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Preface

These are lecture notes for a one-semester course on probability theory. They are meant
to be fully self-contained, assuming a basic knowledge of measure theory (which is
reviewed briefly the beginning). For further reading, I recommend the three following
standard references, on which these lecture notes are in part based:

• Rick Durrett: Probability: theory and examplesProbability: theory and examples
• Jean Jacod and Philip Protter: Probability essentials (Springer, 2004).
• Jean-François Le Gall: Intégration, probabilités et processus aléatoiresIntégration, probabilités et processus aléatoires (French).

There are of course many other excellent books on the subject.

These notes are liable (i.e. virtually certain) to contain typos. If you find any, please make
sure you tell me!

Before getting into the subject proper, in this short preface we give a very brief overview
of the subject’s history and of its relation to the natural sciences, with which it has always
had a close interaction. This is meant only for the curious reader, and does not constitute
a part of the course itself.

Probability is the study of uncertain events – events whose outcome cannot be predicted
with certainty. Examples of such events include

(i) I obtain heads when I flip a coin;
(ii) it rains in Brig tomorrow;

(iii) my kitchen light breaks in the next six months.

The classical view of how uncertainty arises in nature is based on nineteenth century
physics (Newtonian mechanics and Maxwell’s electrodynamics), where the state of a
physical system at any time is a deterministic function of its initial state. In principle,
therefore, the future state of any system is fully predictable, provided we have precise
enough information about its current state. From this point of view, the uncertainty of a
future event is simply an expression of a lack of knowledge about the present. In reality,
however, this point of view is essentially useless for most systems of interest. This is
because the complexity of the system and the sensitive dependence on the initial state
means that the required precision in the knowledge of the initial state is not achievable by
any conceivable means. A famous example is the impossibility of predicting the weather
for more than two weeks into the future. A simpler example is the humble coin flip or
toss of a die, whose outcome cannot be determined in advance no matter how accurately
the initial toss is determined. The quantum revolution of the first half of the twentieth
century went further: uncertainty is inherent in the laws of nature, and even simple
physical systems behave in an intrinsically random fashion, no matter how accurately one
determines the initial data (a famous example is the double slit experiment in quantum
mechanics).
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The historical development of probability was initially motivated by the desire for a
theoretical understanding of gambling, in the sixteenth and seventeenth centuries. Today,
probability theory has become one of the theoretical foundations of our modern society.
It underpins statistics, machine learning, artificial intelligence, and computer science. It
also constitutes the bedrock of any experimental discipline, and as such lies at the heart
of the natural and social sciences.

Aside from its applications, probability theory is an area of pure mathematics, which has
flourished in the past fifty years. Having shed its former reputation of an application-
driven low-brow game of counting balls and boxes, it has become one of the most central
and active areas of pure mathematics.

The study of probability can be roughly divided into two disciplines, which, while not
wholly separate, have rather different goals and ways of thinking.

1. Probability theory – an area of mathematics, which develops a calculus for determining
the probability of an event starting from a set of mathematical axioms. As a math-
ematical theory, it is purely a logical construct and detached from any interpretation
in the real world. Its origins trace back to Blaise Pascal and Pierre de Fermat in the
seventeenth century. It was put on a rigorous axiomatic basis by Kolmogorov in 1933,
an achievement usually regarded as the beginning of modern probability theory.

As we shall see, Kolmogorov’s axioms build on measure theory. Thus, one could
make the case that probability theory is nothing but a special case of analysis and
measure theory. This point of view is however simplistic and often even mislead-
ing, since probability theory has developed its own very particular way of thinking,
characterised by concepts such as independence, conditioning, and infinite product
spaces.

2. Interpretation of probability – an area of epistemology and statistics, which aims to
connect mathematical probability theory with random experiments. It strives to give
meaning to probabilistic claims about real-world events, or in other words to give an
interpretation of probability. There are several competing schools of thought, each
with their strengths and weaknesses; which interpretation to adopt in a given situation
is sometimes a matter of personal preference.

For instance, returning to the example (i)(i) above, what does the claim “the prob-
ability of obtaining heads when flipping a coin is 50%” mean? The most natural, and
indeed oldest, interpretation is that of frequentist probability: the probability of a
random event is the relative frequency of occurrence of the event when the exper-
iment is repeated indefinitely and independently. The frequentist interpretation is
independent of the observer, and it is the most prominent instance of an objective
interpretation of probability.

