in “Algorithmics” about matrices and
vectors, and learn some new properties.

Throughout the rest of this module, K stands for an arbitrary field. It won’t ever matter
which field it is; so you can assume K = R (or C) throughout if you prefer.

2.1 Definitions

We start with some definitions. In this chapter, m, n, p, q, r denote natural numbers.

A matrix (plural matrices) is simply a rectangular block of numbers. More precisely:

Definition 2.1 (Matrix)
• A rectangular block of scalars Aij ∈ K, 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

(2.1) A =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
. . .

...
Am1 Am2 · · · Amn


is called an m × n matrix with entries in K.

• We also say that A is an m-by-n matrix, that A has size m × n and that A has m
rows and n columns.

• The entry Aij of A is said to have row index i where 1 ⩽ i ⩽ m, column index j

where 1 ⩽ j ⩽ n and will be referred to as the (i , j)-th entry of A.
• A shorthand notation for (2.12.1) is A = (Aij)1⩽i⩽m,1⩽j⩽n.
• For matrices A = (Aij)1⩽i⩽m,1⩽j⩽n and B = (Bij)1⩽i⩽m,1⩽j⩽n we write A = B,

provided Aij = Bij for all 1 ⩽ i ⩽ m and all 1 ⩽ j ⩽ n.

17
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Definition 2.2 (Set of matrices)
• The set of m-by-n matrices with entries in K will be denoted by Mm,n(K).
• The elements of the set Mm,1(K) are called column vectors of length m and the

elements of the set M1,n(K) are called row vectors of length n.
• We will use the Latin alphabet for column vectors and decorate them with an

arrow. For a column vector

x⃗ =


x1
x2
...
xm

 ∈ Mm,1(K)

we also use the shorthand notation x⃗ = (xi )1⩽i⩽m and we write [x⃗ ]i for the i -th
entry of x⃗ , so that [x⃗ ]i = xi for all 1 ⩽ i ⩽ m.

• We will use the Greek alphabet for row vectors and decorate them with an arrow.
For a row vector

ξ⃗ =
(
ξ1 ξ2 · · · ξn

)
∈ M1,n(K)

we also use the shorthand notation ξ⃗ = (ξi )1⩽i⩽n and we write [ξ⃗]i for the i -th
entry of ξ⃗, so that [ξ⃗]i = ξi for all 1 ⩽ i ⩽ n.

Remark 2.3 (Notation)
(i) A matrix is always denoted by a bold capital letter, such as A,B,C,D.

(ii) The entries of the matrix are denoted by Aij ,Bij ,Cij ,Dij , respectively.
(iii) We may think of an m × n matrix as consisting of n column vectors of length

m. The column vectors of the matrix are denoted by a⃗i , b⃗i , c⃗i , d⃗i , respectively.
(iv) We may think of an m × n matrix as consisting of m row vectors of length n.

The row vectors of the matrix are denoted by α⃗i , β⃗i , γ⃗i , δ⃗i , respectively.
(v) For a matrix A we also write [A]ij for the (i , j)-th entry of A. So for A =

(Aij)1⩽i⩽m,1⩽j⩽n, we have [A]ij = Aij for all 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n.

Example 2.4 For

A =

 π
√
2

−1 5/3

log 2 3

 ∈ M3,2(R),

we have for instance [A]32 = 3, [A]12 =
√
2, [A]21 = −1 and

a⃗1 =

 π

−1

log 2

 , a⃗2 =


√
2

5/3

3

 , α⃗2 =
(
−1 5/3

)
, α⃗3 =

(
log 2 3

)
.

We’ll use the shorthand notationKn for column vectors withn entries (i.e. Mn,1(K)), and
Kn for row vectors M1,n(K). We can of course go back and forth between them, since

there’s a bijective map from Kn to Kn sending (x1 ... xn) to

x1
...
xn

; but it’s helpful to

think of them as separate, since they will interact differently with matrix multiplication.
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Definition 2.5 (Special matrices and vectors)
• The zero matrix 0m,n is the m × n matrix whose entries are all zero. We will also

write 0n for the n × n-matrix whose entries are all zero.
• Matrices with equal number n of rows and columns are known as square

matrices.
• An entry Aij of a square matrix A ∈ Mn,n(K) is said to be a diagonal entry if i = j

and an off-diagonal entry otherwise. A matrix whose off-diagonal entries are all
zero is said to be diagonal. (The notion of “diagonal” sort of makes sense for
non-square matrices too, but it’s most useful in the diagonal case.)

• We write 1n for the diagonal n× n matrix whose diagonal entries are all equal to
1. Using the so-called Kronecker delta defined by the rule

δij =

{
1 i = j ,

0 i ̸= j ,

we have [1n]ij = δij for all 1 ⩽ i , j ⩽ n. The matrix 1n is called the unit matrix or
identity matrix of size n.

• The standard basis of Kn is the set {e⃗1, e⃗2, ... , e⃗n} consisting of the column vec-
tors of the identity matrix 1n of size n.

• The standard basis ofKn is the set {ε⃗1, ε⃗2, ... , ε⃗n} consisting of the row vectors of
the identity matrix 1n of size n.

Example 2.6
(i) Special matrices:

02,3 =

(
0 0 0

0 0 0

)
, 12 =

(
1 0

0 1

)
, 13 =

1 0 0

0 1 0

0 0 1

 .

(ii) The standard basis of K3 is {e⃗1, e⃗2, e⃗3}, where

e⃗1 =

1

0

0

 , e⃗2 =

0

1

0

 and e⃗3 =

0

0

1

 .

(iii) The standard basis of K3 is {ε⃗1, ε⃗2, ε⃗3}, where

ε⃗1 =
(
1 0 0

)
, ε⃗2 =

(
0 1 0

)
and ε⃗3 =

(
0 0 1

)
.

2.2 Arithmetic with matrices

Matrix addition

The sum of matrices A and B of identical size is defined as follows:

Definition 2.7 Addition in Mm,n(K) is the map

+Mm,n(K) : Mm,n(K)×Mm,n(K) → Mm,n(K), (A,B) 7→ A+Mm,n(K) B

defined by the rule

(2.2) A+Mm,n(K) B = (Aij +K Bij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K),

where Aij +K Bij denotes the field addition of scalars Aij ,Bij ∈ K.
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Remark 2.8 (Abusing notation) Field addition takes two scalars and produces an-
other scalar, thus it is a map K × K → K, whereas addition of matrices is a map
Mm,n(K)×Mm,n(K) → Mm,n(K). For this reason we wrote+Mm,n(K) above in order
to distinguish matrix addition from field addition of scalars. Of course, it is quite
cumbersome to always write +Mm,n(K) and +K, so we follow the usual custom of
writing “+” both for field addition of scalars and for matrix addition, trusting that
the reader is aware of the difference.
(Similarly, the notations ε⃗1 etc for standard basis vectors are slightly ambiguous
since we haven’t specified n, but (1 0) and (1 0 0) are not literally the same
vector. Whenever we use these notations it will always be clear from context what
n is.)

Scalar multiplication of a matrix

We can multiply a matrixA ∈ Mm,n(K)with a scalar s ∈ K. This amounts to multiplying
each entry of A with s :

Definition 2.9 Scalar multiplication in Mm,n(K) is the map

·Mm,n(K) : K×Mm,n(K) → Mm,n(K), (s,A) 7→ s ·Mm,n(K) A

defined by the rule

(2.3) s ·Mm,n(K) A = (s ·K Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K),

where s ·K Aij denotes the field multiplication of scalars s,Aij ∈ K.

Remark 2.10 Here we multiply with s from the left. Likewise, we define A ·Mm,n(K)

s = (Aij ·K s)1⩽i⩽m,1⩽j⩽n, that is, we multiply from the right. Of course, since mul-
tiplication of scalars is commutative, we have s ·Mm,n(K)A = A ·Mm,n(K) s , that is, left
multiplication and right multiplication gives the same matrix. However, in a mo-
ment we’ll encounter a more general kind of multiplication where this isn’t true.

Example 2.11
• Multiplication of a matrix by a scalar:

5

(
1 2

3 4

)
=

(
1 2

3 4

)
5 =

(
5 · 1 5 · 2
5 · 3 5 · 4

)
=

(
5 10

15 20

)
.

• Addition of matrices:(
3 −5

−2 8

)
+

(
−3 8

7 10

)
=

(
0 3

5 18

)
.

In particular, since row vectors and column vectors are just special types of matrix, we
can multiply those by scalars; and we have the following easy but useful lemma:
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Lemma 2.12 For any row vector ξ⃗ = (ξ1 ξ2 ... ξn) ∈ Kn we have ξ⃗ =∑n
j=1 ξj ε⃗j , and similarly for column vectors.

Proof Clear. □

Matrix multiplication

If the number of columns of a matrix A is equal to the number of rows of a matrix B, we
define the matrix product AB of A and B as follows:

Definition 2.13 (Matrix multiplication ) LetA ∈ Mm,n(K) be anm-by-n matrix and
B ∈ Mn,r (K) be an n-by-r matrix. The matrix product of A and B is the m-by-r
matrix AB ∈ Mm,r (K) whose entries are defined by the rule

[AB]ik = Ai1B1k + Ai2B2k + · · ·+ AinBnk =
n∑

j=1

AijBjk =
n∑

j=1

[A]ij [B]jk .

for all 1 ⩽ i ⩽ m and all 1 ⩽ k ⩽ r .

This definition might seem a little weird and arbitrary at first sight, but will turn out to
give us a nice theory. (Perhaps the best motivation for it will come much later in the
module, in Theorem 7.6Theorem 7.6.)

Remark 2.14 (Matrix multiplication is not commutative ) If A is a m-by-n matrix
andBan-by-mmatrix, then bothABandBAare defined, but in generalAB ̸= BA.
In generalAB andBA aren’t even the same size, sinceAB is anm-by-m matrix and
BA is an n-by-n matrix. Even when n = m, so that AB and BA are the same size, it
is still false in general that AB = BA.

Remark 2.15 (Pairing of row and column vectors) We may define a pairing Kn ×
Kn → K of a row vector of length n and a column vector of length n by the rule

(ξ⃗, x⃗) 7→ ξ⃗ · x⃗ = ξ1x1 + ξ2x2 + · · ·+ ξnxn

for all ξ⃗ = (ξi )1⩽i⩽n ∈ Kn and for all x⃗ = (xi )1⩽i⩽n ∈ Kn. So we multiply the first
entry of ξ⃗ with the first entry of x⃗ , add the product of the second entry of ξ⃗ and the
second entry of x⃗ and continue in this fashion until the last entry of ξ⃗ and x⃗ .

The (i , j)-th entry of the matrix product of A ∈ Mm,n(K) and B ∈ Mn,r (K) is then
given by the pairing

[AB]ij = α⃗i b⃗j

of the i -th row vector α⃗i of A and the j-th column vector b⃗j of B.

Properties

Here is a long list of (mostly quite straightforward) properties of these matrix operations.
Here K is any field, and m, n, r , s are natural numbers.
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Proposition 2.16 (Properties of matrix operations)
(i) 0m,n + A = A for all A ∈ Mm,n(K);

(ii) A+ B = B+ A and (A+ B) + C = A+ (B+ C) for all A,B,C ∈ Mm,n(K);

(iii) 1mA = A and A1n = A for all A ∈ Mm,n(K);
(iv) 0r ,mA = 0r ,n and A0n,r = 0m,r for all A ∈ Mm,n(K);
(v) (“Associativity of multiplication”) (AB)C = A(BC) for all A ∈ Mm,p(K), B ∈

Mp,q(K) and C ∈ Mq,n(K);
(vi) (B+ C)A = BA+ CA for all B,C ∈ Mr ,m(K) and for all A ∈ Mm,n(K);

(vii) A(B+ C) = AB+ AC for all A ∈ Mr ,m(K) and for all B,C ∈ Mm,n(K).
(viii) 0K · A = 0m,n for all A ∈ Mm,n(K);

(ix) (s1s2)A = s1(s2A) for all A ∈ Mm,n(K) and all s1, s2 ∈ K;
(x) A(sB) = s(AB) = (sA)B for all A ∈ Mm,n(K) and all B ∈ Mn,r (K) and all

s ∈ K;
(xi) s(A+ B) = sA+ sB for all A,B ∈ Mm,n(K) and s ∈ K;

(xii) (s1 + s2)A = s1A+ s2A for all A ∈ Mm,n(K) and for all s1, s2 ∈ K.

Remark 2.17 Some of these only involve one of our three matrix operations, and
some involve several. (Exercise: make a table showing which properties involve
which operations!)
Because of (ii) and (v), we don’t need to write brackets when we deal with sums (or
products) of three or more matrices – we can just writeA+B+CorABC, assuming
the matrices are of compatible sizes so the operations make sense (and similarly for
four or more matrices).

Proof As a sample, we show properties (iii) and (vii), which are quite easy, and (v), which
is slightly harder. The proofs of the remaining ones are similar and/or elementary con-
sequences of the properties of addition and multiplication of scalars.

To show property (iii), consider A ∈ Mm,n(K). Then, by definition, we have for all 1 ⩽
k ⩽ m and all 1 ⩽ j ⩽ n

[1mA]kj =
m∑
i=1

[1m]ki [A]ij =
m∑
i=1

δkiAij = Akj = [A]kj ,

where the second last equality uses that δki is 0 unless i = k , in which case δkk = 1. We
conclude that 1mA = A. Likewise, we obtain for all 1 ⩽ i ⩽ m and all 1 ⩽ k ⩽ n

[A1n]ik =
n∑

j=1

[A]ij [1n]jk =
n∑

j=1

Aijδjk = Aik = [A]ik

so that A1n = A. The identities

m∑
i=1

δkiAij = Akj and
n∑

j=1

Aijδjk = Aik

are used repeatedly in Linear Algebra, so make sure you understand them.

For property (vii), applying the definition of matrix multiplication gives

AB =

(
m∑
i=1

AkiBij

)
1⩽k⩽r ,1⩽j⩽n

and AC =

(
m∑
i=1

AkiCij

)
1⩽k⩽r ,1⩽j⩽n

,
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so that

AB+ AC =

(
m∑
i=1

AkiBij +
m∑
i=1

AkiCij

)
1⩽k⩽r ,1⩽j⩽n

=

(
m∑
i=1

Aki (Bij + Cij)

)
1⩽k⩽r ,1⩽j⩽n

= A(B+ C),

where we use that
B+ C = (Bij + Cij)1⩽i⩽m,1⩽j⩽n .

For property (v), if Aij = [A]ij etc, we have

[(AB)C]ij =

q∑
b=1

[(AB)]ib[C]bj =

q∑
b=1

(
p∑

a=1

AiaBab

)
Cbj

This is the sum over all possible products AiaBabCbj (with i , j fixed and a, b varying); we
can group together these terms in whichever order we like, so we take the sum over a to
the outside:

· · · =
p∑

a=1

Aia

(
q∑

b=1

BabCbj

)
=

p∑
a=1

[A]ia[BC]aj = [A(BC)]ij

as required. □

2.3 Transpose and inverse

Transpose

Finally, we may flip a matrix along its “diagonal entries”, that is, we interchange the role
of rows and columns. More precisely:

Definition 2.18 (Transpose of a matrix)
• The transpose of a matrix A ∈ Mm,n(K) is the matrix AT ∈ Mn,m(K) satisfying[

AT
]
ij
= [A]ji

for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m.
• A square matrix A ∈ Mn,n(K) that satisfies A = AT is called symmetric.
• A square matrix A ∈ Mn,n(K) that satisfies A = −AT is called anti-symmetric.

Example 2.19 If

A =

1 2

3 4

5 6

 , then AT =

(
1 3 5

2 4 6

)
.

Remark 2.20 (Properties of the transpose)
(i) For A ∈ Mm,n(K) we have by definition (AT )T = A.

(ii) For A ∈ Mm,n(K) and B ∈ Mn,r (K), we have

(AB)T = BTAT .
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Indeed, by definition we have for all 1 ⩽ i ⩽ r and all 1 ⩽ j ⩽ m[
(AB)T

]
ij
= [AB]ji =

n∑
k=1

[A]jk [B]ki =
n∑

k=1

[
BT
]
ik

[
AT
]
kj
=
[
BTAT

]
ij
.

Transposes won’t play a very big role in this course, but they will be much more import-
ant in Linear Algebra II when you start studying bilinear mappings.

Inverses

Definition 2.21 LetA ∈ Mm,n(K)be a matrix. If there exists a matrixB ∈ Mn,m(K)

with AB = 1m and BA = 1n, then we say A is invertible.

If such a matrix exists (for a given A) then it’s unique (see Exercises). So we can denote
this unique matrix (if it exists!) by A−1, and we call it the inverse of A.

Proposition 2.22 If A ∈ Mm,n(K) and B ∈ Mn,r (K) are both invertible, then AB is
invertible and (AB)−1 = B−1A−1.

Proof We compute (using part (v) of Proposition 2.16Proposition 2.16 repeatedly) that (B−1A−1)(AB) =

B−1(A−1A)B = B−11nB = B−1B = 1r , and similarly (AB) · (B−1A−1) = 1m. □

Remark 2.23 You saw these definitions already in Algorithmics, assuming K = R
and, more importantly, that m = n. The definition still makes logical sense if m ̸=
n, but we’ll see later that it is never satisfied – it is a theorem that a non-square
matrix cannot be invertible.

Exercises

See website https://apptest.fernuni.ch/https://apptest.fernuni.ch/ for worked solutions

Exercise 2.1 Find two 2× 2 matrices A and B with AB ̸= BA.

Exercise 2.2 Let a, b, c , d ∈ K and

A =

(
a b

c d

)
∈ M2,2(K).

Show that A has an inverse A−1 if and only if ad − bc ̸= 0. For ad − bc ̸= 0,
compute the inverse A−1.
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Exercise 2.3 Let A = (1 0) ∈ M1,2(R).
(i) Find a matrix B ∈ M2,1(R) with AB = 11.

(ii) Is the matrix B from (i) uniquely determined?
(iii) Show that there does not exist a matrix B ∈ M2,1(R) with BA = 12.
(We say that A has a right inverse but not a left inverse.)

Exercise 2.4 Let A ∈ Mm,n(K). Suppose there exist matrices B, B′ ∈ Mn,m(K)

such that AB = 1m and B′A = 1n. Show that we must have B = B′. (Hint:
Consider B′AB.) Hence show that the inverse of a matrix is unique if it exists.
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3.1 Row echelon form

We’ll now introduce an important way of calculating with matrices – an extension of the
Gaussian elimination which you saw in the Algorithmics module – which is going to be
the key to virtually all the computations we’ll do in linear algebra.

Definition

Definition 3.1 Let M and N be matrices in Mm,n(K). We say M and N are left-
equivalent if there exists an invertible A ∈ Mm,m(K) such that AM = N.

One can show that “left equivalence” is an equivalence relation in the sense of Algorithmics,
Section 2; that is, we have the following properties:

• (Reflexivity) Every matrix is left-equivalent to itself.
• (Symmetry) If M is left-equivalent to N, then N is left-equivalent to M.
• (Transitivity) If M is left-equivalent to N, and N is left-equivalent to R, then M is left-

equivalent to R.

The idea of this section is to show that among all the matrices that are left-equivalent to
a given M, there is a unique “nicest” one.

Definition 3.2 For each row in a matrix, if the row does not consist of zeros only,
then the leftmost nonzero entry is called the leading entry of that row.
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Definition 3.3 (Row echelon form) A matrix A ∈ Mm,n(K) is said to be in row ech-
elon form (REF) if
• all rows consisting of only zeros are below all the non-zero rows;
• the leading entry of a nonzero row is always strictly to the right of the leading

entry of the row above it.
The matrix A is said to be in reduced row echelon form (RREF) if furthermore
• all of the leading entries are equal to 1;
• in every column containing a leading entry, all of the other entries in that column

are zero.

The basic theorem about REF and RREF is the following one:

Theorem 3.4 For any M ∈ Mm,n(K), there exists a unique matrix N ∈ Mm,n(K)

with the following two properties:
• N is in reduced row echelon form, and
• N is left-equivalent to M.

We say N is the reduced row echelon form of M. Moreover, there is an explicit al-
gorithm for computing N, given M.

Remark 3.5 By the definition of left-equivalence, there must be some invertible A

that multiplies M into its RREF; but this A is not unique in general. It’s somehow a
miracle that N is unique, even though A isn’t. The extreme case is when M = 0mn;
then M is already in RREF, but AM = M for any matrix A, so we could take A to be
any invertible matrix we like.

Echelonizing a matrix via Gauss–Jordan

We’ll first prove the “existence” part of the theorem. You already saw how to convert a
matrix into row echelon form (Gaussian elimination); to get reduced row echelon form,
we’ll use a slight refinement, Gauss–Jordan elimination. This relies on the following
tools:

Proposition 3.6 (Elementary row operations) Let M ∈ Mm,n(K). If M′ is obtained
from M by any one of the following operations, then M′ is left-equivalent to M:
• Interchanging the i -th and j -th rows of M, for any i ̸= j ∈ {1, ... ,m};
• Multiplying all the entries of the i -th row by λ, for some λ ̸= 0 ∈ K;
• Adding λ times the j -th row of M to the i -th row, for any i ̸= j ∈ {1, ... ,m} and
λ ∈ K.

Proof Each of these operations corresponds to left-multiplying M by one of the three
kinds of elementary matrices which you learned about in the M01 course. For instance,
addingλ times the j-th row ofM to the i -th row corresponds to multiplying by the matrix
with 1’s down the diagonal, λ in the (i , j) position, and all other entries zero. □

Proof of existence of RREF Using the “transitivity” property above, if we apply any fi-
nite sequence of elementary row operations toM, we still get a matrix left-equivalent to
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M. We use this to gradually transform M, one column at a time, to get it into RREF. More
precisely, we’ll prove the following:

For any 0 ⩽ r ⩽ n, we can apply a finite sequence of row operations to
M to obtain a matrix Mr with the following property: the m× r matrix
given by the first r columns of Mr is in reduced row echelon form.

We’ll prove this by induction on r . The statement is vacuous for r = 0: a matrix without
any columns is certainly in RREF, so M0 = M will do. So let’s assume that we have
already transformed M into a matrix Mr whose first r columns are in RREF, for some
r < n, and try to deal with the (r + 1)-st column.

Let h ⩽ m be the number of nonzero rows in the left-hand m × r submatrix, so the first
r columns are all zero below the h-th entry. Then we can visualise Mr as follows:

Mr =

 h
{ r︷ ︸︸ ︷(

RREF,
no zero rows

) (n−r)︷︸︸︷
(?)

(m−h)
{

(0) (?)


If h = m (which is certainly possible), then the whole matrix Mr is in RREF already, so
we can set Mr+1 = Mr and go on. If not, then we home in on the first column in the
bottom right (m − h)× (n − r) submatrix of Mr . Two things can now happen:

• Case A: all these entries are zero. In this case, the first (r + 1) columns of Mr are
already in RREF; so we can set Mr+1 = Mr , and the induction step is complete.

• Case B: at least one of these (m − h) entries is non-zero (so in particular h < m).
Swapping the (h + 1)-st row with one of the rows further down if necessary, we

can assume that this nonzero entry is the top left corner entry of our submatrix (i.e. in
position (h+1, r+1)ofMr ). By multiplying the (h+1)-th row by a suitable scalar, we
can make this nonzero entry be 1. This row swap and scaling doesn’t change anything
in the leftmost r columns – we’re just moving zeroes around – so the first r columns
are still in RREF.

We now kill off all the other non-zero entries in the (r+1)-th column, by subtract-
ing a suitable multiple of the (h + 1)-th row. Again, this doesn’t change anything in
the first r columns, because the (h + 1)-th row has zeroes in these positions; so the
resulting matrix Mr+1 has its first (r + 1) columns in RREF.

After n steps of this process we end up with a matrix which is fully in RREF. □

Remark 3.7 Notice that this proof doesn’t just abstractly show you that the RREF
exists; it gives you a completely explicit recipe for finding it.
Since calculating the RREF of a matrix is such a basic tool in linear algebra calcula-
tions, any half-decent computer mathematics package will include a RREF routine;
often several different ones, tailored to matrices of particular specific shapes or
with entries in specific fields.

Keeping track of the transformation matrix

In principle, whenever you Gauss–Jordan eliminate a matrix, you can make a list of the
elementary row operations you used, and the corresponding elementary matrices; this
gives you a list of elementary matrices (A1,A2, ... ,Ak) such that AkAk−1 ...A1M = N
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is in RREF. However, this quickly gets quite tedious to do, and there’s a much better
method.

Definition 3.8 For A ∈ Mm,n(K) and B ∈ Mm,r (K), we write (A | B) for the m ×
(n+ r)matrix given by joiningA andB together (so the (i , j) entry isAij for 1 ⩽ j ⩽
n, and Bi ,j−n for n + 1 ⩽ j ⩽ n + r ).

E.g. if we have

A =

1 3 2

2 0 1

5 2 2

 B =

4

3

1

 ,

then

(A |B) =

 1 3 2 4

2 0 1 3

5 2 2 1

 .

It’s common to write a line in between the entries, as above, to remind ourselves which
entries came from where.

Proposition 3.9 For any matrices A ∈ Mm,n(K), B ∈ Mn,r (K), and C ∈ Mn,s(K),
we have

A · (B |C) = (AB |AC).

Proof The j-th column of A · (B | C) is given by A · v⃗j where v⃗j is the j-th column of
(B | C). Considering the cases 1 ⩽ j ⩽ r and r + 1 ⩽ j ⩽ r + s separately, we obtain
either a column of AB or a column of AC. □

Proposition 3.10 Given any M ∈ Mm,n(K), let M̃ = (M | 1m), and let Ñ be the
RREF of M̃. Then we have Ñ = (N |A), where N is the RREF of M, and A is a matrix
such that AM = N.

Proof Let A be any invertible matrix such that Ñ = AM̃ is in RREF. From the proposi-
tion, we have AM̃ = (AM | A1m) = (AM | A). However, if Ñ is an RREF matrix, then
its first n columns are also an RREF matrix, so AM must be the unique RREF matrix left-
equivalent to M. □

Remark 3.11 We can take a slight shortcut here: since Gauss–Jordan elimination
transforms a matrix into RREF one column at a time, we can stop as soon as the
first n columns of M̃ are in RREF – we don’t have to keep going all the way up to the
(m + n)-th column.

Uniqueness

We’ll now prove the uniqueness property of reduced row echelon form. This proof is
non-examinable (marked by a dark green line down the margin in the printed notes);
but you should definitely be aware of the statement of the theorem!

We use the following easy remark:
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Proposition 3.12 Assume that M and N are left-equivalent, and let j ∈ {1, ... , n}.
Then the matrices M′ and N′ given by deleting the j -th columns from M and N are
also left-equivalent.

Proof Exercise. □

Proof of uniqueness of RREF Now supposeMandNare left-equivalent matrices, both
in reduced row echelon form, with M ̸= N. Let the t-th column, for 1 ⩽ t ⩽ n, be the
first (leftmost) column where the two matrices differ; and consider the new matrices
M′,N′ given by deleting all columns strictly to the right of the t-th, and all columns to
the left which don’t contain a leading entry. Then we have M′ ̸= N′; both are still in
RREF; and we have

M′ =

(
1h r⃗

0 s⃗

)
, N′ =

(
1h r⃗ ′

0 s⃗ ′

)
for some h < t and some column vectors r⃗ , s⃗, r⃗ ′, s⃗ ′.

Since M and N are left-equivalent, so are M′ and N′ (by the last Proposition), so there
exists an invertible A with AM′ = N′. Let’s think about what AM′ looks like. We can

divide A up into blocks
(
R S

T U

)
, with R ∈ Mh,h(K) etc; and the product is then

(
R S

T U

)
·
(
1h r⃗

0 s⃗

)
=

(
R Rr⃗ + Ss⃗

T Tr⃗ +Us⃗

)
.

Let’s suppose this is equal to N′. Then, comparing the top-left and bottom-left blocks,
we must have R = 1h and T = 0m−h,h; so this becomes(

1h r⃗ + Ss⃗

0 Us⃗

)
=

(
1h r⃗ ′

0 s⃗ ′

)
.

If s⃗ ̸= 0, then Us⃗ ̸= 0 also, since the invertibility of A implies that U is also invertible
(see Exercise below). Since M′ and N′ are in RREF, both r⃗ and r⃗ ′ have to be zero, and s⃗

and s⃗ ′ are both equal to the standard basis vector e⃗1; so in fact M′ = N′, contradicting
our assumptions.

On the other hand, if s⃗ = 0, then s⃗ ′ = Us⃗ = 0 as well; and substituting this into the
top right block, we have r⃗ ′ = r⃗ + Ss⃗ = r⃗ . So again M′ = N′, contradiction. So we can
conclude that it is impossible for two distinct RREF matrices to be left-equivalent. □

3.2 Solving equations

You already saw in Algorithmics that matrices can be used to “package together” sys-
tems of linear equations. Suppose we have a system of simultaneous equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,

... =
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

with (known) values aij ∈ K and bi ∈ K, and we want to solve this for the unknowns
xj . Then we can write this simply as Ax⃗ = b⃗, with A = (Aij) ∈ Mm,n(K), b⃗ = (bi ) and
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x⃗ = (xj); and we write Sol(A, b⃗) for the set of solutions to this equation, i.e.

Sol(A, b⃗) = {x⃗ ∈ Kn : Ax⃗ = b⃗}.

If B is an invertible square matrix, then we have Sol(BA,Bb⃗) = Sol(A, b⃗). So, if we
want to compute Sol(A, b⃗), it’s a good idea to choose some B such that BA and Bb⃗ are
as simple as possible. So we form the augmented matrix (A |b⃗)and put that into echelon
form; this gives a new, echelonized system of equations where we can immediately read
off the solutions.

Proposition 3.13 Suppose A is in REF (not necessarily RREF), and let r ⩽ m be the
number of non-zero rows of A. Then the equation Ax⃗ = b⃗ has a solution if, and only
if, we have bi = 0 for all i with r < i ⩽ m.

(This condition is vacuously satisfied if r = m, since there are no such i , so solutions
always exist in this case.) It’s clear that “bi = 0 for all i with r < i ⩽ m” is a necessary
condition for solutions to exist, since for i in this range the i -th equation in our system
is just 0 = bi . What’s less obvious is that it is a sufficient condition, which is shown in
Chapter 9 of Algorithmics.

Remark 3.14 We say the system of equations is inconsistent if one of br+1, ... , bm
is nonzero, so the solution set is empty.

no solution

my mind is a matrix
that has been reduced
into row echelon form
and proven to be
— inconsistent

(from More Math Poems by Eileen Tupaz)

Of course, we don’t just want to know whether solutions exist: we want to find them!
Having found a REF for A, we say xj is a free variable if there is no row of the REF whose
leading term is in the j-th column. Then it’s easy to check that for any values of the free
variables, there is a unique way to fill in the rest of the variables to get a solution x⃗ .

Example 3.15 “Find all real numbers x1, ... , x4 satisfying the system of linear equa-
tions

−9x2 + 3x3 + 4x4 = 9

x1 + 4x2 − x4 = 5

2x1 + 6x2 − x3 + 5x4 = −5 .”