What about the example (ii)(ii) above? The frequentist interpretation fails here, be-
cause the event in question – it rains in Brig tomorrow – cannot be repeated independ-
ently: the current weather conditions are unique and we have no control over them.
Nevertheless, we all believe that claims of the form “the probability that it rains in Brig
tomorrow is 20%” somehow make sense, and indeed that is how weather forecasts
are often formulated. For such events, a subjective interpretation of probability im-
poses itself, whereby the probability of an event corresponds to a degree of belief by
a knowledgeable person, who incorporates expert knowledge (such as meteorology
and weather models) and experimental data (such as the current and past weather
conditions). The most popular version of subjective probability is Bayesian probability,
where the expert knowledge is translated into a subjective prior probability distribution
(an educated guess), which is then updated based on experimental data to obtain
a posterior probability distribution. Different prior probability distributions will give
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rise to different posterior probability distribution when given the same experimental
data. This captures the subjective element of Bayesian probability. In everyday life
this is clearly illustrated by the fact that we often use several different weather apps
to check the weather forecast, since they typically give different probabilities for the
same event11.

As for the example (iii)(iii), a frequentist interpretation is possible if I have a large
supply of identical copies of my kitchen light, which I can test individually and measure
the proportion of lights that fail in the next six months. On the other hand, if my kitchen
light is a unique sample (say an inherited antique piece), a subjective interpretation is
required.

In most instances, if one is familiar with probability theory, simple common sense is
sufficient to answer probabilistic questions about the real world. Nevertheless, aside from
important philosophical questions it raises, the study of the interpretation of probability
can be of great practical importance in several applied fields. This is typically discussed
in more detail in classes on statistics.

Being a course on mathematics, this course is entirely devoted to mathematical probab-
ility theory. Henceforth, we shall wrap ourselves in the warm blanket of mathematical
rigour and axiomatic deduction, without having to worry about tricky epistemological
questions raised by interpretation22.

1See https://www.rmets.org/metmatters/what-does-30-chance-rain-mean for an insightful and
more detailed explanation of the meaning of probabilities in weather forecasts.
2A notable exception will be the final chapter on statistics, where we shall shed this blanket and jump into the
cold pool of reality and empiricism.
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CHAPTER 1

Recap of measure theory WEEK 1

Since probability theory is founded on measure theory, in this preliminary chapter we
give a review of the most important ingredients from measure theory. It is meant to be
understandable for a reader who has learned some basic measure theory but may have
forgotten some details or more technical aspects of it.

For full details and for proofs, we refer to Chapter 1 of the course Calculus II that you took
last year.

Throughout these notes we use the following standard notations. We writeN = {0, 1, 2, ... }
and N∗ = {1, 2, 3, ... }. For a finite set X , we denote by #X the number of elements of X .
For a set X and a subset A ⊂ X , we write Ac := X \A and denote by P(X ) the collection
of all subsets of X . We denote by 1A the indicator function11 of the set A, defined through

1A(x) :=

{
1 if x ∈ A

0 if x /∈ A .

We also use the notations a∧b := min{a, b} and a∨b := max{a, b}, which are common
in probability theory. Moreover, we write a+ := a∨ 0 and a− := (−a)∨ 0 for the positive
and negative parts of a real number a. Hence, for any a ∈ R we have a = a+ − a− with
a+, a− ⩾ 0. We often use the nonnegative reals augmented with ∞, denoted by [0,∞].
They satisfy the obvious order relations as well as the convention 0 · ∞ = 0.

Definition 1.1 Let X be a set. A σ-algebra (or σ-field) on X is a collection A of
subsets of X satisfying

(i) X ∈ A;
(ii) A ∈ A ⇒ Ac ∈ A;

(iii) if An ∈ A for all n ∈ N then
⋃

n∈N An ∈ A.

If A is a σ-algebra on X , then we say that any A ∈ A is a measurable subset of X , and
call (X ,A) a measurable space.

The following construction plays a particularly prominent role in probability.

Definition 1.2 Let C ⊂ P(X ). Then

σ(C) :=
⋂

A is a σ-algebra
C⊂A

A

is the σ-algebra generated by C.

1The term indicator function is used in probability theory, while the same object is usually called characteristic
function in analysis. As we shall see in Section 4.3Section 4.3, the latter term is reserved for a very different object in
probability theory.
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CHAPTER 1 — RECAP OF MEASURE THEORY

The σ-algebra generated by C is indeed a σ-algebra as its name implies, because the
intersection of σ-algebras is a σ-algebra.

Example 1.3
(i) Let X = Rd and O be the collection of open subsets of Rd . (More generally, X

can be a topological space whose collection of open sets is O.) Then B(X ) :=

σ(O) is the Borel σ-algebra of X.
(ii) Let (X1,A1) and (X2,A2) be measurable spaces. The product σ-algebra on

X1 × X2 is

A1 ⊗A2 := σ(A1 × A2 : A1 ∈ A1,A2 ∈ A2).

Definition 1.4 A (positive) measure on a measurable space (X ,A) is a function
µ : A → [0,∞] satisfying µ(∅) = 0 and µ

(⋃
n∈N An

)
=
∑

n∈N µ(An) for any count-
able family (An)n∈N of disjoint measurable subsets.

Example 1.5
(i) Let X be finite or countable, A = P(X ), and µ(A) := #A. This is the counting

measure on X .
(ii) For x ∈ X we define the Dirac delta measure at x through

δx(A) :=

{
1 if x ∈ A

0 if x /∈ A .

(iii) The Lebesgue measure on (R,B(R)) is defined as the unique measure λ sat-
isfying λ((a, b)) = b − a for all a < b. (Recall from your course on measure
theory that the existence and uniqueness of λ is nontrivial. Later in this class
we shall give a proof of uniqueness: see Theorem 3.10Theorem 3.10 below.)

A measurable space (X ,A) endowed with a measure µ is called a measure space and
denoted by the triple (X ,A,µ).

Definition 1.6 Let (X ,A,µ) be a measure space. Then a property P(x) depending
on x ∈ X holds almost everywhere if

µ({x ∈ X : P(x) false}) = 0 .

For example, on (R,B(R)) endowed with Lebesgue measure, the indicator function 1Q
equals 0 almost everywhere, or 1Q(x) = 0 for almost all x .

Definition 1.7 Let (X ,A) and (Y ,B) be measurable spaces. A function f : X → Y

is measurable if for all B ∈ B we have f −1(B) ∈ A.

Here, f −1 denotes the preimage function on sets, i.e. f −1(B) := {x ∈ X : f (x) ∈ B}.

Often, the σ-algebras A and B are clear from the context, and we do not even mention
them explicitly.
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CHAPTER 1 — RECAP OF MEASURE THEORY

The following definition allows one to transport measures between measurable spaces
using measurable functions.

Definition 1.8 Let (X ,A) and (Y ,B) be measurable spaces, f : X → Y measur-
able, andµ a measure on (X ,A). Then we define the pushforward or image measure
of µ under f , denoted by f∗µ, as the measure on (Y ,B) defined by

f∗µ(B) := µ(f −1(B)) for all B ∈ B .

We now recall the notation for the integral.

Definition 1.9 Let µ be a measure on (X ,A).
(i) Let f : X → [0,∞]. We use the notation∫

f dµ =

∫
f (x)µ(dx) ∈ [0,∞]

for the integral of f with respect to µ (see the class on measure theory for its
definition, which is also briefly reviewed below).

(ii) A function f : X → R is called integrable if
∫
|f | dµ < ∞, in which case we

define ∫
f dµ :=

∫
f+ dµ−

∫
f− dµ .

It is helpful to recall briefly the construction of the integral in Theorem 1.9Theorem 1.9 (i)(i). It proceeds
in two main steps.

1. We integrate a simple function (finite linear combination of indicator functions) of the
form

(1.1) f =
n∑

i=1

ci 1Ai ,

where ci ∈ [0,∞) and Ai ∈ A for all i = 1, ... , n. By definition, the integral of this
simple function is ∫

f dµ :=
n∑

i=1

ci µ(Ai ) .

It is not hard to check that the left-hand side does not depend on the representation of
the simple function f (if the sets Ai are not disjoint and the ci are not distinct then the
representation (1.11.1) of a simple function is not unique.)