The augmented matrix is  0 −9 3 4 9

1 4 0 −1 5

2 6 −1 5 −5


Let’s walk through the steps of echelonizing this:
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• Swap rows 1 and 2 to get

 1 4 0 −1 5

0 −9 3 4 9

2 6 −1 5 −5


• Add −2 times row 1 to row 3 to get

 1 4 0 −1 5

0 −9 3 4 9

0 −2 −1 7 −15


• Multiply row 2 by − 1

9 to get

 1 4 0 −1 5

0 1 − 1
3 − 4

9 −1

0 −2 −1 7 −15


• Add −4 times row 2 to row 1, and 2 times row 2 to row 3, to get 1 0 4

3
7
9 9

0 1 − 1
3 − 4

9 −1

0 0 − 5
3

55
9 −17


• Multiply row 3 by − 3

5 to get

 1 0 4
3

7
9 9

0 1 − 1
3 − 4

9 −1

0 0 1 − 11
3

51
5


• Add − 4

3 of row 3 to row 1, and 1
3 of row 3 to row 2, to get 1 0 0 17

3 − 23
5

0 1 0 − 5
3

12
5

0 0 1 − 11
3

51
5


So the solutions to the original system are the same as those of the echelonized
system

x1 +
17
3 x4 = − 23

5

x2 − 5
3x4 =

12
5

x3 − 11
3 x4 =

51
5

Clearly, we can choose any value of x4 we like (let’s call it λ), and then read off the
values of x1, x2, x3 from that, so the solutions are given by

x⃗ =


− 23

5 − 17
3 λ

12
5 + 5

3λ
51
5 + 11

3 λ

λ


for any λ ∈ R.

Here is a variation on RREF, where we have unknown parameters, not numbers, in the
last column. (I am grateful to Sarah Zerbes for this example.)

Example 3.16 “Consider the system of equations1 −2 1

2 1 1

0 5 −1

x1
x2
x3

 =

b1
b2
b3


where b1, b2, b3 ∈ R. For which values of the bi is this solvable?”

We take the augmented matrix 1 −2 1 b1
2 1 1 b2
0 5 −1 b3


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and apply Gauss–Jordan elimination to echelonize the first three columns. After
clearing the first column we get 1 −2 1 b1

0 5 −1 −2b1 + b2
0 5 −1 b3


and continuing to clear the second column we get 1 0 3

5
1
5b1 +

2
5b2

0 1 − 1
5 − 2

5b1 +
1
5b2

0 0 0 2b1 − b2 + b3

 .

So the original system has solutions if and only if 2b1 − b2 + b3 = 0.

3.3 Inverting a matrix

Non-square matrices

We can now make good on a promise from the last chapter, by showing that a non-
square matrix cannot be invertible. This follows from the following more specific the-
orem:

Proposition 3.17 Suppose A ∈ Mm,n(K).
(i) If n > m (so A has strictly more columns than it has rows), then there does not

exist a matrix B ∈ Mn,m(K) with BA = 1n.
(ii) If n < m, then there does not exist a matrix B ∈ Mn,m(K) with AB = 1m.

Proof First suppose n > m. Consider the system of equations A · x⃗ = 0. This obviously
has the solution x⃗ = 0. But it must have other solutions too, since A has only m rows,
so at most m of the columns of the RREF can contain a leading entry (possibly less, if
there are some zero rows). Thus the general solution has some free variables in it (at
least n −m of them). So there exists a solution x⃗ ̸= 0.

But then we have a contradiction, since

x⃗ = 1nx⃗

= (B · A) · x⃗
= B · (A · x⃗)
= B · 0 = 0.

This proves (i).

Now let’s consider m > n. If AB = 1m, then BTAT = (1m)T = 1m, and we obtain a
contradiction by applying (i) to AT ∈ Mn,m(K). □

Square matrices

For square matrices, we can use Gauss–Jordan elimination to determine if a matrix is
invertible, and to compute its inverse if so. This relies on the following fact:
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Proposition 3.18 Let A ∈ Mn,n(K) be a square matrix. Then the following state-
ments are equivalent:

(i) A is invertible;
(ii) the RREF of A is the identity.

Proof SupposeA is invertible. ThenA−1 is itself invertible (with inverseA), so the equa-
tion A−1A = 1n shows that A is left-equivalent to 1n. As 1n is obviously in RREF, this
must be the (unique) RREF of A.

Conversely, if the RREF of A is 1n, then we know there is an invertible B such that BA =

1n. However, since B is invertible, this implies A = B−1 (using Exercise 2.4Exercise 2.4), so we have
AB = B−1B = 1n as well. Thus A is invertible. □

Note that this also shows that when A is invertible, the inverse of A is the same as the
matrix which puts it into RREF. So if we apply Gauss–Jordan elimination to the augmen-
ted matrix (A | 1n), then the rightmost n columns of the echelonized matrix will be the
inverse of A.

Example 3.19 (Inverse of a matrix ) We want to compute the inverse of

A =

(
1 −2

−3 4

)
.

Write (
1 −2

−3 4

∣∣∣∣ 1 0

0 1

)
.

Adding 3-times the first row to the second row gives(
1 −2

0 −2

∣∣∣∣ 1 0

3 1

)
.

Dividing the second row by −2 gives(
1 −2

0 1

∣∣∣∣ 1 0

− 3
2 − 1

2

)
.

Finally, adding the second row twice to the first row gives(
1 0

0 1

∣∣∣∣ −2 −1

− 3
2 − 1

2

)
.

The first two columns are now the identity, so A is invertible; and the last two
columns give us the inverse, so

A−1 =

(
−2 −1

− 3
2 − 1

2

)
.

Exercises

Exercise 3.1 Check that left equivalence of matrices is an equivalence relation.
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Exercise 3.2 Consider the system of equations from Example 3.16Example 3.16, and suppose
b3 = b2 − 2b1, so the system is consistent.
Find formulae (in terms of b1 and b2) for vectors c⃗ and d⃗ such that the general solu-
tion of the above system of equations is given byx1

x2
x3

 = {c⃗ + λd⃗ | λ ∈ R}.

Exercise 3.3 Let A ∈ Mn,n(K) be an upper-triangular matrix (so its entries satisfy
Aij = 0 if i > j ).

(i) Show that A is invertible if and only if all the diagonal entries Aii are non-zero.
(ii) Show that if the condition of part (a) is satisfied, then A−1 is also upper-

triangular.

Exercise 3.4 Justify the claim made in the proof of uniqueness of RREF that if A =(
1h S

0m−h,h U

)
is invertible, then U is itself invertible.

Exercise 3.5 Show that if A is an invertible square matrix, then there is a finite
sequence of elementary matrices B1B2 ...Bk whose product is A. (Hint: what is
the RREF of A−1?)
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4.1 Abstract vector spaces

Let K be any field, and n ⩾ 1. We’ve seen that the space Kn of column vectors has two
fundamental operations,

+ : Kn ×Kn → Kn, (x⃗ , y⃗) 7→ x⃗ + y⃗ , (vector addition),

· : K×Kn → Kn, (s, x⃗) 7→ s · x⃗ , (scalar multiplication).

It turns out that there are lots of other mathematical structures where these two opera-
tions also make sense.

Example 4.1 Consider P(R), the set of polynomial functions in one real variable,
which we denote by x , with real coefficients. That is, an element p ∈ P(R) is a
function

p : R → R, x 7→ anx
n + an−1x

n−1 + · · ·+ a1x + a0 =
n∑

k=0

akx
k ,

where n ∈ N and the coefficients ak ∈ R for k = 0, 1, ... , n. The largest m ∈ N such
that am ̸= 0 is called the degree of p. Notice that we consider polynomials of arbit-
rary, but finite degree. A power series x 7→

∑∞
k=0 akx

k , that you encounter in the
Calculus module, is not a polynomial, unless only finitely many of its coefficients
are different from zero.
Clearly, we can multiply p with a real number s ∈ R to obtain a new polynomial
s ·P(R) p

(4.1) s ·P(R) p : R → R, x 7→ s · p(x)

so that (s ·P(R) p)(x) =
∑n

k=0 sakx
k for all x ∈ R. Here s · p(x) is the usual multi-

plication of the real numbers s and p(x). If we consider another polynomial

q : R → R, x 7→
n∑

k=0

bkx
k
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withbk ∈ R fork = 0, 1, ... , n, the sum of the polynomialsp andq is the polynomial

(4.2) p +P(R) q : R → R, x 7→ p(x) + q(x)

so that (p +P(R) q)(x) =
∑

k=0(ak + bk)x
k for all x ∈ R. Here p(x) + q(x) is the

usual addition of the real numbers p(x) and q(x). We will henceforth omit writing
+P(R) and ·P(R) and simply write + and ·.

This suggests that just working with the explicit spaces of column vectors Kn is too lim-
iting. Instead, we’re going to make a list of rules which capture how addition and scalar
multiplication behave onKn; and we’ll allow ourselves to work with any structure which
has “addition” and “scalar multiplication” operations that play by these rules (much as
we did in Chapter 1 with the axiomatic definition of a field). We’ll think of the elements
of these structures as “abstract vectors”.

Definition 4.2 (Vector space) A K-vector space, or vector space over K is a set V ,
with a distinguished element 0V (called the zero vector) and two operations

+V : V × V → V (v1, v2) 7→ v1 +V v2 (vector addition)

and
·V : K× V → V (s, v) 7→ s ·V v (scalar multiplication),

so that the following properties hold:
• Commutativity of vector addition

v1 +V v2 = v2 +V v1 (for all v1, v2 ∈ V );

• Associativity of vector addition

v1 +V (v2 +V v3) = (v1 +V v2) +V v3 (for all v1, v2, v3 ∈ V );

• Identity element of vector addition

(4.3) 0V +V v = v +V 0V = v (for all v ∈ V );

• Identity element of scalar multiplication

1 ·V v = v (for all v ∈ V );

• Scalar multiplication by zero

(4.4) 0 ·V v = 0V (for all v ∈ V );

• Compatibility of scalar multiplication with field multiplication

(s1s2) ·V v = s1 ·V (s2 ·V v) (for all s1, s2 ∈ K, v ∈ V );

• Distributivity of scalar multiplication with respect to vector addition

s ·V (v1 +V v2) = s ·V v1 +V s ·V v2 (for all s ∈ K, v1, v2 ∈ V );

• Distributivity of scalar multiplication with respect to field addition

(s1 + s2) ·V v = s1 ·V v +V s2 ·V v (for all s1, s2 ∈ K, v ∈ V ).

The elements of V are called vectors.
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Examples of vector spaces

Example 4.3 (Field) A field K is a K-vector space. We may take V = K, 0V = 0K
and equip V with addition +V = +K and scalar multiplication ·V = ·K. Then the
properties of a field imply that V = K is a K-vector space.

Example 4.4 (Vector space of matrices) Let V = Mm,n(K) denote the set of m×n-
matrices with entries in K and 0V = 0m,n denote the zero vector. It follows
from Proposition 2.16Proposition 2.16 that V equipped with addition +V : V × V → V defined
by (2.22.2) and scalar multiplication ·V : K × V → V defined by (2.32.3) is a K-vector
space. In particular, the set of column vectors Kn = Mn,1(K) is a K-vector space as
well.

Example 4.5 (Vector space of polynomials) The setP(R)of polynomials in one real
variable and with real coefficients is an R-vector space, when equipped with addi-
tion and scalar multiplication as defined in (4.14.1) and (4.24.2) and when the zero vector
0P(R) is defined to be the zero polynomial o : R → R, that is, the polynomial satis-
fying o(x) = 0 for all x ∈ R.

More generally, functions form a vector space:

Example 4.6 (Vector space of functions) We follow the convention of calling a map-
ping with values in K a function. Let I ⊂ R be an interval and let o : I → K denote
the zero function defined by o(x) = 0 for all x ∈ I . We consider V = F(I ,K),
the set of functions from I to K with zero vector 0V = o given by the zero func-
tion and define addition +V : V × V → V as in (4.24.2) and scalar multiplication
·V : K × V → V as in (4.14.1). It now is a consequence of the properties of addition
and multiplication of scalars that F(I ,K) is a K-vector space. (The reader is invited
to check this assertion!)

Example 4.7 (Vector space of sequences) A mapping x : N → K, from the natural
numbers into a field K, is called a sequence in K (or simply a sequence, when K is
clear from the context). It is common to write xn instead of x(n) for n ∈ N and to de-
note a sequence by (xn)n∈N = (x0, x1, x2, ...). We write K∞ for the set of sequences
in K. For instance, taking K = R, we may consider the sequence(

1

n + 1

)
n∈N

=

(
1,

1

2
,
1

3
,
1

4
,
1

5
, ...

)
or the sequence (√

n + 1
)
n∈N

=
(
1,
√
2,
√
3, 2,

√
5, ...

)
.

If we equip K∞ with the zero vector given by the zero sequence (0, 0, 0, 0, 0, ...),
addition given by (xn)n∈N+(yn)n∈N = (xn+yn)n∈N and scalar multiplication given
by s · (xn)n∈N = (sxn)n∈N for s ∈ K, then K∞ is a K-vector space.

38



4.1 — Abstract vector spaces

Example 4.8 (Zero vector space) Consider a set V whose only element is a formal
symbol ⋆. We define 0V = ⋆, addition by ⋆ +V ⋆ = ⋆ and scalar multiplication by
s ·V ⋆ = ⋆. Then all the properties of Definition 4.2Definition 4.2 are satisfied. We write V = {⋆},
or simply V = {0}, and call V the zero vector space (over K).

Example 4.9 (Field embeddings) If F and K are fields, and ι : F → K is a field
embedding, then K is an F-vector space in a natural way: the addition is the native
field addition of K, and the scalar multiplication being given by s · x = ι(s) ·K x .
(Exercise: check that the axioms are satisfied!) In effect, we are throwing away some
of the structure from K – we are “forgetting” how to multiply elements of K, except
when one of them is in the image of ι.
In particular, R is a Q-vector space. This is a really strange and puzzling concept,
and shows that sometimes we have to live with our definitions having unexpected
consequences!

The notion of a vector space is an example of an abstract space. Later in your studies you
will encounter further examples, like topological spaces, metric spaces and manifolds.

Remark 4.10 (Notation & Definition) Let V be a K-vector space.
• For v ∈ V we write −v = (−1) ·V v and for v1, v2 ∈ V we write v1 − v2 =

v1 +V (−v2). In particular, using the properties from Definition 4.2Definition 4.2 we have
(check which properties we do use!)

v − v = v +V (−v) = v +V (−1) ·V v = (1− 1) ·V v = 0 ·V v = 0V

For this reason we call −v the additive inverse of v .
• Again, it is too cumbersome to always write +V , for this reason we often write
v1 + v2 instead of v1 +V v2.

• Likewise, we will often write s · v or sv instead of s ·V v .
• It is also customary to write 0 instead of 0V .

Lemma 4.11 (Elementary properties of vector spaces) Let V be a K-vector space.
Then we have:

(i) The zero vector is unique, that is, if 0′V is another vector such that 0′V + v =

v + 0′V = v for all v ∈ V , then 0′V = 0V .
(ii) The additive inverse of every v ∈ V is unique, that is, ifw ∈ V satisfies v +w =

0V , then w = −v .
(iii) For all s ∈ K we have s0V = 0V .
(iv) For s ∈ K and v ∈ V we have sv = 0V if and only if either s = 0 or v = 0V .

Proof (The reader is invited to check which property of Definition 4.2Definition 4.2 is used in each of
the equality signs below)

(i) We have 0′V = 0′V + 0V = 0V .
(ii) Since v + w = 0V , adding −v , we obtain (−v) + v + w = 0V + (−v) = −v = w .

(iii) We compute s0V = s(0V + 0V ) = s0V + s0V so that s0V − s0V = 0V = s0V .
(iv) ⇐ If v = 0V , then sv = 0V by (iii). If s = 0, then sv = 0V by (4.44.4).
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⇒ Let s ∈ K and v ∈ V such that sv = 0V . It is sufficient to show that if s ̸= 0,
then v = 0V . Since s ̸= 0 we can multiply sv = 0V with 1/s so that

1

s
(sv) =

(
1

s
s

)
v = v =

1

s
0V = 0V . □

4.2 Linear combinations

Definition 4.12 (Linear combination) LetV be aK-vector space andS a set of vec-
tors from V . A linear combination of the vectors in S is a vector w ∈ V which can
be written in the form

w = s1v1 + · · ·+ skvk =
k∑

i=1

sivi

for some k ∈ N, scalars s1, ... , sk ∈ K, and vectors v1, ... , vk ∈ S.

Note that we don’t have to use all of the elements in S; indeed S doesn’t have to be
finite, and a linear combination is only allowed to mention finitely many elements (the
defininition of a vector space doesn’t give us any way of making sense of infinite sums).
On the other hand, if S is finite, then it suffices to consider linear combinations which
do involve all the elements of S, simply by introducing extra terms with si = 0.

Remark 4.13 Whenk = 0, we understand the empty sum—the sum of no elements
of V—to mean 0V . In particular, 0V is a linear combination of vectors in S for any S
(even if S is the empty set).

Example 4.14 For n ∈ N with n ⩾ 2 consider V = Pn(R) and the polynomials
p1, p2, p3 ∈ Pn(R) defined by the rules p1(x) = 1, p2(x) = x , p3(x) = x2 for all
x ∈ R. A linear combination of {p1, p2, p3} is a polynomial of the form p(x) =

ax2 + bx + c where a, b, c ∈ R.

For vectors in the column-vector space Kn, “being a linear combination” is expressible
by a linear system of equations:

Example 4.15 “Is

1

2

1

 ∈ R3 a linear combination of
{(

3
−1
0

)
,
(

0
1
−1

)}
?”

We’re asking if there are s1, s2 such that s1

 3

−1

0

 + s2

 0

1

−1

 =

1

2

1

, which is

the same as the equations

3s1 + 0s2 = 1

−s1 + s2 = 2

0s1 − s2 = 1

, i.e.

 3 0 1

−1 1 2

0 −1 1

 .
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Since the RREF of this matrix is

 1 0 0

0 1 0

0 0 1

, there are no solutions. So the an-

swer to the original question is no.

4.3 Vector subspaces

A vector subspace of a vector space is a subset that is itself a vector space, more pre-
cisely:

Definition 4.16 (Vector subspace) Let V be a K-vector space. A subset U ⊂ V

is called a vector subspace of V if the restriction to U of the addition and scalar-
multiplication operations of V make U into a vector space; that is,
• 0V ∈ U ,
• v1 +V v2 ∈ U for all v1, v2 ∈ U ,
• s ·V v ∈ U for all s ∈ K and v ∈ U .

One can check that these conditions are equivalent to the following easier-to-check con-
dition:

• U is non-empty, and

(4.5) s1 ·V v1 +V s2 ·V v2 ∈ U for all s1, s2 ∈ K and all v1, v2 ∈ U.

Remark 4.17
(i) Let’s check that this simpler condition implies the ones in Definition 4.16Definition 4.16.

Since U is non-empty, it contains an element, say u. Taking s1 = s2 = 0 and
v1 = v2 = u in (4.54.5), we see that 0 ·V u + 0 ·V u = 0V ∈ U . Thus the zero
vector 0V lies in U . Taking s1 = s2 = 1 and v1, v2 arbitrary, we get that U is
closed under sums; and taking s2 = 0K we see that U is closed under scalar
multiplication.

(On the other hand, we can’t drop the condition that U be non-empty,
since the empty set vacuously satisfies (4.54.5) but is not a subspace.)

(ii) We’ll see in the exercises that a subspace is automatically closed under linear
combinations; that is, if U is a vector subspace, then any linear combination of
elements of U is in U .

(iii) A vector subspace is also called a linear subspace or simply a subspace.

The prototypical examples of vector subspaces are lines and planes through the origin
in R3:

Example 4.18 (Lines through the origin) Let w⃗ ̸= 0R3 , then the line

U = {sw⃗ | s ∈ R} ⊂ R3

is a vector subspace. Indeed, taking s = 0 it follows that 0R3 ∈ U so that U is
non-empty. Let u⃗1, u⃗2 be vectors in U so that u⃗1 = t1w⃗ and u⃗2 = t2w⃗ for scalars
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t1, t2 ∈ R. Let s1, s2 ∈ R, then

s1u⃗1 + s2u⃗2 = s1t1w⃗ + s2t2w⃗ = (s1t1 + s2t2) w⃗ ∈ U

so that U ⊂ R3 is a subspace.

Example 4.19 (Zero subspace) Let V be a K-vector space and U = {0V } the set
consisting of the zero vector of V . Then, by Definition 4.16Definition 4.16 and the properties of
Definition 4.2Definition 4.2, it follows that U is a vector subspace of V : the zero subspace {0V }.
IfV andW are different vector spaces overK, then {0V } and {0W }may or may not
be exactly the same – it depends on what V and W are – but they have the same
vector-space structure (they are isomorphic, a concept we’ll see later).

Example 4.20 (Periodic functions) Taking I = R and K = R in Example 4.6Example 4.6, we
see that the functions f : R → R form an R-vector space V = F(R,R). Consider
the subset

U = {f ∈ F(R,R) | f is periodic with period 2π}
consisting of 2π-periodic functions, that is, an element f ∈ U satisfies f (x +2π) =

f (x) for all x ∈ R. Notice that U is not empty, as cos : R → R and sin : R → R are
elements of U . Suppose f1, f2 ∈ U and s1, s2 ∈ R. Then, we have for all x ∈ R

(s1f1 + s2f2)(x + 2π) = s1f1(x + 2π) + s2f2(x + 2π) = s1f1(x) + s2f2(x)

= (s1f1 + s2f2)(x)

showing that s1f1+s2f2 is periodic with period 2π. By Definition 4.16Definition 4.16, it follows that
U is a vector subspace of F(R,R).

Operations on subspaces

Vector subspaces are stable under intersection in the following sense:

Proposition 4.21 LetV be aK-vector space,n ⩾ 1a natural number andU1, ... ,Un

vector subspaces of V . Then the intersection

U ′ =
n⋂

j=1

Uj = {v ∈ V | v ∈ Uj for all j = 1, ... , n}

is a vector subspace of V as well.

Proof Since Uj is a vector subspace, 0V ∈ Uj for all j = 1, ... , n. Therefore, 0V ∈ U ′,
hence U ′ is not empty. Let u1, u2 ∈ U ′ and s1, s2 ∈ K. By assumption, u1, u2 ∈ Uj for all
j = 1, ... , n. Since Uj is a vector subspace for all j = 1, ... , n it follows that s1u1 + s2u2 ∈
Uj for all j = 1, ... , n and hence s1u1 + s2u2 ∈ U ′. By Definition 4.16Definition 4.16, it follows that U ′ is
a vector subspace of V . □

Remark 4.22 The last proposition is also true for n = 0, if we understand “the
intersection of no subspaces of V ” to mean the whole of V . Infinite intersections
work too: if I is any set (can be finite, can be infinite, can be empty) and we have
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a mapping I → {vector subspaces of V }, i 7→ Vi , then
⋂

i∈I Vi = {v ∈ V : v ∈
Vi ∀i ∈ I} is a well-defined subset of V and it is a subspace.

Remark 4.23 Notice that the union of subspaces need not be a subspace. Let V =

R2, {e⃗1, e⃗2} its standard basis and

U1 = {se⃗1 | s ∈ R} and U2 = {se⃗2 | s ∈ R} .

Then e⃗1 ∈ U1 ∪ U2 and e⃗2 ∈ U1 ∪ U2, but e⃗1 + e⃗2 /∈ U1 ∪ U2.

4.4 Subspaces generated by sets

Definition 4.24 (Subspace generated by a set) Let V be a K-vector space and S ⊂
V be a subset. The subspace generated by S , or the span of S, is the set span(S)
whose elements are linear combinations of vectors in S. Formally, we have

span(S) =

{
v ∈ V

∣∣∣ v =
k∑

i=1

sivi for some k ∈ N, s1, ... , sk ∈ K, v1, ... , vk ∈ S

}
.

Remark 4.25 The notation ⟨S⟩ for the span of S is also in use.

Proposition 4.26 Let V be a K-vector space and S ⊂ V be a non-empty subset.
Then span(S) is a vector subspace of V .

Proof Clearly span(S) cannot be empty, since it always contains 0V . So it suffices to
show that if v1, v2 ∈ span(S) and s1, s2 ∈ K, then s1v1+s2v2 ∈ span(S). By assumption,
we can write v1 = t1w1 + · · · + tkwk for some k ∈ N, t1, ... tk ∈ K and w1, ... ,wk ∈ S;
and similarly v2 = t̂1ŵ1 + · · ·+ t̂j ŵj for some j , scalars t̂1, ... , t̂j and ŵ1, ... , ŵj ∈ S.

But then

s1v1 + s2v2 = s1(t1w1 + · · ·+ tkwk) + s2(t̂1ŵ1 + · · ·+ t̂j ŵj)

= s1t1w1 + · · ·+ s1tkwk + s2t̂1ŵ1 + · · ·+ s2t̂j ŵj

also a linear combination of vectors in S and the claim follows. □

Remark 4.27 For a subset S ⊂ V , we may alternatively define span(S) to be “the
smallest vector subspace of V that contains S” (but then we have to justify the
claim that such a subspace exists). Another alternative is “the intersection of all
subspaces of V that contain S” (but then it’s not so clear what its elements are).
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4.5 Generating sets and finite-dimensionality

Definition 4.28 Let V be a K-vector space. A subset S ⊂ V is called a generating
set (or spanning set) of V if span(S) = V .

Example 4.29 Thinking of a field K as a K-vector space, the set S = {1K} consist-
ing of the identity element of multiplication is a generating set for V = K. Indeed,
for every x ∈ K we have x = x ·V 1K.

Definition 4.30 The vector space V is called finite dimensional if V admits a gen-
erating set with finitely many elements (also called a finite set). A vector space that
is not finite dimensional will be call infinite dimensional.

Remark 4.31 Notice that we’re playing a devious notational trick: the definition of
“finite-dimensional” is not “ the dimension is finite” – we haven’t defined the no-
tion of “dimension” yet! It would be logically better to call these “finitely generated
vector spaces”, but this is not the convention, so we won’t do it.

Example 4.32 The standard basis S = {e⃗1, ... , e⃗n} is a generating set for Kn, since
for all x⃗ = (xi )1⩽i⩽n ∈ Kn, we can write x⃗ = x1e⃗1 + · · · + xne⃗n so that x⃗ is a linear
combination of elements of S. Thus Kn is finite-dimensional.

Example 4.33 LetEk,l ∈ Mm,n(K) for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n denote them-by-n
matrix satisfying Ek,l = (δkiδlj)1⩽i⩽m,1⩽j⩽n. For example, for m = 2 and n = 3 we
have

E1,1 =

(
1 0 0

0 0 0

)
, E1,2 =

(
0 1 0

0 0 0

)
, E1,3 =

(
0 0 1

0 0 0

)
and

E2,1 =

(
0 0 0

1 0 0

)
, E2,2 =

(
0 0 0

0 1 0

)
, E2,3 =

(
0 0 0

0 0 1

)
.

Then S = {Ek,l}1⩽k⩽m,1⩽l⩽n is a generating set for Mm,n(K), since a matrix A ∈
Mm,n(K) can be written as

A =
m∑

k=1

n∑
l=1

AklEk,l

so that A is a linear combination of the elements of S.

Example 4.34 The vector space P(R) of polynomials is infinite dimensional. In
order to see this, consider a finite set of polynomials {p1, ... , pn}, n ∈ N and
let di denote the degree of the polynomial pi for i = 1, ... , n. We set D =
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max{d1, ... , dn}. Since a linear combination of the polynomials {p1, ... , pn} has de-
gree at most D , any polynomial q whose degree is strictly larger than D will satisfy
q /∈ span{p1, ... , pn}. It follows that P(R) cannot be generated by a finite set of
polynomials.

4.6 Linear independence

Recall that spanning was about existence of linear combinations: which elements of V
we can “hit” with linear combinations of S. We have a complementary notion which is
about uniqueness of linear combinations – “how many” ways we can hit a given element:

Definition 4.35 (Linear independence) Let S ⊂ V be a subset. We say S is linearly
independent if there is no non-trivial way of writing 0V as a linear combination of
vectors in S . That is, for all natural numbers k ⩾ 1, all s1, ... , sk ∈ K and all distinct
v1, ... , vk ∈ S, we have the implication

s1v1 + · · ·+ skvk = 0V ⇐⇒ s1 = · · · = sk = 0.

If S is not linearly independent (so there exists a non-trivial linear combination of
elements of S equal to 0) then S is called linearly dependent.

Remark 4.36 Observe that a subset T of a linearly independent set S is itself lin-
early independent (exercise); and the empty set is linearly independent.

Example 4.37 We consider the polynomials p1, p2, p3 ∈ P(R) defined by the rules
p1(x) = 1, p2(x) = x , p3(x) = x2 for all x ∈ R. Then {p1, p2, p3} is linearly inde-
pendent. In order to see this, consider the condition

(4.6) s1p1 + s2p2 + s3p3 = 0P(R) = o

where o : R → R denotes the zero polynomial. Since (4.64.6) means that

s1p1(x) + s2p2(x) + s3p3(x) = o(x),

for all x ∈ R, we can evaluate this condition for any choice of real number x . Taking
x = 0 gives

s1p1(0) + s2p2(0) + s3p3(0) = o(0) = 0 = s1.

Taking x = 1 and x = −1 gives
0 = s2p2(1) + s3p3(1) = s2 + s3,

0 = s2p2(−1) + s3p3(−1) = −s2 + s3,

so that s2 = s3 = 0 as well. It follows that {p1, p2, p3} is linearly independent.

For vectors in Kn, linear independence can be checked using row-echelon form.

Example 4.38 Consider the vectors in R3 given by

v1 =
(

0
1
2

)
, v2 =

(−9
4
6

)
, v3 =

(
3
0
−1

)
, v4 =

(
4
−1
5

)
.
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These are linearly independent if and only if the system of equations(
0 −9 3 4
1 4 0 −1
2 6 −1 5

)( s1
s2
s3
s4

)
=
(

0
0
0

)
has only the zero solution. We already calculated the RREF of this matrix in a previ-
ous example; so we know that this system is equivalent to 1 0 0 17

3 0

0 1 0 − 5
3 0

0 0 1 − 11
3 0

 .

Obviously this system is consistent (because the rightmost column is entirely zer-
oes), but we care about uniqueness of solutions; and since none of the rows has its
leading entry in the fourth column, s4 is a free variable, and hence the solution is
not unique.

Remark 4.39 Of course, this was bound to happen, since there are four columns
to the left of the dividing line, but only three rows. So there can’t possibly be a lead-
ing entry in every column. What this proves is: any set of vectors inKn containing
more thann elements must be linearly dependent. This is an instance of the Fun-
damental Inequality, one of the main theorems of this module, which we’ll prove in
the next section.

Exercises

Exercise 4.1 Use the method of Example 3.16Example 3.16 to show that a vector b⃗ ∈ R3 is a
linear combination of

{(
3
−1
0

)
,
(

0
1
−1

)}
if and only if (1 3 3) · b⃗ = 0.

(*) Can you relate this to the RREF of the matrix 3 0 1 0 0

−1 1 0 1 0

0 −1 0 0 1

 ?

Exercise 4.2 Does there exist a field F and a vector space V over F which can be
written as the union of two proper subspaces? What about three proper subspaces?

Exercise 4.3 Let U ⊂ V be a vector subspace and k ∈ N with k ⩾ 2. Show that for
u1, ... , uk ∈ U and s1, ... , sk ∈ K, we have s1u1 + · · ·+ skuk ∈ U .
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Exercise 4.4 (Planes through the origin) Let w⃗1, w⃗2 ̸= 0R3 and w⃗1 ̸= sw⃗2 for all
s ∈ R. Show that the plane

U = {s1w⃗1 + s2w⃗2 | s1, s2 ∈ R}

is a vector subspace of R3.

Exercise 4.5 (Polynomials) Let n ∈ N and Pn(R) denote the subset of P(R) con-
sisting of polynomials of degree at most n. Show that Pn(R) is a subspace of P(R)
for all n ∈ N.

Exercise 4.6 Show that if S ⊂ T ⊂ V , and S is a generating set of V , then T is
also a generating set.

Exercise 4.7 Show that for a non-empty subset S of a K-vector space V , the set
span(S) as defined in Definition 4.24Definition 4.24 is the same as either of the two definitions
given in Remark 4.27Remark 4.27.

Exercise 4.8 Show that a subset {v} consisting of a single vector v ∈ V is linearly
independent if and only if v ̸= 0V .
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In this chapter, we’ll prove two of the key theorems of this module – the Fundamental
Inequality and the Main Theorem on Bases. This chapter is quite abstract (and quite dif-
ficult), but we’ll get back to more concrete computations later!