2. Next, we note that an arbitrary measurable function f : X → [0,∞] can be approxim-
ated monotonically from below by step functions fn. For example, we can choose fn to
be equal to f rounded to the nearest multiple of 2−n smaller than f , truncated at n, i.e.

fn(x) :=
(
2−n⌊2nf (x)⌋

)
∧ n ,

where ⌊·⌋ denotes the integer part. (Plot this function!) Note that (fn(x)) is a non-
decreasing sequence for all x ∈ X . Then we define the integral of f through∫

f dµ := lim
n→∞

∫
fn dµ ,

where the limit exists in [0,∞] because it is the limit of a nondecreasing sequence. One
can check that the left-hand side does not depend on the choice of the sequence fn.

The preceding definition captures a basic idea of measure theory, which we shall con-
sistently and often tacitly use in this class: one can define the integral of any function
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CHAPTER 1 — RECAP OF MEASURE THEORY

provided that it is nonnegative, in which case the integral may be infinite. If the function
is not nonnegative, then one has to impose that it is integrable for its integral to make
sense. (Otherwise one might end up with expressions of the form ∞ − ∞, which are
ill-defined.)

The integral satisfies the three following convergence theorems, which are stated for
some fixed measure space (X ,A,µ).

Proposition 1.10 (Monotone convergence, Beppo-Levi) Let f1, f2, ... : X → [0,∞]

be a pointwise nondecreasing sequence of measurable functions. Then

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ .

Proposition 1.11 (Fatou’s lemma) Let f1, f2, ... : X → [0,∞] be a sequence of
measurable functions. Then

lim inf
n→∞

∫
fn dµ ⩾

∫
lim inf
n→∞

fn dµ .

Proposition 1.12 (Dominated convergence, Lebesgue) Let g , f , f1, f2, ... be meas-
urable functions. Suppose that fn → f almost everywhere, that g is integrable, and
that |fn| ⩽ g almost everywhere for all n. Then

lim
n→∞

∫
fn dµ =

∫
f dµ .

Next, we recall the notation of product measure. Its uniqueness is guaranteed by the
following finiteness property. A measure µ on (X ,A) is σ-finite if there exists a countable
decomposition X =

⋃
n∈N Xn of X such that µ(Xn) < ∞ for all n ∈ N. (For instance

Lebesgue measure on R is σ-finite but not finite.)

Definition 1.13 Let µ and ν be σ-finite measures on (X1,A1) and (X2,A2), respect-
ively. The product measure µ1 ⊗ µ2 is the unique measure on (X1 × X2,A1 ⊗A2)

satisfying

µ1 ⊗ µ2(A1 × A2) = µ1(A1)µ2(A2) for all A1 ∈ A1 and A2 ∈ A2.

For the proof of existence and uniqueness, we refer to the class on measure theory.

The following theorem states that product measures can be integrated successively over
each component separately, provided the function is nonnegative or integrable.

Proposition 1.14 (Fubini-Tonelli) Let µ1 and µ2 be σ-finite measures on (X1,A1)

and (X2,A2), respectively. Let f : X1 × X2 → [0,∞] be measurable. Then

(1.2)

∫
X1×X2

f d(µ1 ⊗ µ2) =

∫
X1

(∫
X2

f (x1, x2)µ2(dx2)

)
µ1(dx1)

=

∫
X2

(∫
X1

f (x1, x2)µ1(dx1)

)
µ2(dx2) .
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CHAPTER 1 — RECAP OF MEASURE THEORY

The same identity holds if f : X1 × X2 → R is integrable with respect to µ1 ⊗ µ2.
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CHAPTER 2

Foundations of probability theory

2.1 Probability spaces

In this section we shall give a motivation of Kolmogorov’s axioms of probability. We shall
see that a mathematical formulation of probability theory rests on three core ingredients:
(i) a set of realisations, (ii) a collection of events, and (iii) a probability measure that
expresses probabilities of events.

A random experiment (such as the toss of a die) has a number of possible outcomes or
realisations.

(i) We denote by Ω the set of realisations. Its elements (realisations of the randomness)
are denoted by ω.

We consider two basic examples.

Example 2.1 Toss of a die: Ω = {1, 2, 3, 4, 5, 6}. The realisation ω ∈ Ω denotes the
number shown by the die.