5.1 Growing and shrinking sets

We’ve seen that ifS is a generating set inV , and we modifyS by putting some more ele-
ments into it, then it’s still a generating set. On the other hand, if we take some elements
out, it might not be generating any more. Linear independence, on the other hand, has
the opposite behaviour: ifS is LI, and we take some elements out, then the modified set
is still LI; but if we put some more elements in, it might not be LI any more.

The next two lemmas give criteria for when we can shrink a generating set without break-
ing the generating property, or grow an LI set without breaking the LI property. These
will be crucial in the next section.

Lemma 5.1 (Shrinking generating sets) Let V be a K-vector space and S ⊂ V a
generating set. If v0 ∈ S satisfies v0 ∈ span(S \ {v0}), then S \ {v0} is a generating
set.

Proof Since v0 ∈ span(S \ {v0}), there exist vectors v1, ... , vn ∈ S with vi ̸= v0 and
scalars s1, ... , sn so that v0 = s1v1 + · · ·+ snvn.

Suppose we are given v ∈ V . SinceS is a generating set, there exist vectorsw1, ... ,wk ∈
S and scalars t1, ... , tk so that v = t1w1 + · · · + tkwk . If {w1, ... ,wk} does not contain
v0, then v ∈ span(S \{v0}), so assume that v0 ∈ {w1, ... ,wk}. After possibly relabelling
the elements of {w1, ... ,wk} we can assume that v0 = w1. Hence we have

v = t1 (s1v1 + · · ·+ snvn) + t2w2 + · · ·+ tkwk

with v0 ̸= vi for 1 ⩽ i ⩽ n and v0 ̸= wj for 2 ⩽ j ⩽ k . It follows that v ∈ span(S \ {v0}),
as claimed. □
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Lemma 5.2 (Growing LI sets) Let V be a K-vector space, S ⊂ V linearly independ-
ent and v0 ∈ V . Suppose v0 /∈ span(S), then S ∪ {v0} is linearly independent.

Proof Let T be a finite subset of S ∪ {v0}. If v0 /∈ T , then T is linearly independent, as
S is linearly independent. So suppose v0 ∈ T . There exist distinct elements v1, ... , vn of
S so that T = {v0, v1, ... , vn}. Suppose s0v0 + s1v1 + · · ·+ snvn = 0V for some scalars
s0, s1, ... , sn ∈ K. If s0 ̸= 0, then we can write

v0 = −
n∑

i=1

si
s0
vi ,

contradicting the assumption that v0 /∈ span(S). Hence we must have s0 = 0. Since
s0 = 0 it follows that s1v1 + · · · + snvn = 0V so that s1 = · · · = sn = 0 by the linear
independence of S. We conclude that S ∪ {v0} is linearly independent. □

5.2 The fundamental inequality

We’ll now prove the following important lemma, which is going to be the key to under-
standing how finite-dimensional vector spaces “work”:

Lemma 5.3 (Fundamental inequality) Let V be a vector space, and suppose V has
a finite generating set W . Then any linearly independent set U in V is finite and
satisfies |U| ⩽ |W |.

The proof of this lemma (everything from here to the end of Section 5.2Section 5.2) is non-examin-
able; but you should definitely make sure you are aware of the statement!

We’ll deduce the Fundamental Inequality from the following stronger statement:

Lemma 5.4 (The Steinitz Exchange Lemma) Suppose V is a vector space and U , W
subsets of V such that
• W is finite,
• U is linearly independent,
• W spans V .

Then |U| ⩽ |W | (so U is also finite); and there is a subset W ′ ⊆ W , with |W ′| =
|W | − |U| and W ′ ∩ U = ∅, such that U ∪W ′ also spans V .

In other words, we can exchange some of the elements of W for the elements of U ,
without breaking the generating property.

Proof Let us first prove the result assuming U is finite. Let m = |U|. We will argue by
induction on m. If m = 0 then the statement is trivial; so we can assume the statement
holds for m − 1. Thus we can suppose that U = {u1, ... , um}, with m − 1 ⩽ n, and
W = {u1, ... , um−1,wm, ... ,wn} for some vectors wm, ... ,wn. (We haven’t yet excluded
the possibility that n = m − 1, in which case this just means that W = {u1, ... , um−1}.)
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We first deal with a silly special case: ifum ∈ {wm, ... ,wn}, then we can assumeum = wm

by relabeling; then W ′ = {wm+1, ... ,wn} works, since U ∪ W ′ is equal to W and we
already know that W spans V . So we can suppose that um is not one of the wi .

Since W spans V , and um ∈ V , we know that um can be written as a linear combination
of W :

um =
m−1∑
i=1

siui +
n∑

i=m

tiwi , si , ti ∈ K.

If all the ti ’s are zero, then this would contradict the linear independence of U ; so there
must be some i with m ⩽ i ⩽ n such that ti ̸= 0. (This shows in particular that n must
be at least m.) Reordering the wi if necessary, we can suppose tm ̸= 0. Our goal will be
to show that {u1, ... , um,wm+1, ... ,wn} spans V .

We rearrange the equality above into

wm =
1

tm

um −
m−1∑
i=1

siui −
n∑

j=m+1

tjwj

 .

Since we’re not in the ‘silly special case’, the sum on the right doesn’t involve wm. So
we’ve shown that wm is in the span of T \ {wm}, where T = {u1, ... , um,wm, ... ,wn}.
But T spans V , since it contains W . So we can apply the “shrinking generating sets”
lemma to conclude that T \ {wm} spans V .

This completes the proof for finite U . If U is infinite, then we can find a subset U ′ ⊂ U of
size n + 1, where n = |W |; but U ′ is linearly independent (because it’s contained in U)
and hence applying the lemma to U ′ and W gives a contradiction. So the lemma holds
for all U . □

Remark 5.5 Notice that the Fundamental Inequality is just one part of the Steinitz
Exchange Lemma, but our proof of the Fundamental Inequality for |U| = m de-
pends on knowing the whole of the Exchange Lemma for |U| = m−1. It is possible
to give a self-contained proof of the Fundamental Inequality (without proving the
rest of Steinitz at the same time), but it needs a different method, and it’s quite
fiddly. This is an example of a curious paradox: sometimes a stronger (but more
specific) theorem can be easier to prove than a weaker one!

5.3 Bases of vector spaces

Definition

Definition 5.6 (Basis) Let V be a vector space. A subset S ⊂ V which is a generat-
ing set of V and also linearly independent is called a basis of V .

Equivalently, a set S is a basis if every vector in V can be written uniquely as a linear
combination of elements of S : the “generating” condition gives existence of the linear
combination, and the “linearly independent” condition gives uniqueness.
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Example 5.7 Thinking of a field K as a K-vector space, the set {1K} is linearly in-
dependent, since 1K ̸= 0K. Example 4.29Example 4.29 implies that {1K} is a basis of K.

Example 5.8 Clearly, the standard basis {e⃗1, ... , e⃗n} of Kn is linearly independent
since

s1e⃗1 + · · ·+ sne⃗n =

s1
...
sn

 = 0Kn =

0
...
0

 ⇐⇒ s1 = · · · = sn = 0.

It follows together with Example 4.32Example 4.32 that the standard basis ofKn is indeed a basis
in the sense of Definition 5.6Definition 5.6.

Example 5.9 The matrices Ek,l ∈ Mm,n(K) for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n are
linearly independent. Suppose we have scalars skl ∈ K such that

m∑
k=1

n∑
l=1

sklEk,l = 0m,n =

 s11 · · · s1n
...

. . .
...

sm1 · · · smn

 =

0 · · · 0
...

. . .
...

0 · · · 0


so skl = 0 for all 1 ⩽ k ⩽ m and all 1 ⩽ l ⩽ n. It follows together with Example 4.33Example 4.33
that {Ek,l}1⩽k⩽m,1⩽l⩽n is a basis of Mm,n(K). We refer to {Ek,l}1⩽k⩽m,1⩽l⩽n as the
standard basis of Mm,n(K).

The Main Theorem on Bases

We’ll now come to one of the central theorems of this course

Theorem 5.10 (Main Theorem on Bases) Let V be a K-vector space.
(i) Any subset S ⊂ V generating V admits a subset T ⊂ S that is a basis of V .

(ii) Any subset S ⊂ V that is linearly independent in V is contained in a subset
T ⊂ V that is a basis of V .

(iii) If S1,S2 are bases of V , then there exists a bijective map f : S1 → S2.
(iv) If V is finite dimensional, then any basis of V is a finite set and the number of

elements in the basis is independent of the choice of the basis.

We will only prove Theorem 5.10Theorem 5.10 for finite dimensional vector spaces. The proof will use
the Fundamental Inequality.

Proof of Theorem 5.10Theorem 5.10 We restrict to the case where V is finite dimensional. Hence
there exists an integer n ⩾ 0 so that V has a generating set S0 with n elements.

(i) (Slogan: A maximal LI set is a basis) Let S ⊂ V be a subset generating V (we don’t
assume that S is finite). We consider the set X ⊂ N consisting of those integers d ⩾ 0

for which there exists a linearly independent subset T ⊂ S with d elements. Since
∅ ⊂ S , we have 0 ∈ X , so X is non-empty. Furthermore, X is a finite set, as it cannot
contain any integer greater than n, by the Fundamental Inequality.
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Let m ∈ X be the largest integer and T ⊂ S an LI set with m elements. We want to
argue that T is a basis of V . Suppose T is not a basis of V . Then there exists an element
v0 ∈ S so that v0 /∈ span(T ), since if no such element exists, we have S ⊂ span(T ) and
hence V = span(S) ⊂ span(T ) contradicting the assumption that T is not a basis of V .
Applying Lemma 5.2Lemma 5.2 (the growing-LI-sets lemma), we conclude that T̂ = {v0}∪T ⊂ S
is linearly independent. Since T̂ has m+1 elements, we have m+1 ∈ X , contradicting
the fact that m is the largest integer in X . It follows that T must be a basis of V .

(ii) (Slogan: A minimal generating set is a basis) Let S ⊂ V be a subset that is linearly
independent in V . Note that S is finite, by the Fundamental Inequality. Let X̂ denote
the set consisting of those integers d ⩾ 0 for which there exists a subset T ⊂ V with
d elements, which contains S and which is a generating set of V . Notice that S ∪ S0 is
such a set, hence X̂ is not empty. Let m denote the smallest element of X̂ and T be a
generating subset of V containing S and with m elements. We want to argue that T is
basis for V . By assumption, T generates V , hence we need to check that T is linearly
independent in V . Suppose T is linearly dependent and write T = {v1, ... , vm} for
distinct elements of V . Suppose S = {v1, ... , vk} for some k ⩽ m. This holds true since
S ⊂ T . Since T is linearly dependent we have scalars s1, ... , sm so that

s1v1 + · · ·+ smvm = 0V .

There must exist a scalar si with i > k such that si ̸= 0. Otherwise S would be linearly
dependent. After possibly relabelling the vectors, we can assume that sk+1 ̸= 0 so that

(5.1) vk+1 = − 1

sk+1
(s1v1 + · · ·+ skvk + sk+2vk+2 + · · ·+ smvm) .

Let T̂ = {v1, ... , vk , vk+2, ... , vm}. Then S ⊂ T̂ and (5.15.1) shows that vk+1 ∈ span(T̂ ).
Lemma 5.1Lemma 5.1 (the shrinking-generating-sets lemma) shows that T̂ generates V , contains
S and has m − 1 elements, contradicting the minimality of m.

(iii) Suppose S1 is a basis of V with n1 elements and S2 is a basis of V with n2 elements.
Since S2 is linearly independent and S1 generates V , the Fundamental Inequality im-
plies that n2 ⩽ n1. Likewise, we conclude that n2 ⩾ n1. It follows that n1 = n2 and
hence there exists a bijective mapping from S1 to S2 as these are finite sets with the
same number of elements.

(iv) is an immediate consequence of (iii). □

Consequences of the Main Theorem

Corollary 5.11 Every K-vector space V admits at least one basis.

Proof Since V is a generating set for V , we can apply (i) from Theorem 5.10Theorem 5.10 to S = V

to obtain a basis of V . □

Remark 5.12 We’ve seen that R is a Q-vector space. It is impossible to explicitly
write down a basis of this vector space, even though the corollary says that they
exist!
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5.4 Dimensions of vector spaces

We can now, at last, make sense of the idea of dimension of a vector space: we know that
all vector spaces have bases, and any two bases are the same size; so we can make the
following definition:

Definition 5.13 The dimension of a finite dimensional K-vector space V , denoted
by dim(V ) or dimK(V ), is the number of elements of any basis of V .

Example 5.14
(i) The zero vector space {0} has the empty set as a basis and hence is 0-

dimensional. Conversely, if V is a zero-dimensional space, then the empty set
is a basis of V , so we must have V = {0}.

(ii) A field K – thought of as a K-vector space – has {1K} as a basis and hence is
1-dimensional.

(iii) The vector space Kn has {e⃗1, ... , e⃗n} as a basis and hence is n-dimensional.
(iv) The vector space Mm,n(K) has Ek,l for 1 ⩽ k ⩽ m and 1 ⩽ l ⩽ n as a basis,

hence it is mn-dimensional.

Lemma 5.15 Let V be a finite-dimensional K-vector space, and U a subspace of V .
Then U is also finite-dimensional and we have

0 ⩽ dim(U) ⩽ dim(V ).

Furthermore, dim(U) = 0 iff U = {0V }, and dim(U) = dim(V ) iff U = V .

Proof Let V be a finite dimensional K-vector space and U ⊂ V a subspace. Let’s con-
sider the setX = {m ∈ N : there exists a LI set inU withm elements}. Obviously 0 ∈ X ,
since ∅ is LI. On the other hand, X can’t contain any integer larger than the dimension
of V , since an LI set in U is a fortiori an LI subset of V .

So X must have a largest element, say d . Let us choose an LI subset S ⊂ U whose size
is d . We will show that S generates U ; this shows that U is finite-dimensional, since S is
a finite generating set.

Let u ∈ U be arbitrary. If u /∈ span(S), then we can apply the growing-LI-sets lemma
to see that S ∪ {u} is an LI set. Since this set has size d + 1, and d is maximal, this is a
contradiction. Thus u ∈ span(S) as required.

Since this set S is by definition LI, it is a basis of U , so d = dimU . Using the Funda-
mental Inequality onS and a basis ofV , we find thatdim(U) ⩽ dim(V ); and ifdim(U) =

dim(V ), then the Exchange Lemma tells us that S generates V , so U = span(S) = V .
On the other hand, if d = 0, then U is the empty set, so its span is {0V }. □

Remark 5.16 This proof can be done much more quickly if we allow ourselves to
apply the Main Theorem on Bases to conclude that U has a basis: if B is any basis
of U , then B is in particular an LI set in V and hence it has size ⩽ dim(V ) by the
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Fundamental Inequality. The problem is that we have only proved the Main The-
orem on Bases for finite-dimensional spaces, and we don’t know a priori that U is
finite-dimensional. So we have to work a bit harder.

5.5 Computing with subspaces

The above theory applies to subspaces of any abstract vector space; we’ll now specialise
to the concrete case of row and column vectors, and see how to compute with bases of
subspaces in practice. As usual, this will reduce to computing a RREF (the “Swiss army
knife” of linear algebra calculations).

We’ll first investigate the case of subspaces of Kn (recall that the index n “downstairs”
means row vectors, not column vectors).

Proposition 5.17 Let α⃗1, ... , α⃗r be vectors in Kn, and let U = span(α⃗1, ... , α⃗r ).
Let A be the matrix with the α⃗i as rows, and let B be the RREF of A, with rows
β⃗1, ... , β⃗r . If h is the number of nonzero rows of B, then h = dimU , the vectors
β⃗1, ... , β⃗h are a basis of U , and β⃗h+1 = · · · = β⃗r = 0.

Proof SinceB is left-equivalent toA, every row ofB is a linear combination of rows ofA,
and vice versa. Hence the span of theβ’s is equal to the span of theα’s. By the definition
of RREF, all the non-zero rows of B come before all the zero rows. So it suffices to show
that the non-zero rows of B are linearly independent.

Let s1, ... , sh be scalars such that
∑

si β⃗i = 0. For 1 ⩽ j ⩽ h, let pj be the index of the
leading entry of β⃗j . Then [β⃗j ]pi = 1, and [β⃗i ]pj = 0 for i ̸= j by the definition of row
echelon form. Hence we have

0 = [0]pj =
∑
i

si [β⃗i ]pj =
∑
i

siδij = sj ,

so sj = 0. Since j was arbitrary, this shows that s1 = · · · = sh = 0 and hence {β⃗1, ... , β⃗h}
is an LI set. □

Of course, a vector space can have many different bases, so sometimes it can be hard
to recognise when two subspaces are actually the same. The uniqueness part of RREF
allows us to solve this too:

Proposition 5.18 Let U be a subspace of Kn. Then there is a unique basis
{β⃗1, ... , β⃗h} of U (and a unique ordering of those basis vectors) such that the mat-
rix with those vectors as rows is in RREF; and this basis, the RREF basis of U , can be
computed explicity starting from any generating set of U .

Proof We’ve seen that an echelon-form basis exists (and is computable), so we need to
show uniqueness. But any two bases ofU give matrices which are left-equivalent; hence
there cannot be more than one such matrix which is in RREF. □

Thus, if we are given generating sets for two subspaces U,U ′ and we want to know if
U = U ′, we just compute the RREF bases of each, and check whether they’re the same.
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Remark 5.19 As a special case, we can check if a given vector ξ⃗ lies in U or not,
since u ∈ U iff the subspace U ′ = span({generators of U} ∩ {ξ⃗}) is equal to U .

Concretely, we just form the matrix

(
B

ξ⃗

)
, whereB is the echelon basis matrix ofU ,

and echelonize that; if the echelon form is

(
B

0

)
, then u⃗ ∈ U , and otherwise not.

Of course, if we want to compute with subspaces of Kn instead, we can just transpose
all the matrices11 and formulate our problem in terms of Kn.

Example 5.20 Let’s revisit example Example 4.15Example 4.15: “Is

1

2

1

 ∈ R3 a linear combin-

ation of
{(

3
−1
0

)
,
(

0
1
−1

)}
?”

This is equivalent to asking: is γ⃗ = (1 2 1) ∈ R3 in the subspace generated by
α⃗ = (3 − 1 0) and β⃗ = (0 1 − 1)?

We compute that the echelon form of the matrix

 3 −1 0

0 1 −1

1 2 1

 is the 3 × 3

identity matrix. So span(α⃗, β⃗, γ⃗) is 3-dimensional – it’s the whole of R3 – whereas
span(α⃗, β⃗) must have dimension ⩽ 2. Thus γ⃗ is not a linear combination of the
other two.

Remark 5.21 Note that this is a genuinely different method from the previous com-
putation: previously we applied elementary row operations to

(
3 0 1
−1 1 2
0 −1 1

)
, and now

we’re applying elementary row operations to its transpose (or elementary column
operations to the original matrix). Both methods are equally valid.

Exercises

Exercise 5.1 (hard!) Show that if V is not finite-dimensional, then there exists an
infinite linearly independent set in V .
[In this exercise you may only use theorems proved in the course, so you may not
use the fact that the Main Theorem on Bases holds for infinite-dimensional spaces.]

1This is valid because transposing matrices sends linear combinations to linear combinations, subspaces
to subspaces, etc – an example of a vector space isomorphism, a concept we’ll meet in the next chapter.
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Exercise 5.2 Consider the vector space R∞ of real sequences, as in Example 4.7Example 4.7.
Let ei be the sequence with (ei )j = 1 if i = j and 0 otherwise. Is {e0, e1, e2, ... } a
generating set of R∞? Is it linearly independent?

Exercise 5.3 Find a basis of the field F4 from Chapter 1 as a vector space over F2,
and show that its dimension is 2.

Exercise 5.4 Let U be the subspace of R4 generated by the vectors

{
(

0
−1
0
−1

)
,

(
1
1
−2
1

)
,

(−2
1
2
1

)
}. How many of the standard basis vectors {e⃗1, ... , e⃗4} are

in U?
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6.1 Linear maps

Throughout this section,V ,W denoteK-vector spaces. So we have a notion of addition
and scalar multiplication; and if we have a mapping f : V → W , we can ask if it respects
these structures.

Definition 6.1 (Linear map) A mapping f : V → W is called linear if it satisfies the
following two conditions:
• it is additive, i.e. for all v1, v2 ∈ V we have

f (v1 + v2) = f (v1) + f (v2).

• It is 1-homogeneous, that is, for all s ∈ K and v ∈ V we have

f (sv) = sf (v).

One can check (see Exercises) that a mapping f : V → W is linear iff it satisfies

(6.1) f (s1v1 + s2v2) = s1f (v1) + s2f (v2)

for all s1, s2 ∈ K and v1, v2 ∈ V .

Example 6.2 Notice that “most” functions R → R are neither additive nor 1-
homogeneous. As an example, consider a mapping f : R → R which satisfies
the 1-homogeneity property. Let a = f (1) ∈ R. Then the 1-homogeneity implies
that for all x ∈ R = R1 we have

f (x) = f (x · 1) = x · f (1) = a · x ,

showing that the only 1-homogeneous mappings from R → R are of the form
x 7→ ax , where a is a real number. In particular, sin, cos, tan, log, exp,

√
and all

polynomials of degree higher than one are not linear.
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Examples

For instance, you already saw in Algorithmics that matrices give linear maps: if M ∈
Mm,n(K), then for any x⃗ , y⃗ ∈ Kn and a, b ∈ K, we have

M · (ax⃗ + by⃗) = aMx⃗ + bMy⃗ ,

so the map fM : Kn → Km defined by fM(x⃗) = Mx⃗ is linear. However, working with
abstract vector spaces means we have all kinds of other exciting linear maps to study.

Example 6.3 If P(R) is the vector space of polynomials from Example 4.1Example 4.1, then we
may think of the derivative with respect to the variable x as a mapping

d

dx
: P(R) → P(R).

Now recall that the derivative satisfies

(6.2)

d

dx
(p + q) =

d

dx
(p) +

d

dx
(q) (additivity),

d

dx
(s · p) = s · d

dx
(p) (1-homogeneity).

so it is indeed linear.

Example 6.4 The matrix transpose is a map Mm,n(K) → Mn,m(K) and this map is
linear. Indeed, for all s, t ∈ K and A,B ∈ Mm,n(K), we have

(sA+ tB)T = (sAji + tBji )1⩽j⩽n,1⩽i⩽m = s(Aji )1⩽j⩽n,1⩽i⩽m+

t(Bji )1⩽j⩽n,1⩽i⩽m = sAT + tBT .

Example 6.5 Let V be a K-vector space. Then the identity mapping IdV : V → V

is linear, since for all s1, s2 ∈ K and v1, v2 ∈ V we have

IdV (s1v1 + s2v2) = s1v1 + s2v2 = s1IdV (v1) + s2IdV (v2).

First properties of linear maps

A necessary condition for linearity of a mapping is that it maps the zero vector onto the
zero vector:

Lemma 6.6 Let f : V → W be a linear map, then f (0V ) = 0W .

Proof Since f : V → W is linear, we have

f (0V ) = f (0 · 0V ) = 0 · f (0V ) = 0W . □

We’ll now investigate what happens if you compose two such maps. Recall that if f :

X → Y is a mapping from a set X into a set Y and g : Y → Z a mapping from Y into a
set Z , we can consider the composition of g and f

g ◦ f : X → Z, x 7→ g(f (x)).
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Recall also that a mapping is bijective if and only if it has an inverse mapping, which is a
map f −1 : Y → X with f −1 ◦ f = IdX and f ◦ f −1 = IdY (and this inverse mapping is
unique if it exists).

Proposition 6.7 Let V1,V2,V3 be K-vector spaces and f : V1 → V2 and g : V2 →
V3 be linear maps. Then the composition g ◦ f : V1 → V3 is linear. Furthermore, if
f : V1 → V2 is bijective, then the inverse map f −1 : V2 → V1 is linear.

Proof For the first statement, let s, t ∈ K and v ,w ∈ V1. Then

(g ◦ f ) (sv + tw) = g(f (sv + tw)) = g(sf (v) + tf (w))

= sg(f (v)) + tg(f (w)) = s(g ◦ f )(v) + t(g ◦ f )(w),

where we first use the linearity of f and then the linearity of g . It follows that g ◦ f is
linear.

The second statement is more delicate. Recall that for any v ∈ V2 we have f (f −1(v)) =

v . So for v ,w ∈ V2 we can write

f (f −1(sv + tw)) = sv + tw = sf (f −1(v)) + tf (f −1(w)).

Using linearity of f , the right-hand side can be rewritten as

sf (f −1(v)) + tf (f −1(w)) = f (sf −1(v) + tf −1(w)).

Thus

f (f −1(sv + tw)) = f (sf −1(v) + tf −1(w))

and since f is injective, we can cancel the f ’s to conclude

f −1(sv + tw) = sf −1(v) + tf −1(w). □

Isomorphisms

Bijective linear maps are particularly important and they have a special name:

Definition 6.8 (Vector space isomorphism) A bijective linear map f : V → W is
called a (vector space) isomorphism. If an isomorphism f : V → W exists, then the
K-vector spaces V and W are called isomorphic.

Remark 6.9 If two vector spaces are isomorphic, then they are “the same as vector

spaces”. For instance, the obvious map Kn → Kn given by (x1 ... xn) 7→

(
x1
...
xn

)
is

an isomorphism.

6.2 Images, preimages, kernels

In this section we’ll investigate how vector subspaces interact with linear maps.
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Proposition 6.10 Let V ,W be K-vector spaces, U ⊂ V and Z ⊂ W be vector
subspaces and f : V → W a linear map. Then the image f (U) is a vector subspace
of W and the preimage f −1(Z ) is a vector subspace of V .

Proof Since U is a vector subspace, we have 0V ∈ U . By Lemma 6.6Lemma 6.6, f (0V ) = 0W ,
hence 0W ∈ f (U). For all w1,w2 ∈ f (U) there exist u1, u2 ∈ U with f (u1) = w1 and
f (u2) = w2. Hence for all s1, s2 ∈ K we obtain

s1w1 + s2w2 = s1f (u1) + s2f (u2) = f (s1u1 + s2u2),

where we use the linearity of f . Since U is a subspace, s1u1 + s2u2 is an element of U
as well. It follows that s1w1 + s2w2 ∈ f (U) and hence applying Definition 4.16Definition 4.16 again,
we conclude that f (U) is a subspace of W . The second claim is left to the reader as an
exercise. □

We now define some special subspaces associated to a linear map.

Definition 6.11 (Kernel) The kernel of a linear map f : V → W is the preimage of
{0W } under f , that is,

Ker(f ) = {v ∈ V | f (v) = 0W } = f −1({0W }).

Example 6.12 The kernel of the linear map d
dx : Pn(R) → Pn−1(R) consists of the

constant polynomials satisfying f (x) = c for all x ∈ R and where c ∈ R is some
constant.

An immediate consequence of Proposition 6.10Proposition 6.10 is:

Corollary 6.13 Let f : V → W be a linear map, then its image Im(f ) is a vector
subspace of W and its kernel Ker(f ) is a vector subspace of V .

Roughly, you can think of the kernel as being the stuff which gets “lost in the machine”,
and the image as the stuff which “comes out the other side”. So these should, in some
sense, add up to all of V ; and we’ll make this precise a little later (in Theorem 6.20Theorem 6.20).

We can characterise the injectivity of a linear map f : V → W in terms of its kernel:

Lemma 6.14 A linear map f : V → W is injective if and only if Ker(f ) = {0V }.

Proof Let f : V → W be injective. Suppose f (v) = 0W . Since f (0V ) = 0W by
Lemma 6.6Lemma 6.6, we have f (v) = f (0V ), hence v = 0V by the injectivity assumption. It
follows that Ker(f ) = {0V }. Conversely, suppose Ker(f ) = {0V } and let v1, v2 ∈ V be
such that f (v1) = f (v2). Then by the linearity we have f (v1)− f (v2) = 0W = f (v1−v2).
Hence v1 − v2 is in the kernel of f so that v1 − v2 = 0V or v1 = v2. □

We can characterise isomorphisms using kernels and images. By the definition of sur-
jectivity, a map f : V → W is surjective if and only if Im(f ) = W . Combining this
with Lemma 6.14Lemma 6.14 gives:
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Proposition 6.15 A linear map f : V → W is an isomorphism if and only if
Ker(f ) = {0V } and Im(f ) = W .

Linear maps and dimension

Lemma 6.16 Let f : V → W be linear.
(i) If S ⊂ V is a generating set, and f is surjective, then f (S) is a generating set of

W .
(ii) If f is surjective, and V is finite-dimensional, then W is finite-dimensional.

(iii) If S ⊂ V is an LI set, and f is injective, then f (S) is an LI set in W .
(iv) If f is injective, and W is finite-dimensional, then V is finite-dimensional.

Proof (i) Let w ∈ W . Since f is surjective there exists v ∈ V such that f (v) = w . Since
span(S) = V , there exists k ∈ N, as well as elements v1, ... , vk ∈ S and scalars s1, ... , sk
such thatv =

∑k
i=1 sivi and hencew =

∑k
i=1 si f (vi ), where we use the linearity of f . We

conclude that w ∈ span(f (S)) and since w is arbitrary, it follows that W = span(f (S)).

(ii) If V is finite-dimensional then it has a finite generating set S. Then f (S) is a finite set
in W , and by (i) it is a generating set.

(iii) Suppose, for contradiction, that f (S) is linearly dependent. Then we can find scalars
s1, ... , sk (not all zero) and elements w1, ... ,ws in f (S) with

∑
siwi = 0W . But each wi

must be f (vi ) for some vi ∈ S , and 0W = f (0V ), so we have f (
∑

sivi ) =
∑

si f (vi ) =

0W = f (0V ). Since f is injective, we can conclude that
∑

sivi = 0V and thus S is itself
linearly dependent, contradicting our assumption.

(iv) SupposeV is infinite-dimensional. ThenV contains an infinite linearly independent
setS by Exercise 5.1Exercise 5.1. By (iii), f (S) is a linearly independent set inW ; and it is still infinite,
since f is injective. So W is infinite-dimensional. □

Lemma 6.17 Let f : V → W be a vector space isomorphism. Then V is finite-
dimensional if and only if W is; and if this holds, then dim(V ) = dim(W ).

Proof Parts (ii) and (iv) of Lemma 6.16Lemma 6.16 show that V is finite-dimensional iff W is. Parts
(i) and (iii) show that ifS is a basis ofV , then f (S) is a basis ofW ; but, since f is injective,
f (S) has the same number of elements as S. □

Corollary 6.18 If m ̸= n, then Km and Kn are not isomorphic as vector spaces.

Proof We’ve seen that Kn has dimension n, so if an isomorphism existed for m ̸= n it
would contradict the previous lemma. □
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6.3 The rank-nullity theorem

Now that we know the notion of “dimension” is well-behaved, we’re going to study the
dimensions of subspaces coming from a linear map.

Definition 6.19 (Rank and nullity for linear maps and matrices) Let V ,W be K-
vector spaces with W finite dimensional. The rank and nullity of a linear map f :

V → W are defined as

rank(f ) = dim Im(f ), nullity(f ) = dimKer(f ).

The following important theorem establishes a relation between the nullity and the rank
of a linear map. It states something that is intuitively not surprising, namely that the
dimension of the image of a linear map f : V → W is the dimension of the vector space
V minus the dimension of the subspace of vectors that we “lose”, that is, those that are
mapped onto the zero vector of W . More precisely:

Theorem 6.20 (Rank–nullity theorem) Let V ,W be finite dimensional K-vector
spaces and f : V → W a linear map. Then we have

dim(V ) = dimKer(f ) + dim Im(f ) = nullity(f ) + rank(f ).

Proof Letd = dimKer(f )andn = dimV , so thatd ⩽ nby Lemma 5.15Lemma 5.15. Let{v1, ... , vd}
be a basis of S = Ker(f ). By Theorem 5.10Theorem 5.10 (ii) we can find linearly independent vectors
Ŝ = {vd+1, ... , vn} so that T = S ∪ Ŝ is a basis of V . Now U = span(Ŝ) is a subspace of
V of dimension n − d . We consider the linear map

g : U → Im(f ), v 7→ f (v).

We want to show that g is an isomorphism, since then dim Im(f ) = dim(U) = n− d , so
that

dim Im(f ) = n − d = dim(V )− dimKer(f ),

as claimed.

We first show that g is injective. Assume g(v) = 0W . Since v ∈ U , we can write v =

sd+1vd+1 + · · · + snvn for scalars sd+1, ... , sn. Since g(v) = 0W we have v ∈ Ker(f ),
hence we can also write v = s1v1 + · · ·+ sdvd for scalars s1, ... , sd , subtracting the two
expressions for v , we get

0V = s1v1 + · · ·+ sdvd − sd+1vd+1 − · · · − snvn.

Since {v1, ... , vn} is a basis, it follows that all the coefficients si vanish, where 1 ⩽ i ⩽ n.
Therefore we have v = 0V and g is injective.

Second, we show that g is surjective. Suppose w ∈ Im(f ) so that w = f (v) for some
vector v ∈ V . We write v =

∑n
i=1 sivi for scalars s1, ... , sn. Using the linearity of f , we

compute

w = f (v) = f

(
n∑

i=1

sivi

)
= f
( n∑

i=d+1

sivi︸ ︷︷ ︸
=v̂

)
= f (v̂)

where v̂ ∈ U . We thus have an element v̂ with g(v̂) = w . Since w was arbitrary, we
conclude that g is surjective. □
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Corollary 6.21 Let V ,W be finite dimensional K-vector spaces with dim(V ) =

dim(W ) and f : V → W a linear map. Then the following statements are equi-
valent:

(i) f is injective;
(ii) f is surjective;

(iii) f is bijective.

Proof (i) ⇒ (ii) By Lemma 6.14Lemma 6.14, the map f is injective if and only if Ker(f ) = {0V }
so that dimKer(f ) = 0 by Example 5.14Example 5.14 (i). Theorem 6.20Theorem 6.20 implies that dim Im(f ) =

dim(V ) = dim(W ) and hence Lemma 5.15Lemma 5.15 implies that Im(f ) = W , that is, f is surject-
ive.

(ii) ⇒ (iii) Since f is surjective Im(f ) = W and hence dim Im(f ) = dim(W ) = dim(V ).
Theorem 6.20Theorem 6.20 implies that dimKer(f ) = 0 so that Ker(f ) = {0V } by Lemma 5.15Lemma 5.15. Ap-
plying Lemma 6.14Lemma 6.14 again shows that f is injective and hence bijective.

(iii) ⇒ (i) Since f is bijective, it is also injective. □

Corollary 6.22 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then rank(f ) ⩽ min{dim(V ), dim(W )} and

rank(f ) = dim(V ) ⇐⇒ f is injective,
rank(f ) = dim(W ) ⇐⇒ f is surjective.

Proof For the first claim it is sufficient to show that rank(f ) ⩽ dim(V ) and rank(f ) ⩽
dim(W ). By definition, rank(f ) = dim Im(f ) and since Im(f ) ⊂ W , we have rank(f ) =

dim Im(f ) ⩽ dim(W ) with equality if and only if f is surjective, by Lemma 5.15Lemma 5.15.

Theorem 6.20Theorem 6.20 implies that rank(f ) = dim Im(f ) = dim(V )−dimKer(f ) ⩽ dim(V )with
equality if and only if dimKer(f ) = 0, that is, when f is injective (as we have just seen in
the proof of the previous corollary). □

Corollary 6.23 Let V ,W be finite dimensional K-vector spaces and f : V → W a
linear map. Then we have

(i) If dim(V ) < dim(W ), then f is not surjective;
(ii) If dim(V ) > dim(W ), then f is not injective. In particular, there exist non-zero

vectors v ∈ V with f (v) = 0W .

Proof (i) Suppose dim(V ) < dim(W ), then by Theorem 6.20Theorem 6.20

rank(f ) = dim(V )− dimKer(f ) ⩽ dim(V ) < dim(W )

and the claim follows from Corollary 6.22Corollary 6.22.

(ii) Suppose dim(V ) > dim(W ), then

rank(f ) ⩽ dim(W ) < dim(V )

and the claim follows from Corollary 6.22Corollary 6.22. □
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Proposition 6.24 LetV ,W be finite dimensionalK-vector spaces. Then there exists
an isomorphism Θ : V → W if and only if dim(V ) = dim(W ).

Proof ⇒ This was already proved in Lemma 6.17Lemma 6.17.

⇐ Letdim(V ) = dim(W ) = n ∈ N. Choose a basisT = {w1, ... ,wn}ofW and consider
the linear map

Θ : Kn → W , x⃗ 7→ x1w1 + · · ·+ xnwn,

where x⃗ = (xi )1⩽i⩽n Notice that Θ is injective. Indeed, if Θ(x⃗) = x1w1 + · · · + xnwn =

0W , then x1 = · · · = xn = 0, since {w1, ... ,wn} are linearly independent. We thus con-
clude KerΘ = {0V } and hence Lemma 6.14Lemma 6.14 implies that Θ is injective and therefore
bijective by Corollary 6.21Corollary 6.21. The mapΘ is linear and bijective, thus an isomorphism. Like-
wise, for a choice of basisS = {v1, ... , vn}ofV , we obtain an isomorphismΦ : Kn → V .
Since the composition of bijective maps is again bijective, the map Θ ◦ Φ−1 : V → W

is bijective and since by Proposition 6.7Proposition 6.7 the composition of linear maps is again linear,
the map Θ ◦ Φ−1 : V → W is an isomorphism. □

Exercises

Exercise 6.1 Let f : V → W be a linear map, k ⩾ 2 a natural number and
s1, ... , sk ∈ K and v1, ... , vk ∈ V . Show that f : V → W satisfies

f (s1v1 + · · ·+ skvk) = s1f (v1) + · · ·+ sk f (vk)

or written with the sum symbol

f

(
k∑

i=1

sivi

)
=

k∑
i=1

si f (vi ).

This identity is used frequently in Linear Algebra, so make sure you understand it.

Exercise 6.2 Show, conversely, that if a mapping f : V → W satisfies

f (s1v1 + s2v2) = s1f (v1) + s2f (v2)

for all s1, s2 ∈ K and v1, v2 ∈ V , then it is linear.

Exercise 6.3 Show that the K-vector space Kn of column vectors with n entries is
isomorphic to the K-vector space Kn of row vectors with n entries.

Exercise 6.4 Let f : U → V and g : V → W be linear maps. Show that

rank(g ◦ f ) ⩽ min(rank(f ), rank(g)).
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6.3 — Exercises

Exercise 6.5 Show that theR-vector spacesPn(R) andRn+1 are isomorphic for all
n ∈ N.

Exercise 6.6 (requires concepts from M03 Analysis I) Let C∞(R) be the R-vector
space of functions R → R which are infinitely often differentiable. Show that the
map D defined by

D(f )(x) = f ′′(x)− 2f ′(x) + f (x)

is a linear mapC∞(R) → C∞(R). IsD surjective? What is the dimension ofKerD?
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We’ll now “come down to earth” a bit, and ask how to actually calculate with linear maps
on our standard vector space Kn. We’ll translate this into statements about matrices; so
we need to introduce some new ways to calculate with those.

7.1 Linear mappings associated to matrices

Definition 7.1 (Mapping associated to a matrix) For an (m × n)-matrix A =

(Aij)1⩽i⩽m,1⩽j⩽n ∈ Mm,n(K)with column vectors a⃗1, ... , a⃗n ∈ Km we define a map-
ping

fA : Kn → Km, x⃗ 7→ Ax⃗ ,

where the column vector Ax⃗ ∈ Km is obtained by matrix multiplication of the mat-
rix A ∈ Mm,n(K) and the column vector x⃗ = (xi )1⩽i⩽n ∈ Kn:

Ax⃗ = a⃗1x1 + a⃗2x2 + · · ·+ a⃗nxn =


A11x1 + A12x2 + · · ·+ A1nxn
A21x1 + A22x2 + · · ·+ A2nxn

...
Am1x1 + Am2x2 + · · ·+ Amnxn

 .

It’s clear that fA is a linear map. We’ll now show that any linear map Kn → Km arises
this way, from a uniquely determined A.

Proposition 7.2 Let A,B ∈ Mm,n(K). Then fA = fB if and only if A = B.

Proof Recall that if f : X → Y and g : X → Y are mappings from a set X into a set Y ,
then we write f = g if f (x) = g(x) for all elements x ∈ X .

If A = B, then Aij = Bij for all 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, hence we conclude that fA = fB.
In order to show the converse direction we consider the standard basis e⃗i = (δij)1⩽j⩽n,
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i = 1, ... , n of Kn. Now by assumption

fA(e⃗i ) =


A1i

A2i

...
Ami

 = fB(e⃗i ) =


B1i

B2i

...
Bmi

 .

Since this holds for all i = 1, ... , n, we conclude Aij = Bij for all j = 1, ... ,m and i =

1, ... , n. Therefore, we have A = B, as claimed. □

Remark 7.3 Note that [fA(e⃗i )]j , the j-th entry of fA(e⃗i ), is equal to [A]ji ; equival-
ently, we have

fA(e⃗i ) =
m∑
j=1

Aji e⃗j .

(This looks wrong, but it is really correct as stated.)

Lemma 7.4 A mapping g : Km → Kn is linear if and only if there exists a matrix
B ∈ Mn,m(K) so that g = fB.

Proof We’ve just seen that for any B ∈ Mn,m(K), the map fB is linear.

Conversely, let g : Km → Kn be linear. Let {e⃗1, ... , e⃗m} denote the standard basis of
Km. Write

g(e⃗i ) =

B1i

...
Bni

 for i = 1, ... ,m

and consider the matrix

B =

B11 · · · B1m

...
. . .

...
Bn1 · · · Bnm

 ∈ Mn,m(K).

For i = 1, ... ,m we obtain

(7.1) fB(e⃗i ) = Be⃗i = g(e⃗i ).

Any vector v⃗ = (vi )1⩽i⩽m ∈ Km can be written as

v⃗ = v1e⃗1 + · · ·+ vme⃗m

for (unique) scalars vi , i = 1, ... ,m. Hence using the linearity of g and fB, we compute
g(v⃗)− fB(v⃗) = g(v1e⃗1 + · · ·+ vme⃗m)− fB(v1e⃗1 + · · ·+ vme⃗m)

= v1 (g(e⃗1)− fB(e⃗1)) + · · ·+ vm (g(e⃗m)− fB(e⃗m)) = 0Kn ,

where the last equality uses (7.17.1). Since the vector v⃗ is arbitrary, it follows that g = fB,
as claimed. □

Remark 7.5 Let Lin(Kn,Km) denote the linear maps from Kn to Km. Then A 7→
fA defines a mapping Mm,n(K) → Lin(Kn,Km). Proposition 7.2Proposition 7.2 shows that this
mapping is injective, and Lemma 7.4Lemma 7.4 shows that it is surjective; so it is a bijection.

(If you’re not used to it, this kind of construction – mappings between spaces of
mappings – can be a bit confusing; but one gets used to it with practice.)
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Composition and inverses

The motivation for the Definition 2.13Definition 2.13 of matrix multiplication is given by the following
theorem, which states that the mapping fAB associated to the matrix product AB is the
composition of the mapping fA associated to the matrix A and the mapping fB associ-
ated to the matrix B. More precisely:

Theorem 7.6 LetA ∈ Mm,n(K) andB ∈ Mn,r (K), so we have maps fA : Kn → Km,
fB : Kr → Kn, and fAB : Kr → Km. Then fAB = fA ◦ fB.

Proof We’ll interpret this as a special case of the associativity of matrix multiplication
(part (v) of Proposition 2.162.16). Two mappings are equal if they take the same values on
any input, so we need to show that fAB(x⃗) = fA(fB(x)) for all x⃗ ∈ Kr . Then we have

fAB(x) = (A · B) · x⃗ (regarding x⃗ as an r × 1 matrix)

= A · (B · x⃗) (by associativity)

= A · (fB(x⃗))
= fA(fB(x⃗)). □

Proposition 7.7 Let A ∈ Mm,n(K). Then A is invertible if and only if the linear map
fA is bijective. If this is the case, the inverse mapping (fA)

−1 is the mapping associ-
ated to the inverse matrix A−1, i.e. we have the relation

(fA)
−1 = fA−1 .

Proof First, notice that the mapping f1n : Kn → Kn associated to the unit matrix is the
identity mapping on Kn, that is, for all n ∈ N, we have f1n = IdKn .

Let A ∈ Mm,n(K) and suppose that fA : Kn → Km is bijective with inverse function
(fA)

−1 : Km → Kn. We saw in the previous chapter that (fA)−1 is also a linear map.
Hence, by Lemma 7.4Lemma 7.4, (fA)−1 = fB for some matrix B ∈ Mn,m(K). Using Theorem 7.6Theorem 7.6,
we obtain

fBA = fB ◦ fA = (fA)
−1 ◦ fA = IdKn = f1n

hence Proposition 7.2Proposition 7.2 implies that BA = 1n. Likewise we have

fAB = fA ◦ fB = fA ◦ (fA)−1 = IdKm = f1m

so that AB = 1m. Thus A is invertible, and B is its inverse.

Conversely, let A ∈ Mm,n(K) and suppose the matrix B ∈ Mn,m(K) satisfies AB = 1m
and BA = 1n. Then, as before, we have

fAB = f1m = IdKm = fA ◦ fB and fBA = f1n = IdKn = fB ◦ fA

showing that fA : Kn → Km is bijective with inverse function fB : Km → Kn. □

Corollary 7.8 A non-square matrix cannot be invertible.

Proof IfA ∈ Mm,n(K) is invertible, then fA is an isomorphism betweenKn andKm, and
we have seen that no such isomorphism exists unless m = n. □
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We also get a little extra information when m = n:

Proposition 7.9 Let n ∈ N and A ∈ Mn,n(K) a square matrix. Then the following
statements are equivalent:

(i) The matrix A admits a left inverse, that is, a matrix B ∈ Mn,n(K) such that
BA = 1n;

(ii) The matrix A admits a right inverse, that is, a matrix B ∈ Mn,n(K) such that
AB = 1n;

(iii) The matrix A is invertible.

Proof By the definition of the invertibility of a matrix, (iii) implies both (i) and (ii).

(i)⇒ (iii) SinceBA = 1n we have fB◦fA = f1n = IdKn by Theorem 7.6Theorem 7.6 and hence fB is a left
inverse for fA. Therefore fA is injective (see Review Exercises on mappings). The implica-
tion (i) ⇒ (ii) of Corollary 6.21Corollary 6.21 implies that fA is actually bijective, so by Proposition 7.7Proposition 7.7,
A is invertible.

(ii) ⇒ (iii) is completely analogous – since fA has a right inverse, it is surjective, hence
bijective by Corollary 6.21Corollary 6.21 and we conclude as before. □

7.2 Computing kernels and images

If A ∈ Mm,n(K) is a matrix, then we define

rank(A) = rank(fA), nullity(A) = nullity(fA).

We want to compute these explicitly, and compute bases for the subspacesker(fA) ⊂ Kn

and Im(fA) ⊂ Km.

Image and rank

In order to compute a basis for Im(fA) we use the following lemma:

Lemma 7.10 The image of fA is equal to the column space of A, i.e. the subspace of
Km spanned by the column vectors a⃗1, ... , a⃗n.

Proof The columns a⃗1, ... , a⃗n of A are the images of the standard basis vectors, so they
are clearly contained in Im(fA); hence span(a⃗1, ... , a⃗n) ⊆ Im(fA). Conversely, for any
x⃗ = (xj)1⩽j⩽n ∈ Kn we have fA(x⃗) =

∑
j xj f (e⃗j) =

∑
j xj a⃗j ∈ span(a⃗1, ... , a⃗n). □

We saw in Chapter 5 how to compute the a basis of the subspace generated by a finite
list of vectors, so we can just apply that here to compute the image. However, since
the columns of A are column vectors (not row vectors), we have to rewrite them as row
vectors before applying RREF.

That is, to compute the image of A, we need to perform the following steps:

• form the transpose matrix AT ;
• compute its RREF;
• take the non-zero rows in the RREF matrix;
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• transpose these again to get column vectors.

(Equivalently, we can directly apply column operations to A to get a “reduced column
echelon form” of A whose columns are the desired basis; but we stick with RREF for the
sake of familiarity.)

Example 7.11 “Let

A =


1 −2 0 4

3 1 1 0

−1 −5 −1 8

3 8 2 −12


Compute a basis for the image of fA : R4 → R4 and the rank of A.”

The transpose matrix is

AT =


1 3 −1 3

−2 1 −5 8

0 1 −1 2

4 0 8 −12


Computing its RREF yields 

1 0 2 −3

0 1 −1 2

0 0 0 0

0 0 0 0

 .

The non-zero row vectors are ω⃗1 =
(
1 0 2 −3

)
, ω⃗2 =

(
0 1 −1 2

)
. Our

basis of Im(f ) is thus

{ω⃗T
1 , ω⃗

T
2 } =




1

0

2

−3

 ,


0

1

−1

2


 .

Since this basis has two elements, we also conclude that rank(A) = 2.

Kernel and nullity

We already know one way of computing the kernel: since the kernel of fA is just the set
Sol(A, 0), we can apply the general machinery of “free variables” etc. However, there is
a slightly slicker way, which allows us to compute the kernel and the image at the same
time:

Proposition 7.12 Consider the augmented matrixB = (AT | In). Divide up the RREF
of this matrix into the shape (

C (junk)
0 D

)
where C has no zero rows. Then the rows of C (transposed into column vectors) are a
basis of the image of fA, and the rows of D (transposed) are a basis of the kernel.

Proof The first m columns of the RREF of B are the RREF of AT , and we already know
this gives a basis of the image; so we need to show that the rest of the RREF gives a basis
of the kernel.
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Let’s write D̃ for the square matrix given by the last n columns of the RREF, so D̃ =(
(junk)

D

)
. Note that the “junk” submatrix has r rows, where r = rank(A). Moreover,

D is itself in RREF, so its nonzero rows are linearly independent; and it can’t have any
zero rows, since D̃ is invertible.

We know that D̃ gives the transformation matrix to put AT into RREF, so the RREF of AT

is equal to D̃AT . But the i -th row of the RREF is zero for i > r = rank(A); so if δi are the
rows of D̃, we have δ⃗i · AT = 0⃗ for r + 1 ⩽ i ⩽ n. Transposing this, we have A · δ⃗Ti = 0

for all such i , so we obtain n − r linearly independent vectors in the kernel. However,
since the kernel has dimension n− r from the rank-nullity theorem, these vectors must
in fact be a basis. □

Remark 7.13 Actually the “junk” submatrix isn’t really junk: one can check that for
1 ⩽ i ⩽ r , the vector δ⃗Ti is a choice of vector in Kn mapping under fA to the i -th
vector in our basis of the image.

Example 7.14 (Kernel of a linear map ) Let

C =

 1 0 1 7

−2 −3 1 2

7 9 −2 1


In order to compute Ker(fC) we apply Gaussian elimination to CT whilst keeping
track of the relevant elementary matrices as in the algorithm for computing the
inverse of a matrix. That is, we consider

1 −2 7

0 −3 9

1 1 −2

7 2 1

∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Gauss–Jordan elimination (again, Gaussian elimination is enough) gives
1 0 1

0 1 −3

0 0 0

0 0 0

∣∣∣∣∣∣∣∣
0 0 − 2

5
1
5

0 0 7
5 − 1

5

1 0 16
5 − 3

5

0 1 21
5 − 3

5

 .

The vectors ξ⃗3 =
(
1 0 16

5 − 3
5

)
and ξ⃗4 =

(
0 1 21

5 − 3
5

)
thus span the sub-

space of vectors ξ satisfying ξCT = 0K3 . A basis S for the kernel of fC is thus given
by

S =




1

0
16
5

− 3
5

 ,


0

1
21
5

− 3
5




and so nullity(C) = 2.
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Exercises

Exercise 7.1 Compute a basis for the kernel of the linear map fA from
Example 7.11Example 7.11.

Exercise 7.2 Prove Remark 7.13Remark 7.13, and use it to find, for each basis vector b⃗ we found
for image(fA) in Example 7.11Example 7.11, a vector a⃗ with fA(a⃗) = b⃗.

Exercise 7.3 Let M ∈ Mm,n(K), with m < n.
(i) Show that M cannot have a left inverse.

(ii) Show that M has a right inverse if and only if its rank is m.
Compute a right inverse of the matrix

M =

 1
2 −1 0 1

2

0 0 −1 1

0 −1 1 −1

 ∈ M3,4(R).

Exercise 7.4
(i) Show that if M and N are two m × n matrices which are right-equivalent

(i.e. there is an invertible square A such that M = NA), then M and N have
the same rank.

(ii) Show that the same holds ifMandNare left-equivalent. (Careful: this is harder
than (i), since the definitions are not symmetric! You may find Exercise 6.4Exercise 6.4 useful
here.)

(iii) Hence, or otherwise, show that for any matrix M we have rank(MT ) =

rank(M) (“row rank equals column rank”).

72



CHAPTER 8

Coordinate systems and changes of basis
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8.1 Linear coordinate systems

Notice that Proposition 6.24Proposition 6.24 implies that every finite dimensional K-vector space V is
isomorphic to Kn, where n = dim(V ). Choosing an isomorphism from V to Kn allows
to uniquely describe each vector of V in terms of n scalars, its coordinates.

Definition 8.1 (Linear coordinate system) Let V be a K-vector space of dimension
n ∈ N. A linear coordinate system is an injective linear map φ : V → Kn. The
entries of the vector φ(v) ∈ Kn are called the coordinates of the vector v ∈ V with
respect to the coordinate system φ.

We only request that φ is injective, but the mapping φ is automatically bijective by
Corollary 6.21Corollary 6.21.

Example 8.2 (Standard coordinates) On the vector space Kn we have a linear co-
ordinate system defined by the identity mapping, that is, we define φ(v⃗) = v⃗ for
all v⃗ ∈ Kn. We call this coordinate system the standard coordinate system of Kn.

Example 8.3 (Non-linear coordinates) In Linear Algebra we only consider linear co-
ordinate systems, but in other areas of mathematics non-linear coordinate systems
are also used. An example are the so-called polar coordinates

ρ : R2 \ {0R2} → (0,∞)× (−π,π] ⊂ R2, x⃗ 7→
(
r

ϕ

)
=

(√
(x1)2 + (x2)2

arg(x⃗)

)
,

where arg(x⃗) = arccos(x1/r) for x2 ⩾ 0 and arg(x⃗) = − arccos(x1/r) for x2 < 0.
Notice that the polar coordinates are only defined onR2 \{0R2}. For further details
we refer to the Calculus module.

A convenient way to visualise a linear coordinate system φ : R2 → R2 is to consider the
preimage φ−1(C) of the standard coordinate grid

(8.1) C = {se⃗1 + ke⃗2|s ∈ R, k ∈ Z} ∪ {ke⃗1 + se⃗2|s ∈ R, k ∈ Z}
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CHAPTER 8 — COORDINATE SYSTEMS AND CHANGES OF BASIS

underφ. The first set in the union (8.18.1) of sets are the horizontal coordinate lines and the
second set the vertical coordinate lines.

Example 8.4 (see Figure 8.1Figure 8.1) The vector v⃗ =

(
2

1

)
has coordinates

(
2

1

)
with re-

spect to the standard coordinate system of R2. The same vector has coordinates

φ(v⃗) =

(
4

−1

)
with respect to the coordinate system φ

((
v1
v2

))
=

(
v1 + 2v2
−v1 + v2

)
.

FIGURE 8.1. The coordinates of a vector with respect to different co-
ordinate systems.

While Kn has an obvious “best” coordinate system – the identity map – in an abstract
vector space V , there is no preferred linear coordinate system, and a choice of linear
coordinate system amounts to choosing a so-called ordered basis of V .

Definition 8.5 (Ordered basis) Let V be a finite dimensional K-vector space. An
(ordered) n-tuple b = (v1, ... , vn) of vectors from V is called an ordered basis of V
if the set {v1, ... , vn} is a basis of V .

That there is a bijective correspondence between ordered bases ofV and linear coordin-
ate systems on V is a consequence of the following very important lemma which states
in particular that two linear maps f , g : V → W are the same if and only if they agree
on a basis of V .

Lemma 8.6 Let V ,W be finite dimensional K-vector spaces.
(i) Suppose f , g : V → W are linear maps andb = (v1, ... , vn) is an ordered basis

of V . Then f = g if and only if f (vi ) = g(vi ) for all 1 ⩽ i ⩽ n.
(ii) If dimV = dimW and b = (v1, ... , vn) is an ordered basis of V and c =

(w1, ... ,wn) an ordered basis of W , then there exists a unique isomorphism
f : V → W such that f (vi ) = wi for all 1 ⩽ i ⩽ n.

Proof (i) ⇒ If f = g then f (vi ) = g(vi ) for all 1 ⩽ i ⩽ n. ⇐ Let v ∈ V . Since b is
an ordered basis of V there exist unique scalars s1, ... , sn ∈ K such that v =

∑n
i=1 sivi .

Using the linearity of f and g , we compute

f (v) = f

(
n∑

i=1

sivi

)
=

n∑
i=1

si f (vi ) =
n∑

i=1

sig(vi ) = g

(
n∑

i=1

sivi

)
= g(v)

so that f = g .
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8.1 — Linear coordinate systems

(ii) Let v ∈ V . Since {v1, ... , vn} is a basis of V there exist unique scalars s1, ... , sn such
that v =

∑n
i=1 sivi . We define f (v) =

∑n
i=1 siwi , so that in particular f (vi ) = wi for

1 ⩽ i ⩽ n. Since {w1, ... ,wn} are linearly independent we have f (v) = 0W if and only
if s1 = · · · = sn = 0, that is v = 0V . Lemma 6.14Lemma 6.14 implies that f is injective and hence an
isomorphism by Corollary 6.21Corollary 6.21. The uniqueness of f follows from (i). □

Remark 8.7 Notice that Lemma 8.6Lemma 8.6 is wrong for maps that are not linear. Consider

f : R2 → R,
(
x1
x2

)
7→ x1x2

and

g : R2 → R
(
x1
x2

)
7→ (x1 − 1)(x2 − 1).

Then f (e⃗1) = g(e⃗1) and f (e⃗2) = g(e⃗2), but f ̸= g .

Given an ordered basis b = (v1, ... , vn) of V , the previous lemma implies that there is a
unique linear coordinate system β : V → Kn such that

(8.2) β(vi ) = e⃗i

for 1 ⩽ i ⩽ n, where {e⃗1, ... , e⃗n} denotes the standard basis of Kn. Conversely, if β :

V → Kn is a linear coordinate system, we obtain an ordered basis of V

b = (β−1(e⃗1), ... ,β
−1(e⃗n))

and these assignments are inverse to each other. Notice that for all v ∈ V we have

β(v) =

s1
...
sn

 ⇐⇒ v = s1v1 + · · ·+ snvn.

Remark 8.8 (Notation) We will denote an ordered basis by an upright bold Roman
letter, such as b, c,d or e. We will denote the corresponding linear coordinate sys-
tem by the corresponding bold Greek letter β,γ,δ or ε, respectively.

Example 8.9 Let V = K3 and e = (e⃗1, e⃗2, e⃗3) denote the ordered standard basis.
Then for all x⃗ = (xi )1⩽i⩽3 ∈ R3 we have

ε(x⃗) = x⃗ .

where ε denotes the linear coordinate system corresponding to e. Notice that ε
is the standard coordinate system on Kn. Considering instead the ordered basis
b = (v⃗1, v⃗2, v⃗3) = (e⃗1 + e⃗3, e⃗3, e⃗2 − e⃗1), we obtain

β(x⃗) =

 x1 + x2
x3 − x1 − x2

x2


since

x⃗ =

x1
x2
x3

 = (x1 + x2)

1

0

1


︸ ︷︷ ︸
=v⃗1

+(x3 − x1 − x2)

0

0

1


︸ ︷︷ ︸
=v⃗2

+x2

−1

1

0


︸ ︷︷ ︸

=v⃗3

.
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8.2 The matrix of a linear map

Fixing linear coordinate systems – or equivalently ordered bases – on finite dimensional
vector spacesV ,W allows to describe each linear map g : V → W in terms of a matrix:

Definition 8.10 (Matrix representation of a linear map ) Let V ,W be finite dimen-
sional K-vector spaces, b an ordered basis of V and c an ordered basis of W . The
matrix representation of a linear map g : V → W with respect to the ordered bases
b and c is the unique matrix M(g ,b, c) ∈ Mm,n(K) such that

fM(g ,b,c) = γ ◦ g ◦ β−1,

where β and γ denote the linear coordinate systems corresponding to b and c, re-
spectively.

The role of the different mappings can be summarised in terms of the following diagram:

V
g−−−−→ W

β−1

x yγ

Kn
fM(g ,b,c)−−−−→ Km

In practise, we can compute the matrix representation of a linear map as follows:

Proposition 8.11 Let V ,W be finite dimensional K-vector spaces, b = (v1, ... , vn)

an ordered basis of V , c = (w1, ... ,wm) an ordered basis of W and g : V → W a
linear map. Then there exist unique scalars Aij ∈ K, where 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

such that

(8.3) g(vj) =
m∑
i=1

Aijwi , 1 ⩽ j ⩽ n.

Furthermore, the matrix A = (Aij)1⩽i⩽m,1⩽j⩽n satisfies

fA = γ ◦ g ◦ β−1

and hence is the matrix representation of g with respect to the ordered bases b and
c.

Remark 8.12 Notice that we sum over the first index of Aij in (8.38.3).

Proof of Proposition 8.11Proposition 8.11 For all 1 ⩽ j ⩽ n the vector g(vj) is an element of W and
hence a linear combination of the vectorsc = (w1, ... ,wm), asc is an ordered basis ofW .
We thus have scalars Aij ∈ K with 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n such that g(vj) =

∑m
i=1 Aijwi .

If Âij ∈ K with 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n also satisfy g(vj) =
∑m

i=1 Âijwi , then subtracting
the two equations gives

g(vj)− g(vj) = 0W =
m∑
i=1

(Aij − Âij)wi

so that 0 = Aij − Âij for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n, since the vectors (w1, ... ,wm) are linearly
independent. It follows that the scalars Aij are unique.
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We want to show that fA ◦ β = γ ◦ g . Using Lemma 8.6Lemma 8.6 it is sufficient to show that
(fA ◦ β)(vj) = (γ ◦ g)(vj) for 1 ⩽ j ⩽ n. Let {e⃗1, ... , e⃗n} denote the standard basis of
Kn so that β(vj) = e⃗j and {d⃗1, ... , d⃗m} the standard basis of Km so that γ(wi ) = d⃗i . We
compute

(fA ◦ β)(vj) = fA(e⃗j) = Ae⃗j =
m∑
i=1

Aij d⃗i =
m∑
i=1

Aijγ(wi ) = γ

(
m∑
i=1

Aijwi

)
= γ(g(vj)) = (γ ◦ g)(vj)

where we have used the linearity of γ and (8.38.3). □

This all translates to a simple recipe for calculating the matrix representation of a linear
map, which we now illustrate in some examples.

Example 8.13 Let V = P2(R) and W = P1(R) and g = d
dx . We consider the

ordered basis b = (v1, v2, v3) = ((1/2)(3x2 − 1), x , 1) of V and c = (w1,w2) =

(x , 1) of W .
(i) Compute the image under g of the elements vi of the ordered basis b.

g

(
1

2
(3x2 − 1)

)
=

d

dx

(
1

2
(3x2 − 1)

)
= 3x

g (x) =
d

dx
(x) = 1

g (1) =
d

dx
(1) = 0.