Example 2.2 A game of darts. A person throws a dart at a disc-shaped dartboard. Ω
is the unit disc in the plane, Ω = {ω ∈ R2 : |ω| ⩽ 1}. The realisation ω ∈ Ω denotes
where dart hits the dartboard.

These examples show that it makes sense to consider very general sets Ω, from finite to
uncountable.

(ii) A collection A ⊂ P(Ω) is the collection of events, i.e. subsets of Ω whose probability
can be determined.

Example 2.3 (Theorem 2.1Theorem 2.1 continued) The event A = {2, 4, 6} is the event that I
obtained an even number. The event A = {6} is the event that I obtained a 6.

Example 2.4 (Theorem 2.2Theorem 2.2 continued) The event A = {ω ∈ R2 : |ω| ⩽ 1/20} is
the event that I hit the bull’s eye of the dartboard.

(iii) A function P : A → [0, 1] determines the probability P(A) of an event A ∈ A.
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CHAPTER 2 — FOUNDATIONS OF PROBABILITY THEORY

Example 2.5 (Theorem 2.1Theorem 2.1 continued) For a balanced die, we have P({2, 4, 6}) =
1/2 and P({6}) = 1/6.

Example 2.6 (Theorem 2.2Theorem 2.2 continued) If the dart hits any region of the dartboard
with uniform probability, then we have P({ω ∈ R2 : |ω| ⩽ 1/20}) = (1/20)2

(relative area of bull’s eye).

That P(A) ∈ [0, 1] reflects the fact that probabilities must be nonnegative and cannot
exceed 1 = 100%. Moreover, we require P to satisfy the two following obvious properties.

• P(Ω) = 1. This just expresses that with probability 1 we always see some realisation.
• If A and B are disjoint events, then P(A ∪ B) = P(A) + P(B). In other words, the

probabilities of mutually exclusive events are additive.

The triple (Ω,A,P) therefore looks rather similar to a measure space. Imposing that the
additivity property for mutually exclusive events extends to countable families, we arrive
at the following celebrated and fundamental definition.

Definition 2.7 (Kolmogorov, 1933) A probability space is a measure space (Ω,A,P)
satisfying P(Ω) = 1.

A measure P on (Ω,A) satisfying P(Ω) = 1 is called a probability measure.

We give two examples that shall accompany us through much of this chapter.

Example 2.8 I throw a balanced die twice:

Ω = {1, 2, ... , 6}2 , A = P(Ω) , P(A) =
#A

36
.

Example 2.9 Here is a more interesting (and more subtle) example. I throw a die
repeatedly until I obtain a 6. Since I may have to throw the die an arbitrarily large
number of times, I choose

Ω = {1, 2, ... , 6}N
∗
.

As a reminder, this is the set of sequencesω : N∗ → {1, 2, ... , 6}. We use the notation
ω = (ωk)k∈N∗ for its elements.
The set Ω is uncountable, and as we shall see it is ill-advised to take A to be the
full power set P(Ω). To find the correct choice for A, let us begin by noting that we
certainly want to assign a probability to any event depending on a finite number
of throws (such as “the first 10 throws are all smaller than 4”). Generally, such an
event is called a cylinder set, and it is of the form

(2.1)
{
ω ∈ Ω : ω1 = i1, ... ,ωn = in

}
,

which is indexed by the parameters n ∈ N∗ and i1, ... , in ∈ {1, 2, ... , 6}. Hence, we
define A to be the σ-algebra generated by the cylinder sets, i.e.

(2.2) A = σ
({

ω ∈ Ω : ω1 = i1, ... ,ωn = in
}
: n ∈ N∗, i1, ... , in ∈ {1, 2, ... , 6}

)
.

16



2.1 — Probability spaces

The σ-algebra A thus constructed is called the cylinder σ-algebra, and it plays a
fundamental role in probability. It is the canonical σ-algebra on an infinite product
space (such as Ω).
Clearly, the probability measure P on A should have the following value on any
cylinder set:

(2.3) P
({

ω ∈ Ω : ω1 = i1, ... ,ωn = in
})

=

(
1

6

)n

.

In fact, we shall prove later that there exists a unique measure P on (Ω,A) satisfying
(2.32.3).

We conclude with a more difficult example, which is of great interest in mathematics and
the sciences. It goes beyond the scope of this course, but we can nevertheless mention
its basic mathematical structure.