(ii) Write the image vectors as linear combinations of the elements of the ordered
basis c.

(8.4)

3x = 3 · w1 + 0 · w2

1 = 0 · w1 + 1 · w2

0 = 0 · w1 + 0 · w2

(iii) Taking the transpose of the matrix of coefficients appearing in (8.48.4) gives the
matrix representation

M

(
d

dx
,b, c

)
=

(
3 0 0

0 1 0

)
.

of the linear map g = d
dx with respect to the bases b, c.

Example 8.14 Let e = (e⃗1, ... , e⃗n) and d = (d⃗1, ... , d⃗m) denote the ordered stand-
ard basis of Kn and Km, respectively. Then for A ∈ Mm,n(K), we have

A = M(fA, e,d),

that is, the matrix representation of the mapping fA : Kn → Km with respect to the
standard bases is simply the matrix A. Indeed, we have

fA(e⃗j) = Ae⃗j =

A1j

...
Amj

 =
m∑
i=1

Aij d⃗i .
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Example 8.15 Let e = (e⃗1, e⃗2) denote the ordered standard basis of R2. Consider
the matrix

A =

(
5 1

1 5

)
= M(fA, e, e).

We want to compute Mat(fA,b,b), where b = (v⃗1, v⃗2) = (e⃗1 + e⃗2, e⃗2 − e⃗1) is not
the standard basis of R2. We obtain

fA(v⃗1) = Av⃗1 =

(
5 1

1 5

)(
1

1

)
=

(
6

6

)
= 6 · v⃗1 + 0 · v⃗2

fA(v⃗2) = Av⃗2 =

(
5 1

1 5

)(
−1

1

)
=

(
−4

4

)
= 0 · v⃗1 + 4 · v⃗2

Therefore, we have

M(fA,b,b) =

(
6 0

0 4

)
.

Proposition 8.16 Let V ,W be finite dimensional K-vector spaces, b an ordered
basis of V with corresponding linear coordinate system β, c an ordered basis of W
with corresponding linear coordinate system γ and g : V → W a linear map. Then
for all v ∈ V we have

γ(g(v)) = M(g ,b, c)β(v).

Proof By definition we have for all x⃗ ∈ Kn and A ∈ Mm,n(K)

Ax⃗ = fA(x⃗).

Combining this with Definition 8.10Definition 8.10, we obtain for all v ∈ V

M(g ,b, c)β(v) = fM(g ,b,c)(β(v)) = (γ ◦ g ◦ β−1)(β(v)) = γ(g(v)),

as claimed. □

Remark 8.17 Explicitly, Proposition 8.16Proposition 8.16 states the following. Let A = M(g ,b, c)

and let v ∈ V . Since b is an ordered basis of V , there exist unique scalars si ∈ K,
1 ⩽ i ⩽ n such that

v = s1v1 + · · ·+ snvn.

Then we have
g(v) = t1w1 + · · ·+ tmwm,

where  t1
...
tm

 = A

s1
...
sn

 .

Example 8.18 (Example 8.13Example 8.13 continued) With respect to the ordered basis b =(
1
2 (3x

2 − 1), x , 1
)

, the polynomial a2x2+ a1x + a0 ∈ V = P2(R) is represented by
the vector

β(a2x
2 + a1x + a0) =

 2
3a2
a1

a2
3 + a0


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Indeed

a2x
2 + a1x + a0 =

2

3
a2

(
1

2
(3x2 − 1)

)
+ a1x +

(a2
3

+ a0
)
1.

Computing M( d
dx ,b, c)β(a2x

2 + a1x + a0) gives(
3 0 0

0 1 0

) 2
3a2
a1

a2
3 + a0

 =

(
2a2
a1

)
and this vector represents the polynomial 2a2 · x + a1 · 1 = d

dx (a2x
2 + a1x + a0)

with respect to the basis c = (x , 1) of P1(R).

As a corollary to Proposition 8.11Proposition 8.11 we obtain:

Corollary 8.19 Let V1,V2,V3 be finite dimensional K-vector spaces and bi an
ordered basis of Vi for i = 1, 2, 3. Let g1 : V1 → V2 and g2 : V2 → V3 be linear
maps. Then

M(g2 ◦ g1,b1,b3) = M(g2,b2,b3)M(g1,b1,b2).

Proof Let us write C = M(g2 ◦ g1,b1,b3) and A1 = M(g1,b1,b2) as well as A2 =

M(g2,b2,b3). Using Proposition 7.2Proposition 7.2 and Theorem 7.6Theorem 7.6 it suffices to show that fC = fA2A1 =

fA2 ◦ fA1 . Now Proposition 8.11Proposition 8.11 gives

fA2 ◦ fA1 = β3 ◦ g2 ◦ β
−1
2 ◦ β2 ◦ g1 ◦ β

−1
1 = β3 ◦ g2 ◦ g1 ◦ β

−1
1 = fC. □

Proposition 8.20 Let V ,W be finite dimensional K-vector spaces, b an ordered
basis of V and c an ordered basis of W . A linear map g : V → W is bijective if
and only if M(g ,b, c) is invertible. Moreover, in the case where g is bijective we have

M(g−1, c,b) = (M(g ,b, c))−1.

Proof Let n = dim(V ) and m = dim(W ).

⇒ Let g : V → W be bijective so that g is an isomorphism and hence n = dim(V ) =

dim(W ) = m by Proposition 6.24Proposition 6.24. Then Corollary 8.19Corollary 8.19 gives

M(g−1, c,b)M(g ,b, c) = M(g−1 ◦ g ,b,b) = M(IdV ,b,b) = 1n

and
M(g ,b, c)M(g−1, c,b) = M(g ◦ g−1, c, c) = M(IdW , c, c) = 1n

so that M(g ,b, c) is invertible with inverse M(g−1, c,b).

⇐Conversely supposeA = M(g ,b, c) is invertible with inverseA−1. It follows that n =

m by Corollary 7.8Corollary 7.8. We consider h = β−1 ◦ fA−1 ◦γ : W → V and since fA = γ ◦g ◦β−1

by Proposition 8.11Proposition 8.11, we have

g ◦ h = γ−1 ◦ fA ◦ β ◦ β−1 ◦ fA−1 ◦ γ = γ−1 ◦ fAA−1 ◦ γ = IdW .

Likewise, we have

h ◦ g = β−1 ◦ fA−1 ◦ γ ◦ γ−1 ◦ fA ◦ β = β−1 ◦ fA−1A ◦ β = IdV ,

showing that g admits an inverse mapping h : W → V and hence g is bijective. □
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Remark 8.21 (Computing kernels and images) In order to compute the kernel of
a linear map g : V → W between finite dimensional vector spaces, we can fix
an ordered basis b of V and an ordered basis c of W , compute C = M(g ,b, c),
and apply the methods of Section 7.2Section 7.2 to the matrix C in order to obtain a basis S of
Ker(fC). The desired basis of Ker(g) is then given by β−1(S) (and we can compute
the image similarly).
(While this algorithm can always be carried out in principle, it is computationally
quite involved and error-prone to do by hand.)

Example 8.22 (Basis of a subspace ) Let V = P3(R) so that dim(V ) = 4 and

U = span{x3 + 2x2 − x , 4x3 + 8x2 − 4x − 3, x2 + 3x + 4, 2x3 + 5x + x + 4}.

We want to compute a basis of U .

The obvious ordered basis of V is f = {x3, x2, x , 1}, and the corresponding co-
ordinate system ϕ is the isomorphism V → R4 defined by

ϕ(a3x
3 + a2x

2 + a1x + a0) =
(
a3 a2 a1 a0

)
.

The images of the given generators of U are the row vectors ν⃗1, ... , ν⃗4 given by
ν⃗1 =

(
1 2 −1 0

)
, ν⃗2 =

(
4 8 −4 −3

)
, ν⃗3 =

(
0 1 3 4

)
and ν⃗4 =(

2 5 1 4
)

.

We form the matrix N with the ν⃗i as rows:

N =


1 2 −1 0

4 8 −4 −3

0 1 3 4

2 5 1 4


The RREF of N is 

1 0 −7 0

0 1 3 0

0 0 0 1

0 0 0 0

 .

(Here we applied Gauss-Jordan elimination, but Gaussian elimination would
be enough.) The non-zero rows of the RREF matrix are the vectors ω⃗1 =(
1 0 −7 0

)
, ω⃗2 =

(
0 1 3 0

)
, and ω⃗3 =

(
0 0 0 1

)
.

So a basis of U is given by

{ϕ−1(ω⃗1),ϕ
−1(ω⃗2),ϕ

−1(ω⃗3)} =
{
x3 − 7x , x2 + 3x , 1

}
,

where we use that

ϕ−1
((
a3 a2 a1 a0

))
= a3x

3 + a2x
2 + a1x + a0.

8.3 Change of basis

It is natural to ask how the choice of bases affects the matrix representation of a linear
map.
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Definition 8.23 (Change of basis matrix) Let V be a finite dimensional K-vector
space and b,b′ be ordered bases of V with corresponding linear coordinate sys-
tems β,β′. The change of basis matrix from b to b′ is the matrix C ∈ Mn,n(K) satis-
fying

fC = β′ ◦ β−1

We will write C(b,b′) for the change of basis matrix from b to b′.

Remark 8.24 Notice that by definition

C(b,b′) = M(IdV ,b,b
′).

Since the identity map IdV : V → V is bijective with inverse (IdV )
−1 = IdV ,

Proposition 8.20Proposition 8.20 implies that the change of basis matrix C(b,b′) is invertible with
inverse

C(b,b′)−1 = C(b′,b).

Example 8.25 Let V = R2 and e = (e⃗1, e⃗2) be the ordered standard basis and
b = (v⃗1, v⃗2) = (e⃗1 + e⃗2, e⃗2 − e⃗1) another ordered basis. According to the recipe
mentioned in Example 8.13Example 8.13, if we want to compute C(e,b) we simply need to write
each vector of e as a linear combination of the elements of b. The transpose of the
resulting coefficient matrix is then C(e,b). We obtain

e⃗1 =
1

2
v⃗1 −

1

2
v⃗2,

e⃗2 =
1

2
v⃗1 +

1

2
v⃗2,

so that

C(e,b) =

(
1
2

1
2

− 1
2

1
2

)
.

Reversing the role of e and b gives C(b, e)
v⃗1 = 1e⃗1 + 1e⃗2,

v⃗2 = −1e⃗1 + 1e⃗2,

so that

C(b, e) =

(
1 −1

1 1

)
.

Notice that indeed we have

C(e,b)C(b, e) =

(
1
2

1
2

− 1
2

1
2

)(
1 −1

1 1

)
=

(
1 0

0 1

)
so that C(e,b)−1 = C(b, e).

Theorem 8.26 Let V ,W be finite dimensional K-vector spaces and b,b′ ordered
bases of V and c, c′ ordered bases of W . Let g : V → W be a linear map. Then we
have

M(g ,b′, c′) = C(c, c′)M(g ,b, c)C(b′,b)

In particular, for a linear map g : V → V we have

M(g ,b′,b′) = CM(g ,b,b)C−1,
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where we write C = C(b,b′).

Proof We write A = M(g ,b, c) and B = M(g ,b′, c′) and C = C(b,b′) and D =

C(c, c′). By Remark 8.24Remark 8.24 we have C−1 = C(b′,b), hence applying Proposition 7.2Proposition 7.2 and
Theorem 7.6Theorem 7.6, we need to show that

fB = fD ◦ fA ◦ fC−1 .

By Definition 8.10Definition 8.10 we have
fA = γ ◦ g ◦ β−1,

fB = γ′ ◦ g ◦ (β′)−1

and by Definition 8.23Definition 8.23 we have

fC−1 = β ◦ (β′)−1,

fD = γ′ ◦ γ−1.

Hence we obtain

fD ◦ fA ◦ fC−1 = γ′ ◦ γ−1 ◦ γ ◦ g ◦ β−1 ◦ β ◦ (β′)−1 = γ′ ◦ g ◦ (β′)−1 = fB,

as claimed. The second statement follows again by applying Remark 8.24Remark 8.24. □

Example 8.27 (Example 8.15Example 8.15 and Example 8.25Example 8.25 continued) Let e = (e⃗1, e⃗2) denote
the ordered standard basis of R2 and

A =

(
5 1

1 5

)
= M(fA, e, e).

Let b = (e⃗1 + e⃗2, e⃗2 − e⃗1). We computed that

M(fA,b,b) =

(
6 0

0 4

)
as well as

C(e,b) =

(
1
2

1
2

− 1
2

1
2

)
and C(b, e) =

(
1 −1

1 1

)
.

According to Theorem 8.26Theorem 8.26 we must have

M(fA,b,b) = C(e,b)M(fA, e, e)C(b, e)

and indeed (
6 0

0 4

)
=

(
1
2

1
2

− 1
2

1
2

)(
5 1

1 5

)(
1 −1

1 1

)
.

Finally, we observe that every invertible matrix can be realised as a change of basis mat-
rix:

Lemma 8.28 Let V be a finite dimensional K-vector space, b = (v1, ... , vn) an
ordered basis of V and C ∈ Mn,n(K) an invertible n × n-matrix. Define v ′

j =∑n
i=1 Cijvi for 1 ⩽ i ⩽ n. Then b′ = (v ′

1, ... , v
′
n) is an ordered basis of V and

C(b′,b) = C.

Proof It is sufficient to prove that the vectors {v ′
1, ... , v

′
n} are linearly independent. In-

deed, if they are linearly independent, then they span a subspace U of dimension n and
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Lemma 5.15Lemma 5.15 implies that U = V , so that b′ is an ordered basis of V . Suppose we have
scalars s1, ... , sn such that

0V =
n∑

j=1

sjv
′
j =

n∑
j=1

n∑
i=1

sjCijvi =
n∑

i=1

( n∑
j=1

Cijsj
)
vi .

Since{v1, ... , vn} is a basis ofV we must have
∑n

j=1 Cijsj = 0 for all i = 1, ... , n. In matrix
notation this is equivalent to the conditon Cs⃗ = 0Kn , where s⃗ = (si )1⩽i⩽n. Since C is
invertible, we can multiply this last equation from the left with C−1 to obtain C−1Cs⃗ =

C−10Kn which is equivalent to s⃗ = 0Kn . It follows that b′ is an ordered basis of V . By
definition we have C(b′,b) = C. □

Exercises

Exercise 8.1 Let IdV : V → V denote the identity mapping of the finite dimen-
sional K-vector space V and let b = (v1, ... , vn) be any ordered basis of V . Show
that M(IdV ,b,b) = 1n.

Exercise 8.2 Let V be a finite dimensional K-vector space and b,b′ be ordered
bases of V . Show that for all v ∈ V we have

β′(v) = C(b,b′)β(v).

Exercise 8.3 Consider the vector space P2(R) of real polynomials of degree ⩽ 2.
Let b be the basis (x2 + x + 1, x + 1, 1), and let e be the obvious basis (1, x , x2)

(i) Write down the coordinate vectors β(f ) and ε(f ) of f = 1 + 2x + 3x2 in each
of the bases b and e.

(ii) Compute the change-of-basis matrix C (e,b) and verify that the formula
β(f ) = C (e,b)ε(f ) holds.

(iii) Write down the matrix of the differentiation map d
dx : P2(R) → P2(R) in the

basis e, and use the basis-change formula to compute its matrix with respect
to b.
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9.1 Axiomatic characterisation

Surprisingly, whether or not a square matrix A ∈ Mn,n(K) admits an inverse is captured
by a single scalar, called the determinant of A and denoted by detA or det(A). That is,
the matrix A admits an inverse if and only if detA is nonzero. In practice, however, it is
often quicker to use Gauss–Jordan elimination to decide whether the matrix admits an
inverse. The determinant is nevertheless a useful tool in linear algebra.

9.1.1 Multilinear maps

The determinant is an object of multilinear algebra, which – for ℓ ∈ N – considers map-
pings from the ℓ-fold Cartesian product of aK-vector space into anotherK-vector space.
Such a mapping f is required to be linear in each variable. This simply means that if we
freeze all variables of f , except for the k-th variable, 1 ⩽ k ⩽ ℓ, then the resulting map-
ping gk of one variable is required to be linear. More precisely:

Definition 9.1 (Multilinear map ) Let V ,W be K-vector spaces and ℓ ∈ N. A map-
ping f : V ℓ → W is called ℓ-multilinear (or simply multilinear) if the mapping
gk : V → W , v 7→ f (v1, ... , vk−1, v , vk+1, ... , vℓ) is linear for all 1 ⩽ k ⩽ ℓ and for
all ℓ-tuples (v1, ... , vℓ) ∈ V ℓ.

We only need an (ℓ− 1)-tuple of vectors to define the map gk , but the above definition
is more convenient to write down.

Two types of multilinear maps are of particular interest:

Definition 9.2 (Symmetric and alternating multilinear maps) Let V ,W be K-
vector spaces and f : V ℓ → W an ℓ-multilinear map.
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• The map f is called symmetric if exchanging two arguments does not change the
value of f . That is, we have

f (v1, ... , vℓ) = f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all (v1, ... , vℓ) ∈ V ℓ.
• The map f is called alternating if f (v1, ... , vℓ) = 0W whenever at least two ar-

guments agree, that is, there exist i ̸= j with vi = vj . Alternating ℓ-multilinear
maps are also called W -valued ℓ-forms or simply ℓ-forms when W = K.

1-multilinear maps are simply linear maps. 2-multilinear maps are called bilinear and
3-multilinear maps are called trilinear. Most likely, you are already familiar with two
examples of bilinear maps:

Example 9.3 (Bilinear maps)
(i) The first one is the scalar product of two vectors in R3 (or more generally Rn).

So V = R3 and W = R. Recall that the scalar product is the mapping

V 2 = R3 × R3 → R, (x⃗ , y⃗) 7→ x⃗ · y⃗ = x1y1 + x2y2 + x3y3,

where we write x⃗ = (xi )1⩽i⩽3 and y⃗ = (yi )1⩽i⩽3. Notice that for all s1, s2 ∈ R
and all x⃗1, x⃗2, y⃗ ∈ R3 we have

(s1x⃗1 + s2x⃗2) · y⃗ = s1(x⃗1 · y⃗) + s2(x⃗2 · y⃗),

so that the scalar product is linear in the first variable. Furthermore, the scalar
product is symmetric, x⃗ · y⃗ = y⃗ · x⃗ . It follows that the scalar product is also
linear in the second variable, hence it is bilinear or 2-multilinear.

(ii) The second one is the cross product of two vectors in R3. Here V = R3 and
W = R3. Recall that the cross product is the mapping

V 2 = R3 × R3 → R3, (x⃗ , y⃗) 7→ x⃗ × y⃗ =

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 .

Notice that for all s1, s2 ∈ R and all x⃗1, x⃗2, y⃗ ∈ R3 we have

(s1x⃗1 + s2x⃗2)× y⃗ = s1(x⃗1 × y⃗) + s2(x⃗2 × y⃗),

so that the cross product is linear in the first variable. Likewise, we can check
that the cross product is also linear in the second variable, hence it is bilinear
or 2-multilinear. Observe that the cross product is alternating.

Example 9.4 (Multilinear map) LetV = Kand consider f : V ℓ → K, (x1, ... , xℓ) 7→
x1x2 · · · xℓ. Then f is ℓ-multilinear and symmetric.

Example 9.5 Let A ∈ Mn,n(R) be a symmetric matrix, AT = A. Notice that we
obtain a symmetric bilinear map

f : Rn × Rn → R, (x , y) 7→ x⃗TAy⃗ ,

where on the right hand side all products are defined by matrix multiplication.
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The Example 9.5Example 9.5 gives us a wealth of symmetric bilinear maps on Rn. As we will see
shortly, the situation is quite different if we consider alternating n-multilinear maps on
Kn (notice that we have the same number n of arguments as the dimension of Kn).

Remark 9.6 (Alternating and skew-symmetric maps) We say an ℓ- multilinear map
f : V ℓ → W is said to be antisymmetric if interchanging any two of its inputs results
in a minus sign, i.e.

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all v1, ... , vn and 1 ⩽ i < j ⩽ n.
One can check that any alternating map is antisymmetric. Let’s show this for n = 2.
Assuming f is alternating, for any v1, v2 ∈ V we have

0 = f (v1 + v2, v1 + v2)

= f (v1, v1) + f (v1, v2) + f (v2, v1) + f (v2, v2)

= 0 + f (v1, v2) + f (v2, v1) + 0

so f (v2, v1) + f (v1, v2) = 0.
On the other hand, if f is antisymmetric, then we have f (v , v) = −f (v , v) for all v
(since we can swap v with itself); so 2f (v , v) = 0. But this does not imply that f is
alternating, since this ‘2’ means 1K+1K, and there exist fields such that 1K+1K =

0K!
Of course, if K is one of the familiar fields like R or C, where 2 ̸= 0, then “alternat-
ing” and “antisymmetric” are the same. But in general being alternating is a more
restrictive condition.

9.1.2 Existence and uniqueness

Theorem 9.7 Let n ∈ N, and let {ε⃗1, ... , ε⃗n} denote the standard basis of Kn. Then
there exists a unique alternating n-multilinear map fn : (Kn)

n → K satisfying
fn(ε⃗1, ... , ε⃗n) = 1.

It’s helpful to rephrase this statement in terms of matrices. Let us write

Ω : (Kn)
n → Mn,n(K)

for the map sending n row vectors of length n to the n × n matrix with those vectors
as its rows. This map is clearly a bijection, so it makes sense to define a mapping f :

Mn,n(K) → K to be “multilinear” if f ◦ Ω is multilinear, i.e. if f is linear in each row of
the matrix. Similarly, we define f to be “alternating” if f ◦ Ω is, so f (A) = 0 whenever
two of the rows of A are equal.

Since Ω(ε⃗1, ... , ε⃗n) = 1n, we may phrase the above theorem equivalently as:

Theorem 9.8 (Existence and uniqueness of the determinant) Let n ∈ N. Then there
exists a unique alternating n-multilinear map fn : Mn,n(K) → K satisfying fn(1n) =

1.
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Definition 9.9 (Determinant ) The mapping fn : Mn,n(K) → K provided by
Theorem 9.8Theorem 9.8 is called the determinant and denoted by det. For A ∈ Mn,n(K) we
say det(A) is the determinant of the matrix A.

Remark 9.10 (Abuse of notation) It would be more precise to write detn since the
determinant is a family of mappings, one mapping detn : Mn,n(K) → K for each
n ∈ N. It is however common to simply write det.

Example 9.11 For n = 1 the condition that a 1-multilinear (i.e. linear) map f1 :

M1,1(K) → K is alternating is vacuous. So the Theorem 9.8Theorem 9.8 states that there is a
unique linear map f1 : M1,1(K) → K that satisfies f1((1)) = 1. Of course, this is just
the map defined by the rule f1((a)) = a, where (a) ∈ M1,1(K) is any 1-by-1 matrix.

Example 9.12 For n = 2 and a, b, c , d ∈ K we consider the mapping f2 :

M2,2(K) → K defined by the rule

(9.1) f2

((
a b

c d

))
= ad − bc.

We claim that f2 is bilinear in the rows and alternating. The condition that f2 is al-
ternating simplifies to f (A) = 0 whenever the two rows of A ∈ M2,2(K) agree.
Clearly, f2 is alternating, since

f2

((
a b

a b

))
= ab − ab = 0.

Furthermore, f2 needs to be linear in each row. The additivity condition applied to
the first row gives that we must have

f2

((
a1 + a2 b1 + b2

c d

))
= f2

((
a1 b1
c d

))
+ f2

((
a2 b2
c d

))
for all a1, a2, b1, b2, c , d ∈ K. Using the definition (9.19.1), we obtain

f2

((
a1 + a2 b1 + b2

c d

))
= (a1 + a2)d − c(b1 + b2)

= a1d − cb1 + a2d − cb2

= f2

((
a1 b1
c d

))
+ f2

((
a2 b2
c d

))
,

so that f2 is indeed additive in the first row. The 1-homogeneity condition applied
to the first row gives that we must have

f2

((
sa sb

c d

))
= sf2

((
a b

c d

))
for all a, b, c , d ∈ K and s ∈ K. Indeed, using the definition (9.19.1), we obtain

f2

((
sa sb

c d

))
= sad − csb = s(ad − cb) = sf2

((
a b

c d

))
,

so that f2 is also 1-homogeneous in the first row. We conclude that f2 is linear in the
first row. Likewise, the reader is invited to check that f2 is also linear in the second
row. Furthermore, we can easily compute that f2(12) = 1. The mapping f2 thus
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satisfies all the properties of Theorem 9.8Theorem 9.8, hence by the uniqueness statement we
must have f2 = det and we obtain the formula

(9.2) det

((
a b

c d

))
= ad − cb

for all a, b, c , d ∈ K.

9.2 Uniqueness of the determinant

So far we have only shown that the determinant exists for n = 1 and n = 2. However, we
need to show the existence and uniqueness part of Theorem 9.8Theorem 9.8 in general. We first show
the uniqueness part. We start by deducing some consequences from the alternating
property:

Lemma 9.13 Let V ,W be K-vector spaces and ℓ ∈ N. An alternating ℓ-multilinear
map f : V ℓ → W satisfies:

(i) interchanging two arguments of f leads to a minus sign. That is, for 1 ⩽ i , j ⩽ ℓ

and i ̸= j we obtain

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

for all (v1, ... , vℓ) ∈ V ℓ;
(ii) if the vectors (v1, ... , vℓ) ∈ V ℓ are linearly dependent, then f (v1, ... , vℓ) = 0W ;

(iii) for all 1 ⩽ i ⩽ ℓ, for all ℓ-tuples of vectors (v1, ... , vℓ) ∈ V ℓ and scalars
s1, ... , sℓ ∈ K, we have

f (v1, ... , vi−1, vi + w , vi+1, ... , vℓ) = f (v1, ... , vℓ)

where w =
∑ℓ

j=1,j ̸=i sjvj . That is, adding a linear combination of vectors to
some argument of f does not change the output, provided the linear combina-
tion consists of the remaining arguments.

Proof (i) Since f is alternating, we have for all (v1, ... , vℓ) ∈ V ℓ

f (v1, ... , vi−1, vi + vj , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ) = 0W .

Using the linearity in the i -th argument, this gives

0W = f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi + vj , vj+1, ... , vℓ).

Using the linearity in the j-th argument, we obtain

0W = f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vi , vi+1, ... , vj−1, vj , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

+ f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vj , vj+1, ... , vℓ).

The first summand has a double occurrence of vi and hence vanishes by the alternat-
ing property. Likewise, the fourth summand has a double occurrence of vj and hence
vanishes as well. Since the second summand equals f (v1, ... , vℓ), we thus obtain

f (v1, ... , vℓ) = −f (v1, ... , vi−1, vj , vi+1, ... , vj−1, vi , vj+1, ... , vℓ)

as claimed.
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(ii) Suppose {v1, ... , vℓ} are linearly dependent so that we have scalars sj ∈ K not all
zero, 1 ⩽ j ⩽ ℓ, so that s1v1+ · · ·+ sℓvℓ = 0V . Suppose si ̸= 0 for some index 1 ⩽ i ⩽ ℓ.
Then

vi = −
ℓ∑

j=1,j ̸=i

(
sj
si

)
vj

and hence by the linearity in the i -th argument, we obtain

f

v1, ... , vi−1,−
ℓ∑

j=1,j ̸=i

(
sj
si

)
vj , vi+1, ... , vℓ


= −

ℓ∑
j=1,j ̸=i

(
sj
si

)
f (v1, ... , vi−1, vj , vi+1, ... , vℓ) = 0W ,

where we use that for each 1 ⩽ j ⩽ ℓ with j ̸= i , the expression

f (v1, ... , vi−1, vj , vi+1, ... , vℓ)

has a double occurrence of vj and thus vanishes by the alternating property.

(iii) Let (v1, ... , vℓ) ∈ V ℓ and (s1, ... , sℓ) ∈ Kℓ. Then, using the linearity in the i -th argu-
ment, we compute

f (v1, ... , vi−1, vi +
ℓ∑

j=1,j ̸=i

sjvj , vi+1, ... , vℓ)

= f (v1, ... , vℓ) +
ℓ∑

j=1,j ̸=i

sj f (v1, ... , vi−1vj , vi+1, ... , vℓ) = f (v1, ... , vℓ),

where the last equality follows exactly as in the proof of (ii). □

The alternating property of an n-multilinear map fn : Mn,n(K) → K together with the
condition fn(1n) = 1 uniquely determines the value of fn on the elementary matrices:

Lemma 9.14 Let n ∈ N and fn : Mn,n(K) → K an alternating n-multilinear map
satisfying fn(1n) = 1. Then for all 1 ⩽ k , l ⩽ n with k ̸= l and all s ∈ K, we have

(9.3) fn(Dk(s)) = s, fn(Lk,l(s)) = 1, fn(Pk,l) = −1.

Moreover, for A ∈ Mn,n(K) and an elementary matrix B of size n, we have

(9.4) fn(BA) = fn(B)fn(A).

Proof Recall that Dk(s) applied to a square matrix A multiplies the k-th row of A with
s and leaves A unchanged otherwise. We write A ∈ Mn,n(K) as A = Ω(α⃗1, ... , α⃗n) for
α⃗i ∈ Kn, 1 ⩽ i ⩽ n. Hence we obtain

Dk(s)A = Ω(α⃗1, ... , α⃗k−1, sα⃗k , α⃗k+1, ... , α⃗n).

The linearity of f in thek-th row thus gives fn(Dk(s)A) = sfn(A). In particular, the choice
A = 1n together with fn(1n) = 1 implies that fn(Dk(s)) = fn(Dk(s)1n) = sfn(1n) = s .
Therefore, we have

fn(Dk(s)A) = fn(Dk(s))fn(A).

Likewise we obtain

Lk,l(s)A = Ω(α⃗1, ... , α⃗k−1, α⃗k + sα⃗l , α⃗k+1, ... , α⃗n)
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and we can apply property (iii) of Lemma 9.13Lemma 9.13 for the choice w = sα⃗l to conclude that
fn(Lk,l(s)A) = fn(A). In particular, the choice A = 1n together with fn(1n) = 1 implies
fn(Lk,l(s)) = fn(Lk,l(s)1n) = fn(1n) = 1.

Therefore, we have

fn(Lk,l(s)A) = fn(Lk,l(s))fn(A).

Finally, we have

Pk,lA = Ω(α⃗1, ... , α⃗k−1, α⃗l , α⃗k+1, ... , α⃗l−1, α⃗k , α⃗l+1, ... , α⃗n)

so that property (ii) of Lemma 9.13Lemma 9.13 immediately gives that

fn(Pk,lA) = −fn(A).

In particular, the choiceA = 1n together with fn(1n) = 1 implies fn(Pk,l) = fn(Pk,l1n) =

−fn(1n) = −1.

Therefore, we have fn(Pk,lA) = fn(Pk,l)fn(A), as claimed. □

We now obtain the uniqueness part of Theorem 9.8Theorem 9.8.

Proposition 9.15 Let n ∈ N and fn, f̂n : Mn,n(K) → K be alternating n-multilinear
maps satisfying fn(1n) = f̂n(1n) = 1. Then fn = f̂n.

Proof We need to show that for all A ∈ Mn,n(K), we have fn(A) = f̂n(A). Suppose
first that A is not invertible. Then, by Proposition 3.18Proposition 3.18, the row vectors of A are linearly
dependent and hence property (ii) of Lemma 9.13Lemma 9.13 implies that fn(A) = f̂n(A) = 0.

Now suppose that A is invertible. Using Gauss–Jordan elimination, we obtain N ∈ N
and a sequence of elementary matrices B1, ... ,BN so that B1B2 · · ·BN = A.

Applying (9.49.4) repeatedly, we have

fn(A) = fn(B1 · · ·BN) = fn(B1) ... fn(BN)

and similarly

f̂n(A) = f̂n(B1 · · ·BN) = f̂n(B1) · · · f̂n(BN).

But (9.39.3) implies that f̂n(Bj) = fn(Bj) for all j , so these two products are equal. □

9.3 Existence of the determinant

It turns out that we can define the determinant recursively in terms of the determinants
of certain submatrices. Determinants of submatrices are called minors. To this end we
first define:

Definition 9.16 Let n ∈ N. For a square matrix A ∈ Mn,n(K) and 1 ⩽ k, l ⩽ n we
denote by A(k,l) the (n− 1)× (n− 1) submatrix obtained by removing the k-th row
and l -th column from A.
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Example 9.17

If A =

(
a b

c d

)
, then A(1,1) = (d), A(2,1) = (b).

If A =


1 −2 0 4

3 1 1 0

−1 −5 −1 8

3 8 2 −12

 , then A(3,2) =

1 0 4

3 1 0

3 2 −12

 .

We use induction to prove the existence of the determinant:

Lemma 9.18 Let n ∈ N with n ⩾ 2 and fn−1 : Mn−1,n−1(K) → K an alternating
(n − 1)-multilinear mapping satisfying fn−1(1n−1) = 1. Then, for any fixed integer l
with 1 ⩽ l ⩽ n, the mapping

fn : Mn,n(K) → K, A 7→
n∑

k=1

(−1)l+k [A]kl fn−1

(
A(k,l)

)
is alternating, n-multilinear and satisfies fn(1n) = 1.

Proof of Theorem 9.7Theorem 9.7 For n = 1 we have seen that f1 : M1,1(K) → K, (a) 7→ a is 1-
multilinear, alternating and satisfies f1(11) = 1. Hence Lemma 9.18Lemma 9.18 implies that for all
n ∈ N there exists an n-multilinear and alternating map fn : Mn,n(K) → K satisfying
fn(1n) = 1. By Proposition 9.15Proposition 9.15 there is only one such mapping for each n ∈ N. □

Proof of Lemma 9.18Lemma 9.18 We take some arbitrary, but then fixed integer l with 1 ⩽ l ⩽ n.

Step 1. We first show that fn(1n) = 1. Since [1n]kl = δkl , we obtain

fn(1n) =
n∑

k=1

(−1)l+k [1n]kl fn−1

(
1(k,l)n

)
= (−1)2l fn−1

(
1(l ,l)n

)
= fn−1 (1n−1) = 1,

where we use that 1(l ,l)n = 1n−1 and fn−1(1n−1) = 1.

Step 2. We show that fn is multilinear. Let A ∈ Mn,n(K) and write A = (Akj)1⩽k,j⩽n. We
first show that fn is 1-homogeneous in each row. Say we multiply the i -th row of A with
s so that we obtain a new matrix Â = (Âkj)1⩽k,j⩽n with

Âkj =

{
Akj , k ̸= i ,

sAkj , k = i .

We need to show that fn(Â) = sfn(A). We compute

fn(Â) =
n∑

k=1

(−1)l+k Âkl fn−1(Â
(k,l))

= (−1)l+i sAil fn−1(Â
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(Â
(k,l)).

Now notice that Â(i ,l) = A(i ,l), sinceA and Âonly differ in the i -th row, but this is the row
that is removed. Since fn−1 is 1-homogeneous in each row, we obtain that fn−1(Â(k,l)) =
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sfn−1(A(k,l)) whenever k ̸= i . Thus we have

fn(Â) = s(−1)l+iAil fn−1(A
(i ,l)) + s

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(A
(k,l))

= s
n∑

k=1

(−1)l+kAkl fn−1

(
A(k,l)

)
= sfn(A).

We now show that fn is additive in each row. Say the matrixB = (Bkj)1⩽k,j⩽n is identical
to the matrix A, except for the i -th row, so that

Bkj =

{
Akj k ̸= i

Bj k = i

for some scalars Bj with 1 ⩽ j ⩽ n. We need to show that fn(C) = fn(A) + fn(B), where
C = (Ckj)1⩽k,j⩽n with

Ckj =

{
Akj k ̸= i

Aij + Bj k = i

We compute

fn(C) = (−1)l+i (Ail + Bl)fn−1(C
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(C
(k,l)).

As before, since A,B,C only differ in the i -th row, we have A(i ,l) = B(i ,l) = C(i ,l). Using
that fn−1 is linear in each row, we thus obtain

fn(C) = (−1)l+iBl fn−1(B
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(B
(k,l))

+ (−1)l+iAil fn−1(A
(i ,l)) +

n∑
k=1,k ̸=i

(−1)l+kAkl fn−1(A
(k,l)) = fn(A) + fn(B).

Step 3. We show that fn is alternating. Suppose we have 1 ⩽ i , j ⩽ n with j > i and so
that the i -th and j-th row of the matrix A = (Aij)1⩽i ,j⩽n are the same. Therefore, unless
k = i or k = j , the submatrix A(k,l) also contains two identical rows and since fn−1 is
alternating, all summands vanish except the one for k = i and k = j , this gives

fn(A) = (−1)i+lAil fn−1(A
(i ,l)) + (−1)j+lAjl fn−1(A

(j ,l))

= Ail(−1)l
(
(−1)i fn−1(A

(i ,l)) + (−1)j fn−1(A
(j ,l))

)
where the second equality sign follows because we have Ail = Ajl for all 1 ⩽ l ⩽ n (the
i -th and j-th row agree). The mapping fn−1 is alternating, hence by the first property of
the Lemma 9.13Lemma 9.13, swapping rows in the matrix A(j ,l) leads to a minus sign in fn−1(A(j ,l)).
Moving the i -th row of A(j ,l) down by j − i − 1 rows (which corresponds to swapping
j − i − 1 times), we obtain A(i ,l), hence

fn−1(A
(j ,l)) = (−1)j−i−1fn−1(A

(i ,l)).

This gives

fn(A) = Ail(−1)l
(
(−1)i fn−1(A

(i ,l)) + (−1)2j−i−1fn−1(A
(i ,l))

)
= 0.

□

Remark 9.19 (Laplace expansion) As a by-product of the proof of Lemma 9.18Lemma 9.18 we
obtain the formula

(9.5) det(A) =
n∑

k=1

(−1)l+k [A]kl det
(
A(k,l)

)
,
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known as the Laplace expansion of the determinant (along the l -th column). The
uniqueness statement of Theorem 9.8Theorem 9.8 thus guarantees that for everyn×nmatrixA,
the scalar

∑n
k=1(−1)l+k [A]kl det

(
A(k,l)

)
is independent of the choice of l ∈ N, 1 ⩽

l ⩽ n. In practice, when computing the determinant, it is thus advisable to choose
l such that the corresponding column contains the maximal amount of zeros.

Example 9.20 For n = 2 and choosing l = 1, we obtain

det

((
a b

c d

))
= a det

(
A(1,1)

)
− c det

(
A(2,1)

)
= ad − cb,

in agreement with (9.19.1). For A = (Aij)1⩽i ,j⩽3 ∈ M3,3(K) and choosing l = 3 we
obtain

det

A11 A12 A13

A21 A22 A23

A31 A32 A33

 = A13 det

((
A21 A22

A31 A32

))

− A23 det

((
A11 A12

A31 A32

))
+ A33 det

((
A11 A12

A21 A22

))

so that
detA = A13(A21A32 − A31A22)− A23(A11A32 − A31A12)

+ A33(A11A22 − A21A12)

= A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31.

Exercises

Exercise 9.1 (Trilinear map) Let V = R3 and W = R. Show that the map

f : V 3 → W , (x⃗ , y⃗ , z⃗) 7→ (x⃗ × y⃗) · z⃗

is alternating and trilinear.

Exercise 9.2 Define the matrix

A =

4 2 0

0 5 −1

1 0 2

 .

Compute the determinant of A by Laplace expansion with respect to column ℓ for
each ℓ ∈ {1, 2, 3}. Conclude that all choices for ℓ give the same answer.

Exercise 9.3 Use the explicit formulae in Example 9.20Example 9.20 to show that we have
det(AT ) = det(A) for all n × n square matrices with n ⩽ 3.
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Exercise 9.4 Let A ∈ Mm,m(K) and B ∈ Mn,n(K). Show that the determinant of

the (m + n)× (m + n) matrix
(
A 0

0 B

)
is given by det(A) det(B).

(Hint: Use induction on m, and do a Laplace expansion on the first column.)
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10.1 Properties of the determinant

Proposition 10.1 (Product rule) For matrices A,B ∈ Mn,n(K) we have

det(AB) = det(A) det(B).

Proof We first consider the case where A is not invertible, then det(A) = 0 (see the
proof of Proposition 9.15Proposition 9.15). If A is not invertible, then neither is AB. Indeed, if AB were
invertible, then there exists a matrix C such that (AB)C = 1n. But since the matrix
product is associative, this also gives A(BC) = 1n, so that BC is a right inverse of A.
By Proposition 7.7Proposition 7.7, A is invertible, a contradiction. Hence if A is not invertible, we must
also have det(AB) = 0, which verifies that det(AB) = 0 = det(A) det(B) for A not
invertible.

If A is invertible, we can write it as a product of elementary matrices and applying the
second part of Lemma 9.14Lemma 9.14, we conclude that det(AB) = det(A) det(B). □

Corollary 10.2 A matrix A ∈ Mn,n(K) is invertible if and only if det(A) ̸= 0.
Moreover, in the case where A is invertible, we have

det
(
A−1

)
=

1

detA
.

Proof We have already seen that if A is not invertible, then det(A) = 0. This is equival-
ent to saying that if det(A) ̸= 0, then A is invertible. It thus remains to show that if A
is invertible, then det(A) ̸= 0. Suppose A is invertible, then applying Proposition 10.1Proposition 10.1
gives

det(1n) = det
(
AA−1

)
= det(A) det

(
A−1

)
= 1

so that det(A) ̸= 0 and det
(
A−1

)
= 1/ det(A). □
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Remark 10.3 (Product symbol) Recall that for scalars x1, ... , xn ∈ K, we write
n∏

i=1

xi = x1x2 · · · xn.

Proposition 10.4 Let n ∈ N and A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K) be an upper triangu-
lar matrix so that Aij = 0 for i > j . Then

(10.1) det(A) =
n∏

i=1

Aii = A11A22 · · ·Ann.

Proof We use induction. For n = 1 the condition Aij = 0 for i > j is vacuous and (10.110.1)
is trivially satisfied, thus the statement is anchored.

Inductive step: Assume n ∈ N and n ⩾ 2. We want to show that if (10.110.1) holds for upper
triangular (n − 1) × (n − 1)-matrices, then also for upper triangular n × n-matrices.
Let A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K) be an upper triangular matrix. Choosing l = 1 in the
formula for det(A), we obtain

det(A) =
n∑

k=1

(−1)k+1Ak1 det
(
A(k,1)

)
= A11 det

(
A(1,1)

)
+

n∑
k=2

Ak1 det
(
A(k,1)

)
= A11 det

(
A(1,1)

)
,

where the last equality uses that Ak1 = 0 for k > 1. We have A(1,1) = (Aij)2⩽i ,j⩽n and
since A is an upper triangular matrix, it follows that A(1,1) is an (n− 1)× (n− 1) upper
triangular matrix as well. Hence by the induction hypothesis, we obtain

det(A(1,1)) =
n∏

i=2

Aii .

We conclude that det(A) =
∏n

i=1 Aii , as claimed. □

10.2 Permutations

A rearrangement of the natural numbers from 1 up to n is called a permutation:

Definition 10.5 (Permutation) Let n ∈ N and Xn = {1, 2, 3, ... , n}. A permutation
is a bijective mapping σ : Xn → Xn. The set of all permutations of Xn is denoted
by Sn.

Remark 10.6 If τ ,σ : Xn → Xn are permutations, it is customary to write τσ or τ ·σ
instead of τ ◦σ. Furthermore, the identity mapping IdXn is often simply denoted by
1. A convenient way to describe a permutation σ ∈ Sn is in terms of a 2× n matrix(

i

σ(i)

)
1⩽i⩽n

.

96



10.2 — Permutations

which we denote by σ. For instance, for n = 4, the matrix

σ =

(
1 2 3 4

2 3 1 4

)
corresponds to the permutation σ satisfying σ(1) = 2,σ(2) = 3,σ(3) = 1,σ(4) =

4.

Permutations which only swap two natural numbers and leave all remaining numbers
unchanged are known as transpositions:

Definition 10.7 (Transposition) Let n ∈ N and 1 ⩽ k, l ⩽ n with k ̸= l . The
transposition τk,l ∈ Sn is the permutation satisfying

τk,l(k) = l , τk,l(l) = k , τk,l(i) = i if i /∈ {k, l}.

Every permutation σ ∈ Sn defines a linear map g : Kn → Kn satisfying g(e⃗i ) = e⃗σ(i),
where {e⃗1, ... , e⃗n} denotes the standard basis of Kn. Since g is linear, there exists a
unique matrix Pσ ∈ Mn,n(K) so that g = fPσ . Observe that the column vectors of the
matrix Pσ are given by e⃗σ(1), e⃗σ(2), ... , e⃗σ(n).

Definition 10.8 (Permutation matrix) We call Pσ ∈ Mn,n(K) the permutation mat-
rix associated to σ ∈ Sn.

Example 10.9 Let n = 4. For instance, we have

σ =

(
1 2 3 4

2 3 1 4

)
Pσ =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


and

τ 2,4 =

(
1 2 3 4

1 4 3 2

)
Pτ2,4 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

Remark 10.10 Notice that Pτk,l = Pk,l , where Pk,l is one of the elementary
matrices of size n (see M01 Algorithmics).

Assigning to a permutation its permutation matrix turns composition of permutations
into matrix multiplication:

Proposition 10.11 Let n ∈ N. Then P1 = 1n and for all σ,π ∈ Sn we have

Pπ·σ = PπPσ.

In particular, for all σ ∈ Sn, the permutation matrix Pσ is invertible with (Pσ)
−1 =

Pσ−1 .
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Example 10.12 Considering n = 3. For

σ =

(
1 2 3

3 1 2

)
and π =

(
1 2 3

1 3 2

)
we have π ·σ =

(
1 2 3

2 1 3

)
,

as well as

Pσ =

0 1 0

0 0 1

1 0 0

 , Pπ =

1 0 0

0 0 1

0 1 0

 and Pπ·σ =

0 1 0

1 0 0

0 0 1

 .

Thus we obtain

Pπ·σ =

0 1 0

1 0 0

0 0 1

 =

1 0 0

0 0 1

0 1 0

0 1 0

0 0 1

1 0 0

 = PπPσ,

as claimed by Proposition 10.11Proposition 10.11.

Proof of Proposition 10.11Proposition 10.11 The matrixP1 has column vectors given by e⃗1, ... , e⃗n, hence
P1 = 1n.

Using Proposition 7.2Proposition 7.2 and Theorem 7.6Theorem 7.6 it is sufficient to show that for all π,σ ∈ Sn we
have fPπ·σ = fPπ ◦ fPσ . For all 1 ⩽ i ⩽ n, we obtain

fPπ
(fPσ

(e⃗i )) = fPπ

(
e⃗σ(i)

)
= e⃗π(σ(i)) = e⃗(π·σ)(i) = fPπ·σ (e⃗i ).

The two maps thus agree on the ordered basis e = (e⃗1, ... , e⃗n) of Kn, so that the second
claim follows by applying Lemma 8.6Lemma 8.6.

We have
Pσ·σ−1 = P1 = 1n = PσPσ−1

showing that Pσ is invertible with inverse (Pσ)
−1 = Pσ−1 . □

Definition 10.13 (Signature of a permutation) For σ ∈ Sn we call sgn(σ) =

det(Pσ) its signature.

Remark 10.14
(i) Combining Proposition 10.1Proposition 10.1 and Proposition 10.11Proposition 10.11, we conclude that

sgn(π · σ) = sgn(π) sgn(σ)

for all π,σ ∈ Sn.
(ii) Since Pτk,l = Pk,l and detPk,l = −1 by Lemma 9.14Lemma 9.14, we conclude that

sgn(τk,l) = −1

for all transpositions τk,l ∈ Sn.

Similarly to elementary matrices being the building blocks of invertible matrices, trans-
positions are the building blocks of permutations:

Proposition 10.15 Let n ∈ N andσ ∈ Sn. Then there existsm ⩾ 0 andm transposi-
tions τk1,l1 , ... , τkm,lm ∈ Sn such thatσ = τkm,lm · · · τk1,l1 , where we use the convention
that 0 transpositions corresponds to the identity permutation.
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Example 10.16 Let n = 6 and σ the permutation defined by the matrix

σ =

(
1 2 3 4 5 6

3 5 2 4 6 1

)
.

To express it as a product of transposition, we write

3 5 2 4 6 1

3 2 5 4 6 1 τ2,3
1 2 5 4 6 3 τ1,6
1 2 5 4 3 6 τ5,6
1 2 3 4 5 6 τ3,5

so that σ = τ3,5τ5,6τ1,6τ2,3.

Proof of Proposition 10.15Proposition 10.15 We use induction. For n = 1 we have Xn = {1} and the
only permutation is the identity permutation 1, so the statement is trivially true and
hence anchored.

Inductive step: Assume n ∈ N and n ⩾ 2. We want to show that if the claim holds for
Sn−1, then also forSn. Letσ ∈ Sn and definek = σ(n). Then the permutationσ1 = τn,kσ

satisfies σ1(n) = τn,kσ(n) = τn,k(k) = n and hence does not permute n. Restricting σ1

to the first n − 1 elements, we obtain a permutation of {1, ... , n − 1}. By the induction
hypothesis, we thus have m̃ ∈ N and τk1,l1 , ... τkm̃ , τlm̃ ∈ Sn such that

σ1 = τkm̃,lm̃ · · · τk1,l1 = τn,kσ.

Since τ 2n,k = 1, multiplying from the left with τn,k gives σ = τn,kτkm̃,lm̃ · · · τk1,l1 , the claim
follows with m = m̃ + 1. □

Combining Definition 10.13Definition 10.13, Remark 10.14Remark 10.14 and Proposition 10.15Proposition 10.15, we conclude:

Proposition 10.17 Let n ∈ N and σ ∈ Sn. Then sgn(σ) = ±1. If σ is a product of m
transpositions, then sgn(σ) = (−1)m.

Remark 10.18 Permutations with sgn(σ) = 1 are called even and permutations
with sgn(σ) = −1 are called odd, since they arise from the composition of an even
or odd number of transpositions, respectively.

10.3 The Leibniz formula

Besides the Laplace expansion, there is also a formula for the determinant which relies
on permutations. As a warm-up, we first consider the case n = 2. Using the linearity of
the determinant in the first row, we obtain

det

(
a b

c d

)
= det

(
a 0

c d

)
+ det

(
0 b

c d

)
,
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where a, b, c , d ∈ K. Using the linearity of the determinant in the second row, we can
further decompose the two above summands

det

(
a b

c d

)
= det

(
a 0

c 0

)
+ det

(
a 0

0 d

)
︸ ︷︷ ︸

=det

a 0

c d



+det

(
0 b

c 0

)
+ det

(
0 b

0 d

)
︸ ︷︷ ︸

=det

0 b

c d


The first and fourth summand are always zero due to the occurrence of a zero column.
The second and third summand are possibly nonzero (it might still happen that they are
zero in the case where some of a, b, c , d are zero). In any case, we get

det

(
a b

c d

)
= det

(
a 0

0 d

)
+ det

(
0 b

c 0

)
.

We can proceed analogously in general. Let A = (Aij)1⩽i ,j⩽n ∈ Mn,n(K). We denote the
rows of A by {α⃗1, ... , α⃗n}. Using the linearity of det in the first row, we can write

detA = det


A11 0 0 · · · 0

α⃗2

...
α⃗n

+ det


0 A12 0 · · · 0

α⃗2

...
α⃗n

+ · · ·

· · ·+ det


0 0 0 · · · A1n

α⃗2

...
α⃗n

 .

We can now use the linearity in the second row and proceed in the same fashion with
each of the above summands. We continue this procedure until the n-th row. As a result,
we can write

(10.2) detA =
nn∑
k=1

detMk

where each of the matrices Mk has exactly one possibly nonzero entry in each row. As
above, some of the matrices Mk will have a zero column so that their determinant van-
ishes. The matrices Mk without a zero column must have exactly one possibly nonzero
entry in each row and each column. We can thus write the matrices Mk with possibly
nonzero determinant as

Mk =
n∑

i=1

Aσ(i)iEσ(i),i

for some permutation σ ∈ Sn. Every permutation of {1, ... , n} occurs precisely once in
the expansion (10.210.2), hence we can write

detA =
∑
σ∈Sn

det

(
n∑

i=1

Aσ(i)iEσ(i),i

)
,

where the notation
∑

σ∈Sn
means that we sum over all possible permutations of{1, ... , n}.

We will next write the matrix
∑n

i=1 Aσ(i)iEσ(i),i differently. To this end notice that for all
σ ∈ Sn, the permutation matrix Pσ can be written as Pσ =

∑n
i=1 Eσ(i),i . Furthermore,

the diagonal matrix

Dσ =


Aσ(1)1

Aσ(2)2

. . .
Aσ(n)n


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can be written as Dσ =
∑n

j=1 Aσ(j)jEj ,j . Therefore, we obtain

PσDσ =
n∑

i=1

Eσ(i),i

n∑
j=1

Aσ(j)jEj ,j =
n∑

i=1

n∑
j=1

Aσ(j)jEσ(i),iEj ,j =
n∑

i=1

Aσ(i)iEσ(i),i ,

We thus have the formula

detA =
∑
σ∈Sn

det (PσDσ) =
∑
σ∈Sn

sgn(σ) det(Dσ),

where we use the product rule Proposition 10.1Proposition 10.1 and the definition of the signature of a
permutation. By Proposition 10.4Proposition 10.4, the determinant of a diagonal matrix is the product
of its diagonal entries, hence we obtain

detA =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aσ(i)i .

Finally, writing π = σ−1, we have

n∏
i=1

Aσ(i)i =
n∏

j=1

Ajπ(j).

We have thus shown:

Proposition 10.19 (Leibniz formula for the determinant) Let n ∈ N and A =

(Aij)1,⩽i ,j⩽n ∈ Mn,n(K). Then we have

(10.3) det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Aσ(i)i =
∑
π∈Sn

sgn(π)
n∏

j=1

Ajπ(j).

Example 10.20 For n = 3 we have six permutations

σ1 =

(
1 2 3

1 2 3

)
, σ2 =

(
1 2 3

1 3 2

)
, σ3 =

(
1 2 3

2 1 3

)
σ4 =

(
1 2 3

2 3 1

)
, σ5 =

(
1 2 3

3 1 2

)
, σ6 =

(
1 2 3

3 2 1

)
.

For A = (Aij)1⩽i ,j⩽3 ∈ M3,3(K), the Leibniz formula gives

det(A) = sgn(σ1)A11A22A33 + sgn(σ2)A11A23A32 + sgn(σ3)A12A21A33

+ sgn(σ4)A12A23A31 + sgn(σ5)A13A21A32 + sgn(σ6)A13A22A31,

so that in agreement with Example 9.20Example 9.20, we obtain

detA = A11A22A33 − A11A23A32 − A12A21A33

+ A12A23A31 + A13A21A32 − A13A22A31.

Remark 10.21 It follows from Leibniz’ formula that det(A) = det(AT ) (see
Exercise 10.3Exercise 10.3 below). This has the following important consequences:

(i) the determinant is also multilinear and alternating, when thought of as a map
(Kn)n → K, that is, when taking n columns vectors as an input. In particular,
the determinant is also linear in each column;
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(ii) the Laplace expansion is also valid if we expand with respect to a row, that is,
for A ∈ Mn,n(K) and 1 ⩽ l ⩽ n, we have

det(A) =
n∑

k=1

(−1)k+l [A]lk det
(
A(l ,k)

)
.

Example 10.22 (♡ – not examinable) For n ∈ N and a vector x⃗ = (xi )1⩽i⩽n ∈ Kn

we can form a matrix Vx⃗ = (Vij)1⩽i ,j⩽n ∈ Mn,n(K) with Vij = x j−1
i , that is,

Vx⃗ =


1 x1 (x1)

2 · · · (x1)
n−1

1 x2 (x2)
2 · · · (x2)

n−1

1 x3 (x3)
2 · · · (x3)

n−1

...
...

...
. . .

...
1 xn (xn)

2 · · · (xn)
n−1

 .

Such matrices are known as Vandermonde matrices and the determinant of a Van-
dermonde matrix is known as a Vandermonde determinant, they satisfy

det(Vx⃗) =
∏

1⩽i<j⩽n

(xj − xi ).

Sketch of a proof We can define a function f : Kn → K, x⃗ 7→ det(Vx⃗). By the Leibniz
formula, the function f is a polynomial in the variables xi with integer coefficients. If we
freeze all variables of f except the ℓ-th variable, then we obtain a function gℓ : K → K
of one variable xℓ. For 1 ⩽ i ⩽ n with i ̸= ℓ we have gℓ(xi ) = 0, since we compute the
determinant of a matrix with two identical rows, the ℓ-th row and the i -th row. Factoring
the zeros, we can thus write gℓ(xℓ) = qℓ(xℓ)

∏
1⩽i⩽n,i ̸=ℓ(xℓ−xi ) for some polynomial qℓ.

We can repeat this argument for all ℓand hence can writedet(Vx⃗) = q(x⃗)
∏

1⩽i<j⩽n(xj−
xi ) for some polynomial q(x⃗).

On the other hand, if we multiply all the xi by a constant s ∈ K, the determinant multi-
plies by s1+2+···+(n−1) = sn(n−1)/2. The product

∏
1⩽i<j⩽n(xj − xi ) has the same scaling

behaviour (since it has n(n − 1)/2 linear factors); so q must be invariant under scaling
the variables. This implies that q has to be constant.

Using the Leibniz formula, we see that the summand of det(Vx⃗) corresponding to the
identity permutation is the product of the diagonal entries ofVx⃗ , that is, x2(x3)2 · · · (xn)n−1

(and no other term in the sum has this combination of exponents). Taking the first term
in all factors of

∏
1⩽i<j⩽n(xj − xi ), we also obtain x2(x3)

2 · · · (xn)n−1 (and no other term
in the product has these exponents). Hence the constant q must be 1, and so det(Vx⃗) =∏

1⩽i<j⩽n(xj − xi ), as claimed. □

10.4 Cramer’s rule

The determinant can be used to give a formula for the solution of a linear system of equa-
tions of the form Ax⃗ = b⃗ for an invertible matrix A ∈ Mn,n(K), b⃗ ∈ Kn and unknowns
x⃗ ∈ Kn. This formula is often referred to as Cramer’s rule. In order to derive it we start
with definitions:
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Definition 10.23 (Adjugate matrix ) Letn ∈ NandA ∈ Mn,n(K)be a square matrix.
The adjugate matrix of A is the n × n-matrix Adj(A) whose entries are given by
(notice the reverse order of i and j on the right hand side)

[Adj(A)]ij = (−1)i+j det
(
A(j ,i)

)
, 1 ⩽ i , j ⩽ n.

Example 10.24

Adj

((
a b

c d

))
=

(
d −b

−c a

)
, Adj

1 1 2

0 2 1

1 0 2

 =

 4 −2 −3

1 0 −1

−2 1 2



The determinant and the adjugate matrix provide a formula for the inverse of a matrix:

Theorem 10.25 Let n ∈ N and A ∈ Mn,n(K). Then we have

Adj(A)A = AAdj(A) = det(A)1n.

In particular, if A is invertible then

A−1 =
1

detA
Adj(A).

Proof Let A = (Aij)1⩽i ,j⩽n. For 1 ⩽ i ⩽ n we obtain for the i -th diagonal entry

[Adj(A)A]ii =
n∑

k=1

(−1)i+k det
(
A(k,i)

)
Aki = det(A),

where we use the Laplace expansion (9.59.5) of the determinant. The diagonal entries of
Adj(A)A are thus all equal to detA. For 1 ⩽ i , j ⩽ n with i ̸= j we have

[Adj(A)A]ij =
n∑

k=1

(−1)i+k
(
detA(k,i)

)
Akj .

We would like to interpret this last expression as a Laplace expansion. We consider a
new matrix Â = (Âij)1⩽i ,j⩽n which is identical to A, except that the i -th column of A is
replaced with the j-th column of A, that is, for 1 ⩽ k ⩽ n, we have

(10.4) Âkl =

{
Akj , l = i ,

Akl , l ̸= i .

Then, for all 1 ⩽ k ⩽ n we have Â(k,i) = A(k,i), since the only column in which A and Â

are different is removed in A(k,i). Using (10.410.4), the Laplace expansion of Â with respect
to the i -th column gives

det Â =
n∑

k=1

(−1)(i+k)Âki det
(
Â(k,i)

)
=

n∑
k=1

(−1)i+k
(
detA(k,i)

)
Akj

= [Adj(A)A]ij

The matrix Â has a double occurrence of the i -th column, hence its column vectors are
linearly dependent. Therefore Â is not invertible by Proposition 3.18Proposition 3.18 and so det Â =

[Adj(A)A]ij = 0 by Corollary 10.2Corollary 10.2. The off-diagonal entries of Adj(A)A are thus all zero
and we conclude Adj(A)A = det(A)1n. Using the row version of the Laplace expansion
we can conclude analogously that AAdj(A) = det(A)1n.
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Finally, ifA is invertible, thendetA ̸= 0by Corollary 10.2Corollary 10.2, so thatA−1 = Adj(A)/ det(A),
as claimed. □

We now use Theorem 10.25Theorem 10.25 to obtain a formula for the solution of the linear systemAx⃗ =

b⃗ for an invertible matrix A. Multiplying from the left with A−1, we get

x⃗ = A−1b⃗ =
1

detA
Adj(A)b⃗.

Writing x⃗ = (xi )1⩽i⩽n, multiplication with detA gives for 1 ⩽ i ⩽ n

xi detA =
n∑

k=1

[Adj(A)]ikbk =
n∑

k=1

(−1)i+k det
(
A(k,i)

)
bk .

We can again interpret the right hand side as a Laplace expansion of the matrix Âi ob-
tained by replacing the i -th column of A with b⃗ and leaving A unchanged otherwise.
Hence, we have for all 1 ⩽ i ⩽ n

xi =
det Âi

detA
.

This formula is known as Cramer’s rule. While this is a neat formula, it is rarely used in
computing solutions to linear systems of equations due to the complexity of computing
determinants.

Example 10.26 (Cramer’s rule) We consider the system Ax⃗ = b⃗ for

A =

2 1 1

1 2 1

1 1 2

 and b⃗ =

−2

2

4

 .

Here we obtain

Â1 =

−2 1 1

2 2 1

4 1 2

 , Â2 =

2 −2 1

1 2 1

1 4 2

 , Â3 =

2 1 −2

1 2 2

1 1 4

 .

We computedetA = 4,det Â1 = −12,det Â2 = 4anddet Â3 = 12 so that Cramer’s
rule gives indeed the correct solution

x⃗ =
1

4

−12

4

12

 =

−3

1

3

 .

Exercises

Exercise 10.1 Let

σ =

(
1 2 3 4 5

5 3 2 4 1

)
, τ =

(
1 2 3 4 5

2 5 4 3 1

)
.

(i) Compute στ .
(ii) Express σ and τ products of transpositions.
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Exercise 10.2 (Sign of an n-cycle) Show that the permutation σn ∈ Sn defined by
σn(i) = i + 1 for 1 ⩽ i ⩽ n − 1, and σn(n) = 1, has sgn(σn) = (−1)n+1.

Exercise 10.3 Use the Leibniz formula to show that

det(A) = det(AT )

for all n and all A ∈ Mn,n(K).

Exercise 10.4 Let A =

−1 −2 11

1 −1 −1

6 0 0

. Compute AdjA, and hence detA.
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In this chapter we study linear mappings from a vector space to itself.