Example 2.10 You will probably have heard of Brownian motion, which was first
observed by the botanist Robert Brown in 1827. With a microscope, he observed
a particle of pollen immersed in water and noticed that it underwent an erratic
random motion. Brownian motion was famously studied by Albert Einstein in one of
his groundbreaking papers of 1905, where he gave a theoretical explanation of its
origin.
The random realisation is the entire trajectory of the particle, so that we choose

Ω = C ([0,∞),R3)

to be the space of continuous paths ω = (ω(t))t⩾0 in R3. For the collection of
events, as in the previous example, we choose the cylinder σ-algebra, which in this
instance takes the form

A = σ
(
{ω ∈ Ω : ω(t) ∈ B} : t ∈ [0,∞),B ∈ B(R3)

)
.

(If you wish, you can think about the analogy between this definition and (2.22.2). It
may help to consider intersections of cylinder sets {ω ∈ Ω : ω(t) ∈ B}.) What about
the probability measure P on (Ω,A)? Clearly, there are many possible choices, but
one of them stands out by being by far the most natural one; it is called Wiener meas-
ure, an infinite-dimensional Gaussian measure which underlies the mathematical
definition of Brownian motion. We shall not discuss it further in this course.

Remark 2.11 We conclude this section with an important remark. Since a probab-
ility measure P is a measure, we always have P

(⋃
n∈N An

)
=
∑

n∈N P(An) for any
countable family (An)n∈N of disjoint events. From this it is easyaa to deduce that, for
any (not necessarily disjoint) family of events (An)n∈N we have the bound

(2.4) P
(⋃

n∈N
An

)
⩽
∑
n∈N

P(An) .

An estimate of the form (2.42.4) is called a union bound. Union bounds are ubiquitous
in probability, and we shall also use them throughout this course. Roughly, a union
bound states that the union of unlikely events remains unlikely provided there are
not too many of them.

aAs a hint, you can consider the family B0 = A0, B1 = A1 \ A0, B2 = A2 \ (A0 ∪ A1), . . . .
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CHAPTER 2 — FOUNDATIONS OF PROBABILITY THEORY

2.2 Conditional probability

Often one is interested in conditional statements statements, where instead of considering
the probability of an event A, we are interested in the probability of the event A knowing
that the event B happened. For instance, suppose I’d like to know the probability that my
car breaks down today (event A). If I condition on the event B that I am driving 1000 km
today, this will likely influence the answer.

The idea is that we have some extra knowledge in computing the probability of A: we
know that B happened. This can change the probability of A dramatically, since now
we only consider realisations within B and not in the whole space Ω. In the frequentist
interpretation, we count the relative frequency of the occurrence of the event A, but only
among those realisations that lie in B .

Definition 2.12 (Conditional probability) Suppose that B is an event satisfying
P(B) > 0. Then the conditional probability of an event A given B is

P(A | B) := P(A ∩ B)

P(B)
.

This is clearly the correct definition in light of the intuition above: we only consider the
probabilities of realisations in B , and we normalize by P(B) to ensure that the following
holds (check this carefully if you’re not sure).

Remark 2.13 P(· | B) is a probability measure for any event B satisfying P(B) > 0.

Remark 2.14 Theorem 2.12Theorem 2.12 only makes sense if P(B) > 0. For brevity, we shall
usually omit the explicit mention of this condition, with the general convention that
any statement involving the conditional probability P(A | B) is only valid provided
that P(B) > 0.
Moreover, we adopt the convention that

P(A | B)P(B) := 0 if P(B) = 0 .

(Recall also the convention 0 · ∞ = 0 from Chapter 1Chapter 1.)

Example 2.15 Consider two throws of a balanced die from Theorem 2.8Theorem 2.8. Knowing
that the sum of the throws is 4, what is the probability that on the first throw I
obtained 2? Here,

A = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)} , B = {(1, 3), (2, 2), (3, 1)} .

We find
A ∩ B = {(2, 2)}

and hence
P(A ∩ B) =

1

36
, P(B) =

3

36
.

We conclude that
P(A | B) = 1

3
,
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which is different from
P(A) =

1

6
.