Definition 11.1 (Endomorphism ) A linear map g : V → V from a K-vector space
V to itself is called an endomorphism. An endomorphism that is also an isomorph-
ism is called an automorphism.

Working with endomorphisms has a different flavour than working with linear maps
between two different spaces. In particular, if we want to write g as a matrix, it clearly
makes sense to work with just one coordinate system forV – that is, we want to consider
the matrices M(g ,b,b) for b an ordered basis of V .

11.1 Matrices of endomorphisms

Similarity

Let V be a finite dimensional vector space equipped with an ordered basis b and g :

V → V an endomorphism. As a special case of Theorem 8.26Theorem 8.26, we see that if we consider
another ordered basis b′ of V , then

M(g ,b′,b′) = CM(g ,b,b)C−1,

where we writeC = C(b,b′) for the change of basis matrix. This motivates the following
definition:

Definition 11.2 (Similar / conjugate matrices) Letn ∈ N andA,A′ ∈ Mn,n(K). The
matrices A and A′ are called similar or conjugate over K if there exists an invertible
matrix C ∈ Mn,n(K) such that

A′ = CAC−1.
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Similarity of matrices over K is an equivalence relation:

Proposition 11.3 Let n ∈ N and A,B,X ∈ Mn,n(K). Then we have
(i) A is similar to itself;

(ii) A is similar to B then B is similar to A;
(iii) If A is similar to B and B is similar to X, then A is also similar to X.

Proof (i) We take C = 1n.

(ii) SupposeA is similar toB so thatB = CAC−1 for some invertible matrixC ∈ Mn,n(K).
Multiplying with C−1 from the left and C from the right, we get

C−1BC = C−1CAC−1C = A,

so that the similarity follows for the choice Ĉ = C−1.

(iii) We have B = CAC−1 and X = DBD−1 for invertible matrices C,D. Then we get

X = DCAC−1D−1,

so that the similarity follows for the choice Ĉ = DC. □

Remark 11.4
• Because of (ii) in particular, one can say that two matrices A and B are similar

without ambiguity.
• Theorem 8.26Theorem 8.26 shows that A and B are similar if and only if there exists an endo-

morphism g of Kn such that A and B represent g with respect to two ordered
bases of Kn.

The main goal of this chapter (and the next) is: given an endomorphism g , how can we
choose a basis b which makes the matrix of g as nice as possible? Equivalently, given a
square matrix A, is there a “nicest” matrix among all the matrices similar to A?

Remark 11.5 This should remind you a lot of row echelon form. The RREF of A is
a unique “best” representative among all the matrices which are left-equivalent to
A. We’re now looking for a unique “best” representative among all matrices similar
to A.
(This sort of classification problem – define some equivalence relation, and then
look for a nicest representative of each equivalence class – comes up a great deal
in many areas of mathematics.)

Invariants of similarity classes

As a first step, we want to study functions f : Mn,n(K) → K which are invariant under
conjugation, that is, f satisfies f (CAC−1) = f (A) for all A ∈ Mn,n(K) and all invertible
matrices C ∈ Mn,n(K). We have already seen an example of such a function, namely
the determinant. Indeed using the product rule Proposition 10.1Proposition 10.1 and Corollary 10.2Corollary 10.2, we
compute

(11.1)
det
(
CAC−1

)
= det(CA) det

(
C−1

)
= det(C) det(A) det

(
C−1

)
= det(A).
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Because of this fact, the following definition makes sense:

Definition 11.6 (Determinant of an endomorphism) Let V be a finite dimensional
K-vector space and g : V → V an endomorphism. We define

det(g) = det (M(g ,b,b))

where b is any ordered basis of V . By Theorem 8.26Theorem 8.26 and (11.111.1), the scalar det(g) is
independent of the chosen ordered basis.

Another example of a scalar that we can associate to an endomorphism is the so-called
trace. Like for the determinant, we first define the trace for matrices. Luckily, the trace
is a lot simpler to define:

Definition 11.7 (Trace of a matrix) Letn ∈ N andA ∈ Mn,n(K). The sum
∑n

i=1[A]ii
of its diagonal entries is called the trace of A and denoted by Tr(A) or TrA.

Example 11.8 For all n ∈ N we have Tr(1n) = n. For

A =

2 1 1

1 2 1

1 1 3


we have Tr(A) = 2 + 2 + 3 = 7.

The trace of a product of square matrices is independent of the order of multiplication:

Proposition 11.9 Let n ∈ N and A,B ∈ Mn,n(K). Then we have

Tr(AB) = Tr(BA).

Proof Let A = (Aij)1⩽i ,j⩽n and B = (Bij)1⩽i ,j⩽n. Then

[AB]ij =
n∑

k=1

AikBkj and [BA]kj =
n∑

i=1

BkiAij ,

so that

Tr(AB) =
n∑

i=1

n∑
k=1

AikBki =
n∑

k=1

n∑
i=1

BkiAik = Tr(BA).

□

Using the previous proposition, we obtain

(11.2) Tr
(
CAC−1

)
= Tr

(
AC−1C

)
= Tr(A).

As for the determinant, the following definition thus makes sense:

Definition 11.10 (Trace of an endomorphism) Let V be a finite dimensional K-
vector space and g : V → V an endomorphism. We define

Tr(g) = Tr (M(g ,b,b))

108



11.1 — Matrices of endomorphisms

where b is any ordered basis of V . By Theorem 8.26Theorem 8.26 and (11.211.2), the scalar Tr(g) is
independent of the chosen ordered basis.

The trace and determinant of endomorphisms behave nicely with respect to composi-
tion of maps:

Proposition 11.11 LetV be a finite dimensionalK-vector space. Then, for all endo-
morphisms f , g : V → V we have

(i) Tr(f ◦ g) = Tr(g ◦ f );
(ii) det(f ◦ g) = det(f ) det(g).

Proof (i) Fix an ordered basis b of V . Then, using Corollary 8.19Corollary 8.19 and Proposition 11.9Proposition 11.9,
we obtain

Tr(f ◦ g) = Tr (M(f ◦ g ,b,b)) = Tr (M(f ,b,b)M(g ,b,b))

= Tr (M(g ,b,b)M(f ,b,b)) = Tr (M(g ◦ f ,b,b)) = Tr(g ◦ f ).

The proof of (ii) is analogous, but we use Proposition 10.1Proposition 10.1 instead of Proposition 11.9Proposition 11.9.
□

We also have:

Proposition 11.12 Let V be a finite dimensional K-vector space and g : V → V

an endomorphism. Then the following statements are equivalent:
(i) g is injective;

(ii) g is surjective;
(iii) g is bijective;
(iv) det(g) ̸= 0.

Proof The equivalence of the first three statements follows from Corollary 6.21Corollary 6.21. We fix
an ordered basis b of V . Suppose g is bijective with inverse g−1 : V → V . Then we
have

det(g ◦ g−1) = det(g) det
(
g−1

)
= det (IdV ) = det (M(IdV ,b,b)) = det (1dimV ) = 1.

It follows that det(g) ̸= 0 and moreover that

det
(
g−1

)
=

1

det g
.

Conversely, suppose that det g ̸= 0. Then detM(g ,b,b) ̸= 0 so that M(g ,b,b) is in-
vertible by Corollary 10.2Corollary 10.2 and Proposition 8.20Proposition 8.20 implies that g is bijective. □

Remark 11.13 Notice that assertions (i)–(iii) of Proposition 11.12Proposition 11.12 are not equival-
ent for infinite-dimensional vector spaces (where the determinant doesn’t make
sense). For instance, consider V = K∞, the K-vector space of sequences from
Example 4.7Example 4.7; then the endomorphism g : V → V defined by (x1, x2, x3, ...) 7→
(0, x1, x2, x3, ...) is injective but not surjective.
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11.2 Detour: More on Subspaces

Before we develop the theory of endomorphisms further, we need to make a detour, by
developing a bit more theory about subspaces of vector spaces.

Sums of subspaces

Definition 11.14 (Sum of subspaces ) Let V be a K-vector space, n ∈ N and
U1, ... ,Un be vector subspaces of V . The set

n∑
i=1

Ui = U1 + U2 + · · ·+ Un = {v ∈ V |v = u1 + u2 + · · ·+ un for ui ∈ Ui}

is called the sum of the subspaces Ui .

Recall that by Proposition 4.21Proposition 4.21, the intersection of two subspaces is again a subspace,
whereas the union of two subspaces fails to be a subspace in general. However, sub-
spaces do behave nicely with regards to sums:

Proposition 11.15 The sum of the subspaces Ui ⊂ V , i = 1 ... , n is again a vector
subspace.

Proof The sum
∑n

i=1 Ui is non-empty, since it contains the zero vector 0V . Let v and
v ′ ∈

∑n
i=1 Ui so that

v = v1 + v2 + · · ·+ vn and v ′ = v ′
1 + v ′

2 + · · ·+ v ′
n

for vectors vi , v ′
i ∈ Ui , i = 1, ... , n. Each Ui is a vector subspace of V . Therefore, for all

scalars s, t ∈ K, the vector svi + tv ′
i is an element of Ui , i = 1, ... , n. Thus

sv + tv ′ = sv1 + tv ′
1 + · · ·+ svn + tv ′

n

is an element ofU1+ · · ·+Un. By Definition 4.16Definition 4.16, it follows thatU1+ · · ·+Un is a vector
subspace of V . □

Remark 11.16 Notice that U1 + · · ·+Un is the smallest vector subspace of V con-
taining all vector subspaces Ui , i = 1, ... , n.

Direct sums

If each vector in the sum is in a unique way the sum of vectors from the subspaces we
say the subspaces are in direct sum:

Definition 11.17 (Direct sum of subspaces) Let V be a K-vector space, n ∈ N and
U1, ... ,Un be vector subspaces of V . The subspaces U1, ... ,Un are said to be in dir-
ect sum if each vectorw ∈ W = U1+ · · ·+Un is in a unique way the sum of vectors
vi ∈ Ui for 1 ⩽ i ⩽ n. That is, if w = v1 + v2 + · · · + vn = v ′

1 + v ′
2 + · · · + v ′

n for

110



11.2 — Detour: More on Subspaces

vectors vi , v ′
i ∈ Ui , then vi = v ′

i for all 1 ⩽ i ⩽ n. We write
n⊕

i=1

Ui

in case the subspaces U1, ... ,Un are in direct sum.

Example 11.18 Letn ∈ NandV = Kn as well asUi = span{e⃗i}, where{e⃗1, ... , e⃗n}
denotes the standard basis of Kn. Then Kn =

⊕n
i=1 Ui .

Remark 11.19
(i) Two subspaces U1,U2 of V are in direct sum if and only if U1 ∩ U2 = {0V }.

Indeed, suppose U1 ∩ U2 = {0V } and consider w = v1 + v2 = v ′
1 + v ′

2

with vi , v
′
i ∈ Ui for i = 1, 2. We then have v1 − v ′

1 = v ′
2 − v2 ∈ U2, since

U2 is a subspace. Since U1 is a subspace as well, we also have v1 − v ′
1 ∈ U1.

Since v1 − v ′
1 lies both in U1 and U2, we must have v1 − v ′

1 = 0V = v ′
2 − v2.

Conversely, suppose U1,U2 are in direct sum and let w ∈ (U1 ∩ U2). We can
write w = w + 0V = 0V + w , since w ∈ U1 and w ∈ U2. Since U1,U2 are in
direct sum, we must have w = 0V , hence U1 ∩ U2 = {0V }.

(ii) Observe that if the subspaces U1, ... ,Un are in direct sum and vi ∈ Ui with
vi ̸= 0V for 1 ⩽ i ⩽ n, then the vectors {v1, ... , vn} are linearly independent.
Indeed, if s1, ... , sn are scalars such that

s1v1 + s2v2 + · · ·+ snvn = 0V = 0V + 0V + · · ·+ 0V ,

then sivi = 0V for all 1 ⩽ i ⩽ n. By assumption vi ̸= 0V and hence si = 0 for
all 1 ⩽ i ⩽ n.

Proposition 11.20 Let n ∈ N, V be a finite dimensional K-vector space and
U1, ... ,Un be subspaces of V . Let bi be an ordered basis of Ui for 1 ⩽ i ⩽ n. Then
we have:

(i) The tuple of vectors obtained by listing all the vectors of the bases bi is a basis
of V if and only if V =

⊕n
i=1 Ui .

(ii) dim(U1 + · · ·+Un) ⩽ dim(U1) + · · ·+ dim(Un) with equality if and only if the
subspaces U1, ... ,Un are in direct sum.

Proof Part of an exercise. □

Complements

Definition 11.21 (Complement to a subspace) LetV be aK-vector space andU ⊂
V a subspace. A subspace U ′ of V such that V = U ⊕U ′ is called a complement to
U .
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Example 11.22 Notice that a complement need not be unique. Consider V = R2

and U = span{e⃗1}. Let v ∈ V . Then the subspace U ′ = span{v} is a complement
to U , provided e⃗1, v⃗ are linearly independent.

Corollary 11.23 (Existence of a complement) LetU be a subspace of a finite dimen-
sional K-vector space V . Then there exists a subspace U ′ so that V = U ⊕ U ′.

Proof Suppose (v1, ... , vm) is an ordered basis of U . By Theorem 5.10Theorem 5.10, there exists a
basis{v1, ... , vm, vm+1, ... , vn}ofV . DefiningU ′ = span{vm+1, ... , vn}, Proposition 11.20Proposition 11.20
implies the claim. □

The dimension of a sum of two subspaces equals the sum of the dimensions of the sub-
spaces minus the dimension of the intersection:

Proposition 11.24 Let V be a finite dimensional K-vector space and U1,U2 sub-
spaces of V . Then we have

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).

Proof Let r = dim(U1 ∩ U2) and let {u1, ... , ur} be a basis of U1 ∩ U2. These vectors
are linearly independent and elements ofU1, hence by Theorem 5.10Theorem 5.10, there exist vectors
v1, ... , vm−r so that S1 = {u1, ... , ur , v1, ... , vm−r} is a basis of U1. Likewise there exist
vectors w1, ... ,wn−r such that S2 = {u1, ... , ur ,w1, ... ,wn−r} is a basis of U2. Here m =

dimU1 and n = dimU2.

Now consider the set S = {u1, ... , ur , v1, ... , vm−r ,w1, ... ,wn−r} consisting of r + m −
r + n − r = n + m − r vectors. If this set is a basis of U1 + U2, then the claim follows,
since then dim(U1 + U2) = n +m − r = dim(U1) + dim(U2)− dim(U1 ∩ U2).

We first show that S generates U1 +U2. Let y ∈ U1 +U2 so that y = x1 + x2 for vectors
x1 ∈ U1 and x2 ∈ U2. Since S1 is a basis of U1, we can write x1 as a linear combination
of elements of S1. Likewise we can write x2 as a linear combination of elements of S2. It
follows that S generates U1 + U2.

We need to show that S is linearly independent. So suppose we have scalars s1, ... , sr ,
t1, ... , tm−r , and r1, ... , rn−r , so that

s1u1 + · · ·+ srur︸ ︷︷ ︸
=u

+ t1v1 + · · ·+ tm−rvm−r︸ ︷︷ ︸
=v

+ r1w1 + · · ·+ rn−rwn−r︸ ︷︷ ︸
=w

= 0V .

Equivalently, w = −u − v so that w ∈ U1. Since w is a linear combination of elements
of S2, we also have w ∈ U2. Therefore, w ∈ U1 ∩ U2 and there exist scalars ŝ1, ... , ŝr
such that

w = ŝ1u1 + · · ·+ ŝrur︸ ︷︷ ︸
=û

This is equivalent to w − û = 0V , or written out

r1w1 + · · ·+ rn−rwn−r − ŝ1u1 − · · ·+ ŝrur = 0V .

Since the vectors {u1, ... , ur ,w1, ... ,wn−r} are linearly independent, we conclude that
r1 = · · · = rn−r = ŝ1 = · · · = ŝr = 0. It follows that w = 0V and hence u + v = 0V .
Again, since {u1, ... , ur , v1, ... , vn−r} are linearly independent, we conclude that s1 =

· · · = sr = t1 = · · · = tm−r = 0 and we are done. □
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Remark 11.25 If you’ve seen the Inclusion-Exclusion Principle for counting the sizes
of finite sets, it’s tempting to guess that the previous lemma generalises to three or
more subspaces as follows:

dim(U1 + U2 + U3)
?
= dim(U1) + dim(U2) + dim(U3)

− dim(U1 ∩ U2)− dim(U2 ∩ U3)− dim(U3 ∩ U1) + dim(U1 ∩ U2 ∩ U3).

This is, surprisingly, false – takingUi to be any three distinct lines through the origin
in R2 gives a counterexample.

11.3 Eigenvectors and eigenvalues

Mappings g that have the same domain and codomain allow for the notion of a fixed
point. Recall that an element x of a set X is called a fixed point of a mapping g : X → X
if g(x) = x , that is, x agrees with its image under g . In Linear Algebra, a generalisa-
tion of the notion of a fixed point is that of an eigenvector. A vector v ∈ V is called an
eigenvector of the linear map g : V → V if v is merely scaled when applying g to v ,
that is, there exists a scalar λ ∈ K – called eigenvalue – such that g(v) = λv . Clearly,
the zero vector 0V will satisfy this condition for every choice of scalar λ. For this reason,
eigenvectors are usually required to be different from the zero vector. In this termin-
ology, fixed points v of g are simply eigenvectors with eigenvalue 1, since they satisfy
g(v) = v = 1v .

It is natural to ask whether a linear map g : V → V always admits an eigenvector. In
the remaining part of this chapter we will answer this question and further develop our
theory of linear maps, specifically endomorphisms. We start with some precise defini-
tions.

Definition 11.26 (Eigenvector, eigenspace, eigenvalue ) Let g : V → V be an
endomorphism of a K-vector space V .
• An eigenvector with eigenvalue λ ∈ K is a non-zero vector v ∈ V such that
g(v) = λv .

• Ifλ ∈ K is an eigenvalue ofg , theλ-eigenspaceEigg (λ) is the subspace of vectors
v ∈ V satisfying g(v) = λv .

• The dimension ofEigg (λ) is called the geometric multiplicity of the eigenvalueλ.
• The set of all eigenvalues of g is called the spectrum of g .
• For A ∈ Mn,n(K) we speak of eigenvalues, eigenvectors, eigenspaces and spec-

trum to mean those of the endomorphism fA : Kn → Kn.

Remark 11.27 By definition, the zero vector 0V is not an eigenvector, it is however
an element of the eigenspace Eigg (λ) for every eigenvalue λ.

Example 11.28
(i) The scalar 0 is an eigenvalue of an endomorphism g : V → V if and only if the

kernel of g is different from {0V }. In the case where the kernel of f does not
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only consist of the zero vector, we have Ker g = Eigg (0) and the geometric
multiplicity of 0 is the nullity of g .

(ii) The endomorphism fD : Kn → Kn associated to a diagonal matrix with dis-
tinct diagonal entries

D =


λ1

λ2

. . .
λn


has spectrum {λ1, ... ,λn} and corresponding eigenspaces EigfD(λi ) =

span{e⃗i}.
(iii) Consider the R-vector space P(R) of polynomials and f = d

dx : P(R) → P(R)
the derivative by the variablex . The kernel of f consists of the constant polyno-
mials and hence 0 is an eigenvalue for f . For any non-zero scalar λ we cannot
have polynomialsp satisfying d

dx p = λp, as the left hand of this last expression
has a smaller degree than the right hand side.

Previously we defined the trace and determinant for an endomorphism g : V → V

by observing that the trace and determinant of the matrix representation of g are in-
dependent of the chosen basis of V . Similarly, we can consider eigenvalues of g and
eigenvalues of the matrix representation of g with respect to some ordered basis of V .
Perhaps unsurprisingly, the eigenvalues are the same:

Proposition 11.29 Let g : V → V be an endomorphism of a finite dimensional K-
vector space V . Let b be an ordered basis of V with corresponding linear coordinate
system β. Then v ∈ V is an eigenvector of g with eigenvalue λ ∈ K if and only if
β(v) ∈ Kn is an eigenvector with eigenvalueλofM(g ,b,b). In particular, conjugate
matrices have the same eigenvalues.

Proof Write A = M(g ,b,b). Recall that by an eigenvector of A ∈ Mn,n(K), we mean
an eigenvector of fA : Kn → Kn. By Definition 8.10Definition 8.10, we have fA = β ◦ g ◦β−1. Suppose
λ ∈ K is an eigenvalue of g so that g(v) = λv for some non-zero vector v ∈ V . Consider
the vector x⃗ = β(v) ∈ Kn which is non-zero, sinceβ : V → Kn is an isomorphism. Then

fA(x⃗) = β(g(β−1(x⃗))) = β(g(v)) = β(λv) = λβ(v) = λx⃗ ,

so that x⃗ is an eigenvector of fA with eigenvalue λ.

Conversely, if λ is an eigenvalue of fA with non-zero eigenvector x⃗ , then it follows as
above that v = β−1(x⃗) ∈ V is an eigenvector of g with eigenvalue λ.

By Remark 11.4Remark 11.4, if the matrices A, B are similar, then they represent the same endo-
morphism g : Kn → Kn and hence have the same eigenvalues. □

The “nicest” endomorphisms are those for which there exists an ordered basis consisting
of eigenvectors:

Definition 11.30 (Diagonalisable endomorphism)
• An endomorphism g : V → V is called diagonalisable if there exists an ordered

basis b of V such that each element of b is an eigenvector of g .
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• For n ∈ N, a matrix A ∈ Mn,n(K) is called diagonalisable over K if the endo-
morphism fA : Kn → Kn is diagonalisable.

Example 11.31
(i) We consider V = P(R) and the endomorphism g : V → V which replaces

the variable x with 2x . For instance, we have

g(x2 − 2x + 3) = (2x)2 − 2(2x) + 3 = 4x2 − 4x + 3.

Then g is diagonalisable. The vector space P(R) has an ordered basis b =

(1, x , x2, x3, ...). Clearly, for all k ∈ N ∪ {0} we have g(xk) = 2kxk , so that xk

is an eigenvector of g with eigenvalue 2k .
(ii) For α ∈ (0,π) consider

Rα =

(
cosα − sinα

sinα cosα

)
.

Recall that the endomorphism fRα
: R2 → R2 rotates vectors counter-

clockwise around the origin 0R2 by the angle α. Since α ∈ (0,π), the endo-
morphism fRα has no eigenvectors and hence is not diagonalisable.

Remark 11.32 Applying Proposition 11.29Proposition 11.29, we conclude that in the case of a finite
dimensional K-vector space V , an endomorphism g : V → V is diagonalisable if
and only if there exists an ordered basis b of V such that M(g ,b,b) is a diagonal
matrix. Moreover, A ∈ Mn,n(K) is diagonalisable if and only if A is similar over K
to a diagonal matrix.

Recall, ifX ,Y are sets, f : X → Y a mapping andZ ⊂ X a subset ofX , we can consider
the restriction of f to Z , usually denoted by f |Z , which is the mapping

f |Z : Z → Y, z 7→ f (z).

So we simply take the same mapping f , but apply it to the elements of the subset only.

Closely related to the notion of an eigenvector is that of a stable subspace. Let v ∈ V be
an eigenvector with eigenvalue λ of the endomorphism g : V → V . The 1-dimensional
subspace U = span{v} is stable under g , that is, g(U) ⊂ U . Indeed, since g(v) = λv

and since every vector u ∈ U can be written as u = tv for some scalar t ∈ K, we have
g(u) = g(tv) = tg(v) = tλv ∈ U . This motivates the following definition:

Definition 11.33 (Stable subspace) A subspace U ⊂ V is called stable or invariant
under the endomorphism g : V → V if g(U) ⊂ U , that is g(u) ∈ U for all vectors
u ∈ U . In this case, the restriction g |U of g to U is an endomorphism of U .

Remark 11.34 Notice that a finite dimensional subspace U ⊂ V is stable under g
if and only if g(vi ) ∈ U for 1 ⩽ i ⩽ m, where {v1, ... , vm} is a basis of U .
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Example 11.35
(i) Every eigenspace of an endomorphism g : V → V is a stable subspace. By

definition g |Eigg (λ) : Eigg (λ) → Eigg (λ) is multiplication by the scalar λ ∈ K.
(ii) We consider V = R3 and

Rα =

cosα − sinα 0

sinα cosα 0

0 0 1


for α ∈ (0,π). The endomorphism fRα

: R3 → R3 is the rotation by the angle
α ∈ R around the axis spanned by e⃗3. Then the plane U = {x⃗ = (xi )1⩽i⩽3 ∈
R3|x3 = 0} is stable under f = fRα . Here f |Π : Π → Π is the rotation in the
plane U around the origin with angle α.

Moreover, the vector e⃗3 is an eigenvector with eigenvalue 1 so that

Eigf (1) = span{e⃗3}.

(iii) We consider again the R-vector space P(R) of polynomials and f = d
dx :

P(R) → P(R) the derivative by the variable x . For n ∈ N let Un denote the
subspace of polynomials of degree at most n. Since Un−1 ⊂ Un, the subspace
Un is stable under f .

Stable subspaces correspond to zero blocks in the matrix representation of linear maps.
More precisely:

Proposition 11.36 Let V be a K-vector space of dimension n ∈ N and g : V → V

an endomorphism. Furthermore, let U ⊂ V be a subspace of dimension 1 ⩽ m ⩽ n

and b an ordered basis of U and c = (b,b′) an ordered basis of V . Then U is stable
under g if and only if the matrix A = M(g , c, c) has the form

A =

(
Â ∗

0n−m,m ∗

)
for some matrix Â ∈ Mm,m(K). In the case where U is stable under g , we have Â =

M(g |U ,b,b) ∈ Mm,m(K).

Proof Write b = (v1, ... , vm) for vectors vi ∈ U and b′ = (w1, ... ,wn−m) for vectors
wi ∈ V .

⇒ Since U is stable under g , we have g(u) ∈ U for all vectors u ∈ U . Since b is a basis
of U , there exist scalars Âij ∈ K with 1 ⩽ i , j ⩽ m such that

g(vj) =
m∑
i=1

Âijvi

for all 1 ⩽ j ⩽ m. By Proposition 8.11Proposition 8.11, the matrix representation of g with respect to
the ordered basis c = (b,b′) of V thus takes the form

A =

(
Â ∗

0n−m,m ∗

)
where we write Â = (Âij)1⩽i ,j⩽m = M(g |U ,b,b).

⇐ Suppose

A =

(
Â ∗

0n−m,m ∗

)
= M(g , c, c)
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is the matrix representation of g with respect to the ordered basis c of V . Write Â =

(Âij)1⩽i ,j⩽m Then, by Proposition 8.11Proposition 8.11, g(vj) =
∑m

i=1 Âijvi ∈ U for all 1 ⩽ j ⩽ m, hence
U is stable under g , by Remark 11.34Remark 11.34. □

From Proposition 11.36Proposition 11.36 we can conclude:

Remark 11.37 Suppose V is the direct sum of subspaces U1, U2, ... ,Um, all of
which are stable under the endomorphism g : V → V . If bi is an ordered basis of
Ui for i = 1, ... ,m, then the matrix representation of g with respect to the ordered
basis c = (b1, ... ,bm) takes the block form

A =


A1

A2

. . .
Am


where Ai = M(g |Ui ,bi ,bi ) for i = 1, ... ,m.

11.4 The characteristic polynomial

The eigenvalues of an endomorphism are the solutions of a polynomial equation:

Lemma 11.38 Let V be a finite dimensional K-vector space and g : V → V an
endomorphism. Then λ ∈ K is an eigenvalue of g if and only if

det (λIdV − g) = 0.

Moreover if λ is an eigenvalue of g , then Eigg (λ) = Ker(λIdV − g).

Proof Let v ∈ V . We may write v = IdV (v). Hence

g(v) = λv ⇐⇒ 0V = (λIdV − g)(v) ⇐⇒ v ∈ Ker(λIdV − g)

It follows thatEigg (λ) = Ker(λIdV−g). Moreoverλ ∈ K is an eigenvalue ofg if and only
if the kernel of λIdV − g is different from {0V } or if and only if λIdV − g is not injective.
Proposition 11.12Proposition 11.12 implies thatλ ∈ K is an eigenvalue of g if and only ifdet (λIdV − g) =

0. □

Definition 11.39 (Characteristic polynomial ) Let g : V → V be an endomorph-
ism of a finite dimensional K-vector space V . The function

charg : K → K, x 7→ det (x IdV − g)

is called the characteristic polynomial of the endomorphism g .

In practice, in order to compute the characteristic polynomial of an endomorphism g :

V → V , we choose an ordered basis b of V and compute the matrix representation
A = M(g ,b,b) of g with respect to b. We then have

charg (x) = det (x1n − A) .

By the characteristic polynomial of a matrix A ∈ Mn,n(K), we mean the characteristic
polynomial of the endomorphism fA : Kn → Kn, that is, the functionx 7→ det (x1n − A).
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A zero of a polynomial f : K → K is a scalar λ ∈ K such that f (λ) = 0. The multiplicity
of a zero λ is the largest integer n ⩾ 1 such that there exists a polynomial f̂ : K → K so
that f (x) = (x − λ)n f̂ (x) for all x ∈ K. Zeros are also known as roots.

Example 11.40 The polynomial f (x) = x3 − x2 − 8x + 12 can be factorised as
f (x) = (x − 2)2(x + 3) and hence has zero 2 with multiplicity 2 and −3 with mul-
tiplicity 1.

Definition 11.41 (Algebraic multiplicity) Letλbe an eigenvalue of the endomorph-
ism g : V → V . The multiplicity of the zero λ of charg is called the algebraic multi-
plicity of λ.

Example 11.42
(i) We consider

A =

(
1 5

5 1

)
.

Then

charA(x) = charfA(x) = det (x12 − A) = det

(
x − 1 −5

−5 x − 1

)
= (x − 1)2 − 25 = x2 − 2x − 24 = (x + 4)(x − 6).

Hence we have eigenvalues λ1 = 6 and λ2 = −4, both with algebraic multi-
plicity 1. By definition we have

EigA(6) = EigfA(6) =
{
v⃗ ∈ K2 : Av⃗ = 6v⃗

}
and we compute that

EigA(6) = span

{(
1

1

)}
Since dimEigA(6) = 1, the eigenvalue 6has geometric multiplicity 1. Likewise
we compute

EigA(−4) = span

{(
−1

1

)}
so that the eigenvalue −4 has geometric multiplicity 1 as well. Notice that we
have an ordered basis of eigenvectors of A and hence A is diagonalisable, c.f.
Example 8.15Example 8.15.

(ii) We consider

A =

(
2 1

0 2

)
Then charA(x) = (x − 2)2 so that we have a single eigenvalue 2 with algebraic
multiplicity 2. We compute

EigA(2) = span

{(
1

0

)}
so that the eigenvalue 2 has geometric multiplicity 1. Notice that we cannot
find an ordered basis consisting of eigenvectors, henceA is not diagonalisable.

The determinant and trace of an endomorphism do appear as coefficients in its charac-
teristic polynomial:
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Lemma 11.43 Let g : V → V be an endomorphism of a K-vector space V of di-
mension n. Then charg is a polynomial of degree n and

charg (x) = xn − Tr(g)xn−1 + · · ·+ (−1)n det(g).

Proof Fix an ordered basis b of V and let A = M(g ,b,b) = (Aij)1⩽i ,j⩽n, so we need to
compute det(B) where B = x1n − A. The result is obvious if n = 1, so by induction we
may assume it holds for n − 1.

Performing a Laplace expansion on the first column of B, we get the following terms:

• A term (x − A11) det(B(1,1)). Using the induction hypothesis we have detB(1,1) =

char(A(1,1)) = xn−1 − xn−2 Tr(A(1,1)) + ... , where the dots denote terms of degree
⩽ (n − 2). So we have

(x − A11) det(B
(1,1)) = (x − A11)(x

n−1 − xn−2 Tr(A(1,1)) + ... )

= xn − (A11 + Tr(A(1,1)))xn−1 + ... .