Intuitively, this is not surprising: if we know that the sum of the throws was small,
this should increase the odds that the first throw was a small number. Similarly,
knowing that the sum of the throws is 4, the probability that on the first throw I
obtained 4 (or more) is clearly zero.

Example 2.16 Consider the following two simple questions.
(1) I have two children, one of whom is a girl. What is the probability that the other

one is also a girl?
(2) I have two children, the oldest of whom is a girl. What is the probability that the

other one is also a girl?
To address them, for the purposes of this mathematical exercise, we make the
simplifying assumption that children are either boys (B) or girls (G), each born with
probability 1/2. Thus, the probability space is

Ω = {(B, B), (B, G), (G, B), (G, G)} ,

and each of the four realisations occurs with probability 1/4.
For question (1), we have

A = {(G, G)} , B = {(B, G), (G, B), (G, G)} ,

and therefore
P(A | B) = 1/4

3/4
=

1

3
.

For question (2), we have

A = {(G, G)} , B = {(B, G), (G, G)} ,

and therefore
P(A | B) = 1/4

2/4
=

1

2
.

More subtle apparent paradoxes easily arise from a careless use of conditional probabilit-
ies. For a famous, and a famously confusing and much debated, example, you can look
up the Monty Hall problem online, e.g. on Wikipedia (we will not go into it here).

The following result is mathematically trivial, but it has profound consequences in stat-
istics and the sciences.

Proposition 2.17 (Bayes’ theorem) Let A and B be events satisfying P(A) > 0 and
P(B) > 0. Then

P(A | B) = P(B | A)P(A)
P(B)

.

Suppose that Ω = B1∪ · · ·∪Bn with disjoint events B1, ... ,Bn; such events are called
a partition of Ω. Then the denominator can be expressed as

P(B) =
n∑

i=1

P(B | Bi )P(Bi ) .

Many mistakes in science, and popular reporting of science, arise from fallacies related
to a misunderstanding or a misuse of conditional probabilities. A surprisingly common
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mistake is to mix up P(A | B) and P(B | A). One issue is that our intuition is bad at
estimating conditional probabilities, which is why having a clear and rigorous formulation
of the concept is so crucial.

Example 2.18 Here is a classical application of Bayes’ theorem in medicine. A
patient is tested for a disease. Suppose that
• in 1 % of cases the test is positive even though the patient is healthy;
• in 2 % of cases the test is negative even though the patient is sick.
We are interested in the questions

(1) If a patient tests positive, what is the probability that he is healthy?
(2) If a patient tests negative, what is the probability that he is sick?

It turns out that the answer depends greatly on the prevalence of the virus. Let us
suppose that one in a thousand patients is sick.
This is where clear mathematical thinking and Bayes’ theorem come in very handy.
Introduce the events

S = {patient is sick}
H = {patient is healthy} = Sc

P = {test is positive}
N = {test is negative} = Pc .

We know that

P(P | H) = 0.01 , P(N | S) = 0.02 , P(S) = 0.001 .

By Bayes’ theorem, the answer to question (1) is

P(H | P) = P(P | H)P(H)

P(P)

=
P(P | H)P(H)

P(P | S)P(S) + P(P | H)P(H)

=
0.01 · (1− 0.001)

(1− 0.02) · 0.001 + 0.01 · (1− 0.001)
≈ 91% .

Thus, even though the patient was tested positive, the probability that he is healthy
is more than 90%. This figure is perhaps higher than one would intuitively expect,
and shows, first, the danger of relying on our intuition for questions of this type
and, second, the usefulness of clear thinking combined with simple mathematics. A
similar calculation gives the answer to question (2) as

P(S | N) ≈ 0.002% .

Thus, a negative test is a very reliable sign of being healthy.
The assumption of one in a thousand patients being sick was crucial in the above
calculations. If instead we consider a different population of patients, where the virus
is far more prevalent, the conditional probabilities computed to answers questions
(1) and (2) will change considerably.

2.3 Random variables

Informally, a random variable is a variable whose value depends on the realisation ω ∈ Ω.
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Definition 2.19 A random variable is a measurable real-valued function on Ω. More
generally, for a measurable space (E , E), a random variable with values in E is a
measurable function from Ω to E .

For instance we can speak about vector-valued random variables, with values in E = Rd .