Since the diagonal entries of A(1,1) are precisely the diagonal entries of A with A1,1

removed, we have A11 + Tr(A(1,1)) = Tr(A), so this is just xn − Tr(A)xn−1 + ... .
• Another (n − 1) terms of the form (−1)k+1 · (−Ak1) · det(B(k,1)) for 2 ⩽ k ⩽ n. We

claim that each of these is a polynomial of degree ⩽ n − 2. This is because crossing
out the k-th row and first column, for k ̸= 1, removes 2 of the terms with x in them
from the diagonal of B. Hence B(k,1) has n− 2 entries which are linear in x and all the
rest are constant; so each of the terms in the Leibniz formula for detB(k,1) has degree
at most n − 2.

So the Laplace-expansion terms with 2 ⩽ k ⩽ n don’t contribute anything to the xn and
xn−1 coefficients of det(B) and we conclude

charg (x) = xn − Tr(g)xn−1 + cn−2x
n−2 + · · ·+ c1x + c0

for coefficients cn−2, ... , c0 ∈ K. It remains to show that c0 = (−1)n det(g). We have
c0 = charg (0) = det(−g) = det(−A). Since the determinant is linear in each row of A,
this gives det(−A) = (−1)n det(A), as claimed. □

Remark 11.44 In particular, for n = 2 we have charg (x) = x2 − Tr(g)x + det(g).
Compare with Example 11.42Example 11.42.

Exercises

Exercise 11.1 Let U and U ′ be the subspaces of R3 with bases
1

1

1

 ,

1

2

2

 and


1

2

3


respectively. Show that U and U ′ are complementary subspaces of R3. Find an-
other subspace U ′′, with U ′′ ̸= U ′, such that U ′′ is also complementary to U .
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Exercise 11.2 Let A ∈ Mn,n(K). Show that the map tA : Mn,n(K) → K defined
by tA(B) = tr(AB) is linear. Show, conversely, that given any linear map t :

Mn,n(K) → K, we can find a unique A such that t = tA.

Exercise 11.3 Compute the characteristic polynomials and eigenvalues of the fol-
lowing matrices, and bases of their eigenspaces:

(i)

(
7 −4

−8 −7

)
, (ii)

 5 2 3

−13 −6 −11

4 2 4

 , (iii)

 3 1 1

−15 −5 −5

6 2 2

 .

Which of them are diagonalisable?

Exercise 11.4 (hard!)
Show that the coefficient of xn−2 in charA(x), for A ∈ Mn,n(K), is given by the sum∑

1⩽i<j⩽n

det

(
Aii Aij

Aji Ajj

)
(the sum over all “second-order diagonal minors” of A). Can you spot a generalisa-
tion to the xn−r coefficient for an arbitrary r?
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12.1 Properties of eigenvalues

We will argue next that an endomorphism g : V → V of a finite dimensional K-vector
space V has at most dim(V ) eigenvalues. We first need:

Theorem 12.1 (Little Bézout’s theorem) For a polynomial f ∈ P(K)of degreen ⩾ 1

andx0 ∈ K, there exists a polynomialg ∈ P(K)of degreen−1 such that for allx ∈ K
we have f (x) = f (x0) + g(x)(x − x0).

Proof We will give an explicit expression for the polynomial g . If one is not interested in
such an expression, a proof using induction can also be given. Write f (x) =

∑n
k=0 akx

k

for coefficients (a0, ... , an) ∈ Kn+1. For 0 ⩽ j ⩽ n − 1 consider

(12.1) bj =

n−j−1∑
k=0

ak+j+1x
k
0

and the polynomial

g(x) =
n−1∑
j=0

bjx
j

of degree n − 1. We have

g(x)(x − x0) =
n−1∑
j=0

n−j−1∑
k=0

(
ak+j+1x

k
0 x

j+1
)
−

n−1∑
j=0

n−j−1∑
k=0

(
ak+j+1x

k+1
0 x j

)
=

n∑
j=1

n−j∑
k=0

(
ak+jx

k
0 x

j
)
−

n−1∑
j=0

n−j∑
k=1

(
ak+jx

k
0 x

j
)

= anx
n +

n−1∑
j=1

ajx
j + a0 − a0 −

n∑
k=1

akx
k
0 = f (x)− f (x0).

□

From this we conclude:
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Proposition 12.2 Let f ∈ P(K) be a polynomial of degree n. Then f has at most n
(distinct) zeros or f is the zero polynomial.

Proof We use induction. The case n = 0 is clear, hence the statement is anchored.

Inductive step: Suppose f ∈ P(K) is a polynomial of degree n with n + 1 distinct zeros
λ1, ... ,λn+1. Since f (λn+1) = 0, Theorem 12.1Theorem 12.1 implies that

f (x) = (x − λn+1)g(x)

for some polynomial g of degree n − 1. For 1 ⩽ i ⩽ n, we thus have

0 = f (λi ) = (λi − λn+1)g(λi ).

Since λi ̸= λn+1 it follows that g(λi ) = 0. Therefore, g has n distinct zeros and must be
the zero polynomial by the induction hypothesis. It follows that f is the zero polynomial
as well. □

This gives:

Corollary 12.3 Let g : V → V be an endomorphism of a K-vector space of dimen-
sion n ∈ N. Then g has at most n (distinct) eigenvalues.

Proof By Lemma 11.38Lemma 11.38 and Lemma 11.43Lemma 11.43, the eigenvalues ofg are the zeros of the char-
acteristic polynomial. The characteristic polynomial ofg has degreen. The claim follows
by applying Proposition 12.2Proposition 12.2. □

Proposition 12.4 (Linear independence of eigenvectors) Let V be a finite dimen-
sional K-vector space and g : V → V an endomorphism. Then the eigenspaces
Eigg (λ) of g are in direct sum. In particular, if v1, ... , vm are eigenvectors correspond-
ing to distinct eigenvalues of g , then {v1, ... , vm} are linearly independent.

Proof We use induction on the number m of distinct eigenvalues of g . Let {λ1, ... ,λm}
be distinct eigenvalues of g . For m = 1 the statement is trivially true, so the statement
is anchored.

Inductive step: Assume m− 1 eigenspaces are in direct sum. We want to show that then
m eigenspaces are also in direct sum. Let vi , v ′

i ∈ Eigg (λi ) be eigenvectors such that

(12.2) v1 + v2 + · · ·+ vm = v ′
1 + v ′

2 + · · ·+ vm̃.

Applying g to this last equation gives

(12.3) λ1v1 + λ2v2 + · · ·+ λmvm = λ1v
′
1 + λ2v

′
2 + · · ·+ λmvm̃.

Subtracting λm times (12.212.2) from (12.312.3) gives

(λ1 − λm)v1 + · · ·+ (λm−1 − λm)vm−1 = (λ1 − λm)v
′
1 + · · ·+ (λm−1 − λm)v

′
m−1.

Since m − 1 eigenspaces are in direct sum, this implies that (λi − λm)vi = (λi − λm)v
′
i

for 1 ⩽ i ⩽ m − 1. Since the eigenvalues are distinct, we have λi − λm ̸= 0 for all
1 ⩽ i ⩽ m− 1 and hence vi = v ′

i for all 1 ⩽ i ⩽ m− 1. Now (12.312.3) implies that vm = vm̃
as well and the inductive step is complete.

Since the eigenspaces are in direct sum, the linear independence of eigenvectors with
respect to distinct eigenvalues follows from Remark 11.19Remark 11.19 (ii). □
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In the case where all the eigenvalues are distinct, we conclude that g is diagonalisable.

Proposition 12.5 Let g : V → V be an endomorphism of a finite dimensional K-
vector spaceV . Suppose the characteristic polynomial of g hasdim(V )distinct zeros
(that is, the algebraic multiplicity of each eigenvalue is 1), then g is diagonalisable.

Proof Let n = dim(V ). Let λ1, ... ,λn denote the distinct eigenvalues of g . Let 0V ̸=
vi ∈ Eigg (λi ) for i = 1, ... , n. Then, by Proposition 12.4Proposition 12.4, the eigenvectors are linearly in-
dependent, it follows that (v1, ... , vn) is an ordered basis ofV consisting of eigenvectors,
hence g is diagonalisable. □

Remark 12.6 Proposition 12.5Proposition 12.5 gives a sufficient condition for an endomorphism
g : V → V to be diagonalisable, it is however not necessary. The identity en-
domorphism is diagonalisable, but its spectrum consists of the single eigenvalue 1

with algebraic multiplicity dim(V ).

Every polynomial in P(C) of degree at least 1 has at least one zero. This fact is known as
the fundamental theorem of algebra. The name is well-established, but quite mislead-
ing, as there is no purely algebraic proof. You will encounter a proof of this statement
in the module M07. As a consequence we obtain the following important existence the-
orem:

Theorem 12.7 (Existence of eigenvalues) Let g : V → V be an endomorphism of a
complex vector space V of dimension n ⩾ 1. Then g admits at least one eigenvalue.
Moreover, the sum of the algebraic multiplicities of the eigenvalues of g is equal to n.
In particular, if A ∈ Mn,n(C) is a matrix, then there is at least one eigenvalue of A.

Proof By Lemma 11.38Lemma 11.38 and Lemma 11.43Lemma 11.43, the eigenvalues ofg are the zeros of the char-
acteristic polynomial and this is an element of P(C). The first statement thus follows by
applying the fundamental theorem of algebra to the characteristic polynomial of g .

Applying Theorem 12.1Theorem 12.1 and the fundamental theorem of algebra repeatedly, we find k ∈
N and multiplicities m1, ... ,mk ∈ N such that

charg (x) = (x − λ1)
m1(x − λ2)

m2 · · · (x − λk)
mk

where λ1, ... ,λk are zeros of charg . Since charg has degree n, it follows that
∑k

i=1 mi =

n. □

Example 12.8
(i) Recall that the discriminant of a quadratic polynomial x 7→ ax2 + bx + c ∈

P(K) is b2 − 4ac , provided a ̸= 0. If K = C and b2 − 4ac is non-zero, then the
polynomial ax2+bx + c has two distinct zeros. The characteristic polynomial
of a 2-by-2 matrix A satisfies charA(x) = x2 − Tr(A)x + det(A). Therefore, if
A has complex entries and satisfies (TrA)2 − 4 detA ̸= 0, then it is diagonal-
isable. If A has real entries and satisfies (TrA)2 − 4 detA ⩾ 0, then it has a
least one eigenvalue. If (TrA)2 − 4 detA > 0 then it is diagonalisable.
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(ii) Recall that, by Proposition 10.4Proposition 10.4, an upper triangular matrix A = (Aij)1⩽i ,j⩽n

satisfies detA =
∏n

i=1 Aii . It follows that

charA(x) =
n∏

i=1

(x − Aii ) = (x − A11)(x − A22) · · · (x − Ann).

Consequently, an upper triangular matrix has spectrum {A11,A22, ... ,Ann}
and is diagonalisable if all its diagonal entries are distinct. Notice that by
Example 11.42Example 11.42 (ii) not every upper triangular matrix is diagonalisable.

Example 12.9 (Fibonacci sequences) The Fibonacci sequence is the sequence
(Fn)n∈N defined by the relations

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ⩾ 2.

Consider the matrix

A =

(
0 1

1 1

)
=

(
F0 F1

F1 F2

)
.

Then, using induction, we can show that

An =

(
Fn−1 Fn

Fn Fn+1

)
for all n ∈ N. We would like to give a simple formula for computing An, and hence
the Fibonacci numbers Fn.
Suppose we can find an invertible matrix C so that A = CDC−1 for some diagonal
matrix D. Then

An = CDC−1CDC−1 · · ·CDC−1 = CDnC−1

and we can easily computeAn, as the n-th power of a diagonal matrixD is the diag-
onal matrix whose diagonal entries are given by the n-th powers of diagonal entries
of D. We thus want to diagonalise the matrix

A =

(
0 1

1 1

)
.

We obtain charA(x) = x2 − x − 1 and hence eigenvalues λ1 = (1 +
√
5)/2 and

λ2 = (1−
√
5)/2. From this we compute

EigA(λ1) = span

{(
1

λ1

)}
and EigA(λ2) = span

{(
1

λ2

)}
Let e = (e⃗1, e⃗2) denote the standard basis of R2 and consider the ordered basis

b =

((
1

λ1

)
,

(
1

λ2

))
of eigenvectors of fA. We have

M(fA,b,b) =

(
λ1 0

0 λ2

)
= D

and the change of base matrix is

C = C(b, e) =

(
1 1

λ1 λ2

)
and

C−1 = C(e,b) =
1

λ2 − λ1

(
λ2 −1

−λ1 1

)
.
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Therefore A = CDC−1 and hence An = CDnC−1 so that

An =
1

λ2 − λ1

(
1 1

λ1 λ2

)(
λn
1 0

0 λn
2

)(
λ2 −1

−λ1 1

)
=

(
Fn−1 Fn

Fn Fn+1

)
.

This yields the formula

Fn =
λn
1 − λn

2

λ1 − λ2
=

((1 +
√
5)/2)n − ((1−

√
5)/2)n√

5
.

Proposition 12.10 Let g : V → V be an endomorphism of a finite dimensional
K-vector space V of dimension n ⩾ 1.

(i) Let λ be an eigenvalue of g . Then its algebraic multiplicity is at least as big as
its geometric multiplicity.

(ii) If K = C, then g is diagonalisable if and only if for all eigenvalues of g , the
algebraic and geometric multiplicity are the same.

Proof (i) Let dimEigg (λ) = m and b be an ordered basis of Eigg (λ). Furthermore, let
b′ be an ordered tuple of vectors such that c = (b,b′) is an ordered basis of V . The
eigenspace Eigg (λ) is stable under g and

M(g |Eigg (λ),b,b) = λ1m.

By Proposition 11.36Proposition 11.36, the matrix representation of g with respect to the basis c takes the
form

M(g , c, c) =

(
λ1m ∗

0n−m,m B

)
for some matrix B ∈ Mn−m,n−m(K). We thus obtain

charg (x) = det

(
(x − λ)1m ∗
0n−m,m x1n−m − B

)
Applying the Laplace expansion (9.59.5) with respect to the first column, we have

charg (x) = (x − λ) det

(
(x − λ)1m−1 ∗
0n−m,m−1 x1n−m − B

)
Applying the Laplace expansion again with respect to the first column, m-times in total,
we get

charg (x) = (x − λ)m det(x1n−m − B) = (x − λ)m charB(x).

The algebraic multiplicity of λ is thus at least m.

(ii) Suppose K = C and that g : V → V is diagonalisable. Hence we have an ordered
basis (v1, ... , vn) of V consisting of eigenvectors of g . Therefore,

charg (x) =
n∏

i=1

(x − λi )

where λi is the eigenvalue of the eigenvector vi , 1 ⩽ i ⩽ n. For any eigenvalue λj , its
algebraic multiplicity is the number of indices i with λi = λj . For each such index i , the
eigenvector vi satisfies g(vi ) = λivi = λjvi and hence is an element of the eigenspace
Eigg (λj). The geometric multiplicity of each eigenvalue is thus at least as big as the al-
gebraic multiplicity, but by the previous statement, the latter cannot be bigger than the
former, hence they are equal.
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Conversely, suppose that for all eigenvalues of g , the algebraic and geometric multi-
plicity are the same. Since K = C, by Theorem 12.7Theorem 12.7, the sum of the algebraic multi-
plicities is n. The sum of the geometric multiplicities is by assumption also n. Since,
by Proposition 12.4Proposition 12.4, the eigenspaces with respect to different eigenvalues are in direct
sum, we obtain a basis of V consisting of eigenvectors of g . □

12.2 Special endomorphisms

Involutions

A mapping ι : X → X from a set X into itself is called an involution, if ι ◦ ι = IdX . In the
case where X is a vector space and ι is linear, then ι is called a linear involution.

Example 12.11 (Involutions)
(i) Let V be a K-vector space. Then the identity mapping IdV : V → V is a linear

involution.
(ii) For all n ∈ N, the transpose Mn,n(K) → Mn,n(K) is a linear involution.

(iii) For n ∈ N, let X denote the set of invertible n × n matrices. Then the matrix
inverse −1 : X → X is an involution. Notice that X is not a vector space.

(iv) For any K-vector space V , the mapping ι : V → V , v 7→ −v is a linear in-
volution. Considering F(I ,K), the K-vector space of functions on the interval
I ⊂ R, we obtain a linear involution ofF(V ,K) by sending a function f to f ◦ ι.

(v) If A ∈ Mn,n(K) satisfies A2 = 1n, then fA : Kn → Kn is a linear involution.

In the rest of this section we suppose 2 ̸= 0 in K.

Proposition 12.12 Let V be a K-vector space and ι : V → V a linear involution.
Then the spectrum of ι is contained in {−1, 1}. Moreover V = Eigι(1) ⊕ Eigι(−1)

and ι is diagonalisable.

Proof Suppose λ ∈ K is an eigenvalue of ι so that ι(v) = λv for some non-zero vector
v ∈ V . Then ι(ι(v)) = v = λι(v) = λ2v . Hence (1−λ2)v = 0V and since v is non-zero,
we conclude that λ = ±1.

By Proposition 12.4Proposition 12.4, the eigenspaces Eigι(1) and Eigι(−1) are in direct sum (interpret-
ing Eigι(1) as {0} if 1 is not an eigenvalue, and similarly for −1). What we need to show
is that their sum is all of V . For v ∈ V we write

v =
1

2
(v + ι(v)) +

1

2
(v − ι(v)).

We claim that 1
2 (v + ι(v)) ∈ Eigι(1), and 1

2 (v − ι(v)) ∈ Eigι(−1).

For the first half of the claim, we compute

ι

(
1

2
(v + ι(v))

)
=

1

2
(ι(v) + ι(ι(v))) =

1

2
(ι(v) + v).

The second half of the claim is similar.

It follows that the sum of Eigι(1) and Eigι(−1) is V , so ι is diagonalisable as required.
□
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Projections

A linear mapping Π : V → V satisfying Π ◦ Π = Π is called a projection.

Example 12.13 Consider V = R3 and

A =

1 0 0

0 1 0

0 0 0

 .

Clearly, A2 = A and fA : R3 → R3 projects a vector x⃗ = (xi )1⩽i⩽3 onto the plane
{x⃗ ∈ R3|x3 = 0}.

Similar to Proposition 12.12Proposition 12.12, we obtain:

Proposition 12.14 Let V be a K-vector space and Π : V → V a projection. Then
the spectrum of Π is contained in {0, 1}. Moreover V = EigΠ(0) ⊕ EigΠ(1), Π is
diagonalisable and ImΠ = EigΠ(1).

Proof Let v ∈ V be an eigenvector of the projection Π with eigenvalue λ. Hence we
obtainΠ(Π(v)) = λ2v = Π(v) = λv , equivalently, λ(λ−1)v = 0V . Since v is non zero,
it follows that λ = 0 or λ = 1.

Using an argument similar to Proposition 12.12Proposition 12.12, one can show that V = Ker Π + ImΠ.
Since Ker Π = EigΠ(0), the theorem will follow if we can show that ImΠ = EigΠ(1). Let
v ∈ ImΠ so that v = Π(v̂) for some vector v̂ ∈ V . Hence Π(v) = Π(Π(v̂)) = Π(v̂) = v

and v is an eigenvector with eigenvalue 1. Conversely, suppose v ∈ V is an eigenvector
of Π with eigenvalue 1. Then Π(v) = v = Π(Π(v)) and hence v ∈ ImΠ. We thus
conclude that ImΠ = EigΠ(1). Choosing an ordered basis ofKer Π and an ordered basis
of ImΠ gives a basis of V consisting of eigenvectors, hence Π is diagonalisable. □

Remark 12.15 In a sense there is only one kind of projection. It follows from
Proposition 12.14Proposition 12.14 that for a projection Π : V → V , we have V = Ker Π⊕ ImΠ.
Conversely, given two subspaces U1,U2 of V such that V = U1 ⊕ U2, there is a
projection Π : V → V whose kernel is U1 and whose image is U2. Indeed, every
vector v ∈ V can be written as v = u1 + u2 for unique vectors ui ∈ Ui for i = 1, 2.
Hence we obtain a projection by defining Π(v) = u2 for all v ∈ V .
Denote by X the set of projections from V to V and by Y the set of pairs (U1,U2)

of subspaces of V that are in direct sum and satisfy V = U1 ⊕ U2. Then we obtain
a mapping Λ : X → Y defined by f 7→ (Ker f , Im f ), and one can check that this is
a bijection.

Exercises

Exercise 12.1 Derive the formula (12.112.1) for the coefficients bj .
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Exercise 12.2 Consider the matrix

Rα =

(
cosα − sinα

sinα cosα

)
for α ∈ (0,π), as in Example 11.31Example 11.31. Show that this matrix is diagonalisable over C,
and find its eigenvalues and eigenvectors.

Exercise 12.3 Show that the map Λ of Remark 12.15Remark 12.15 is a bijection.

Exercise 12.4 Show that if Π : V → V is a projection, then IdV − Π : V → V is a
projection, with kernel equal to the image of Π and image equal to the kernel of Π.

Exercise 12.5 Let A,B ∈ Mn,n(K) be matrices which commute with each other
(i.e. AB = BA ). Show that each eigenspace of A is stable under B, and vice versa.
Hence show that if A is diagonalisable with distinct eigenvalues, any matrix which
commutes with A is also diagonalisable.
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Affine spaces and quotient vector spaces
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13.1 Affine mappings and affine spaces

Previously we saw that we can take the sum of subspaces of a vector space. In this final
chapter of the Linear Algebra I module we introduce the concept of a quotient of a vector
space by a subspace.

Translations are among the simplest non-linear mappings.

Definition 13.1 (Translation) LetV be aK-vector space and v0 ∈ V . The mapping

Tv0 : V → V , v 7→ v + v0

is called the translation by the vector v0.

Remark 13.2 Notice that for v0 ̸= 0V , a translation is not linear, since Tv0(0V ) =

0V + v0 = v0 ̸= 0V .

Taking s1 = 1 and s2 = −1 in (6.16.1), we see that a linear map f : V → W between K-
vector spaces V ,W satisfies f (v1 − v2) = f (v1)− f (v2) for all v1, v2 ∈ V . In particular,
linear maps are affine maps in the following sense:

Definition 13.3 (Affine mapping) A mapping f : V → W is called affine if there
exists a linear map g : V → W so that f (v1)− f (v2) = g(v1−v2) for all v1, v2 ∈ V .
We call g the linear map associated to f .

Affine mappings are compositions of linear mappings and translations:

Proposition 13.4 A mapping f : V → W is affine if and only if there exists a linear
map g : V → W and a translation Tw0 : W → W so that f = Tw0 ◦ g .

Proof ⇐ Let g : V → W be linear and Tw0 : W → W be a translation for some
vector w0 ∈ W so that Tw0(w) = w + w0 for all w ∈ W . Let f = Tw0 ◦ g so that
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f (v) = g(v) + w0 for all v ∈ V . Then

f (v1)− f (v2) = g(v1) + w0 − g(v2)− w0 = g(v1)− g(v2) = g(v1 − v2),

hence f is affine.

⇒ Let f : V → W be affine and g : V → W its associated linear map. Since f is affine
we have for all v ∈ V

f (v)− f (0V ) = g(v − 0V ) = g(v)− g(0V ) = g(v)

where we use the linearity of g and Lemma 6.6Lemma 6.6. Writing w0 = f (0V ) we thus have

f (v) = g(v) + w0

so that f is the composition of the linear map g and the translation Tw0 : W → W ,
w 7→ w + w0. □

Example 13.5 Let A ∈ Mm,n(K), b⃗ ∈ Km and

fA,b⃗ : Kn → Km, x⃗ 7→ Ax⃗ + b⃗.

Then fA,b⃗ is an affine map whose associated linear map is fA. Conversely, combining
Lemma 7.4Lemma 7.4 and Proposition 13.4Proposition 13.4, we see that every affine map Kn → Km is of the
form fA,b⃗ for some matrix A ∈ Mm,n(K) and vector b⃗ ∈ Km.

An affine subspace of a K-vector space V is a translation of a subspace by some fixed
vector v0.

Definition 13.6 (Affine subspace) Let V be a K-vector space. An affine subspace of
V is a subset of the form

U + v0 = {u + v0 : u ∈ U},

where U ⊂ V is a subspace and v0 ∈ V . We call U the associated vector space to
the affine subspace U + v0 and we say that U + v0 is parallel to U .

Example 13.7 Let V = R2 and U = span{e⃗1 + e⃗2} = {s(e⃗1 + e⃗2)|s ∈ R} where
here, as usual, {e⃗1, e⃗2} denotes the standard basis of R2. So U is the line through
the origin 0R2 defined by the equation y = x . By definition, for all v⃗ ∈ R2 we have

U + v⃗ = {v⃗ + sw⃗ : s ∈ R} ,

where we write w⃗ = e⃗1 + e⃗2. So for each v⃗ ∈ R2, the affine subspace U + v⃗ is a line
in R2, the translation by the vector v⃗ of the line defined by y = x .

13.2 Quotient vector spaces

Let U be a subspace of a K-vector space V . We want to make sense of the notion of
dividing V by U . It turns out that there is a natural way to do this and moreover, the
quotient V /U again carries the structure of a K-vector space. The idea is to define V /U

to be the set of all translations of the subspace U , that is, we consider the set of subsets

V /U = {U + v |v ∈ V }.

130



13.2 — Quotient vector spaces

We have to define what it means to add affine subspaces U + v1 and U + v2 and what it
means to scaleU+v by a scalar s ∈ K. Formally, it is tempting to define 0V/U = U+0V
and

(13.1) (U + v1) +V/U (U + v2) = U + (v1 + v2)

for all v1, v2 ∈ V as well as

(13.2) s ·V/U (U + v) = U + (sv)

for all v ∈ V and s ∈ K. However, we have to make sure that these operations are well
defined. We do this with the help of the following lemma.

Lemma 13.8 Let U ⊂ V be a subspace. Then any vector v ∈ V belongs to a unique
affine subspace parallel toU , namelyU+v . In particular, two affine subspacesU+v1
and U + v2 are either equal or have empty intersection.

Proof Since 0V ∈ U , we have v ∈ (U + v), hence we only need to show that if v ∈
(U+ v̂) for some vector v̂ , thenU+v = U+ v̂ . Assume v ∈ (U+ v̂) so that v = u+ v̂ for
some vector u ∈ U . Supposew ∈ (U+ v̂). We need to show that then alsow ∈ (U+v).
Since w ∈ (U + v̂) we have w = û+ v̂ for some vector û ∈ U . Using that v̂ = v − u, we
obtain

w = û + v − u = û − u + v

Since U is a subspace we have û − u ∈ U and hence w ∈ (U + v).

Conversely, suppose w ∈ (U + v), it follows exactly as before that then w ∈ (U + v̂) as
well. □

We are now going to show that (13.113.1) and (13.213.2) are well defined. We start with (13.113.1).
Let v1, v2 ∈ V and w1,w2 ∈ V such that

U + v1 = U + w1 and U + v2 = U + w2.

We need to show that U + (v1 + v2) = U + (w1 + w2). By Lemma 13.8Lemma 13.8 it suffices to
show that w1 +w2 is an element of U +(v1 + v2). Since U +w1 = U + v1 it follows that
w1 ∈ (U + v1) so that w1 = u1 + v1 for some element u1 ∈ U . Likewise it follows that
w2 = u2 + v2 for some element u2 ∈ U . Hence

w1 + w2 = u1 + u2 + v1 + v2.

SinceU is a subspace, we have u1+u2 ∈ U and thus it follows thatw1+w2 is an element
of U + (v1 + v2).

For (13.213.2) we need to show that if v ∈ V and w ∈ V are such that U + v = U + w ,
then U + (sv) = U + (sw) for all s ∈ K. Again, applying Lemma 13.8Lemma 13.8 we only need to
show that sw ∈ U + (sv). Since U + v = U + w it follows that there exists u ∈ U with
w = u + v . Hence sw = su + sv and U being a subspace, we have su ∈ U and thus sw
lies in U + (sv), as claimed.

Having equipped V /U with addition +V/U defined by (13.113.1) and scalar multiplication
·V/U defined by (13.213.2), we need to show that V /U with zero vector U + 0V is indeed a
K-vector space. All the properties of Definition 4.2Definition 4.2 for V /U are however simply a con-
sequence of the corresponding property for V . For instance commutativity of vector
addition in V /U follows from the commutativity of vector in addition in V , that is, for
all v1, v2 ∈ V we have

(U + v1) +V/U (U + v2) = U + (v1 + v2) = U + (v2 + v1) = (U + v2) +V/U (U + v1).

The remaining properties follow similarly.
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Notice that we have a surjective mapping

p : V → V /U, v 7→ U + v .

which satisfies

p(v1 + v2) = U + (v1 + v2) = (U + v1) +V/U (U + v2) = p(v1) +V/U p(v2)

for all v1, v2 ∈ V and

p(sv) = U + (sv) = s ·V/U (U + v) = s ·V/U p(v).

for all v ∈ V and s ∈ K. Therefore, the mapping p is linear.

Definition 13.9 (Quotient vector space) The vector space V /U is called the quo-
tient (vector) space of V by U . The linear map p : V → V /U is called the canonical
surjection from V to V /U .

The mapping p : V → V /U satisfies

p(v) = 0V/W = U + 0V ⇐⇒ v ∈ U

and hence Ker(p) = U . This gives:

Proposition 13.10 Suppose the K-vector space V is finite dimensional. Then V /U

is finite dimensional as well and

dim(V /U) = dim(V )− dim(U).

Proof Since p is surjective it follows that V /U is finite dimensional as well. Hence we
can apply Theorem 6.20Theorem 6.20 and obtain

dimV = dimKer(p) + dim Im(p) = dimU + dim(V /U),

where we use that Im(p) = V /U and Ker(p) = U . □

Example 13.11 (Special cases)
(i) In the case where U = V we obtain V /U = {0V/U}.

(ii) In the case where U = {0V } we obtain that V /U is isomorphic to V .

Exercises

Exercise 13.1 Show that the image of an affine subspace under an affine map is
again an affine subspace; and that the preimage of an affine subspace under an
affine map is either an affine subspace, or is empty (cf. Proposition 6.10Proposition 6.10).

Exercise 13.2 Show that in P2(R), the set of polynomials f with f (1) = 1 is an
affine subspace. What is the associated vector subspace?
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13.2 — Exercises

Exercise 13.3 Let A be an affine subspace of a K-vector space V . Show that for all
integers n ⩾ 1, all v1, ... , vn ∈ A, and all scalars s1, ... , sn ∈ K with

∑
i si = 1, we

have
∑

i sivi ∈ A.
Show, conversely, that if A is a non-empty subset of V with this property, then A is
an affine subspace.
(Hint: Choose an a0 ∈ A and show that U = {a− a0 : a ∈ A} is a vector subspace.)

Exercise 13.4 (hard!) Let f : Q2 → Q2 be a map which preserves co-linearity, i.e. if
P,Q,R lie on a straight line then f (P), f (Q), f (R) lie on a straight line. Show that
f is an affine map.

Exercise 13.5 Let P be the space of all polynomial functions R → R. Define W =

{p ∈ P : p(0) = p(1)} and V = {p ∈ P : p(0) = p(1) = 0}. What is the
dimension of the quotient spaces P/W and P/V ?

Exercise 13.6 Let f : V → V ′ be a linear map, and W ⊂ V , W ′ ⊂ V ′ vector
subspaces such that f (W ) ⊂ W ′.

(i) Show that there is a uniquely determined linear map f̄ : V /W → V ′/W ′

satisfying
f (v +W ) = f (v) +W ′

for all v ∈ V .
(ii) Show that if V = V ′ and W = W ′, then we have

det f = det(f̄ ) det(f |W ),

where f |W : W → W denotes the restriction of f to W .
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