Example 2.20 (Theorem 2.8Theorem 2.8 continued) The sum of both values is the random vari-
able X : Ω → R defined by

X ((i , j)) := i + j ,

with the notation ω = (i , j) ∈ {1, 2, ... , 6}2.

Example 2.21 (Theorem 2.9Theorem 2.9 continued) Define the random variable X : Ω → N∗ ∪
{∞} to be the number of throws required to obtain a 6 for the first time, i.e.

X (ω) := inf{k : ωk = 6}

with the convention that inf ∅ = ∞ (which happens if I never throw a 6).
To see that X is indeed a random variable, we have to check that it is measurable.
To that end, we have to check that, for any n ∈ N∗, the set X−1({n}) is a cylinder
set of the form (2.12.1). Indeed,

X−1({n}) =
{
ω ∈ Ω : ω1 ̸= 6,ω2 ̸= 6, ... ,ωn−1 ̸= 6,ωn = 6

}
,

as desired. Intuitively, that X is a random variable is clear since the event “X equals
n” clearly depends only on the first n throws, and A is constructed precisely so that
such events are measurable.

Definition 2.22 The law of a random variable with values in E is the measure

PX := X∗P

on (E , E). (Recall Theorem 1.8Theorem 1.8.)

We sometimes use the equivalence relation d
= on random variables, i.e. equality in law,

defined by

(2.5) X
d
= Y ⇐⇒ PX = PY .

Clearly, PX is a probability measure on (E , E). Hence, any random variable X with values
in E gives rise to a new probability space (E , E ,PX ). The intuition is that this space is
in general smaller than the original space, and it contains only information captured by
the random variable X . If all we care about is the value of X , we can completely forget
the original probability space (Ω,A,P) and only work on the smaller space (E , E ,PX ),
which is often much simpler.

For instance, in Theorem 2.8Theorem 2.8, if we only care about the value of X = i + j (and not,
say, which of the two throws produced the larger value), we can work on the space
E = X (Ω) = {2, 3, ... , 12} instead of on the original larger space Ω = {1, 2, ... , 6}2. You
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can easily check that the probability measure PX on E is given by

PX ({k}) =
(k − 1) ∧ (13− k)

36
.

In general, for any B ∈ E , we have

PX (B) = P(X−1(B)) = P({ω ∈ Ω : X (ω) ∈ B}) =: P(X ∈ B) ,

where the notation on the right-hand side is being defined by this equation. This quantity
is the probability that X lies in B .

Probability theory uses its own shorthand notation for events and probabilities determ-
ined by a random variable X :

{ω : X (ω) ∈ B} ≡ {X ∈ B} ,

P
(
{ω : X (ω) ∈ B}

)
≡ P(X ∈ B) .

In addition, inside P, intersection of events is often denoted with a comma instead of the
symbol ∩. For instance, we write

(2.6) P({X ∈ A} ∩ {Y ∈ B}) ≡ P(X ∈ A,Y ∈ B) .

We shall always use these shorthand notations.

Before looking at some examples, let us record the following rather banal remark, which
is sometimes good to keep in mind. For a given probability measure µ on a measurable
space (E , E), can we construct a random variable X with law PX = µ? Obviously yes,
just by setting (Ω,A,P) = (E , E ,µ) and X (ω) = ω.

2.3.1 Elementary special cases

Let us now review some special cases of random variables, some of which you may
already have seen in school.

Let X be a random variable with values in (E , E).

• Discrete random variables. Here E is finite or countable, and E = P(E ). In that case,

(2.7) PX =
∑
x∈E

px δx ,

where px := P(X = x) and δx is the delta measure from Theorem 1.5Theorem 1.5. To verify (2.72.7),
we write, for any B ∈ E ,

PX (B) = P(X ∈ B) = P

(⋃
x∈B

{X = x}

)
=
∑
x∈B

P(X = x) =
∑
x∈E

pxδx(B) ,

where in the third step we used crucially the σ-additivity of measures, since E is at
most countable by assumption.
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Example 2.23 (Theorem 2.9Theorem 2.9 continued) For n ∈ N∗ let us compute the probablility
that we first obtain a 6 on the nth throw,

P(X = n) = P(ω1 ̸= 6, ... ,ωn−1 ̸= 6,ωn = 6)

= P

(
5⋃

i1,...,in−1=1

{ω1 = i1, ... ,ωn−1 = in−1,ωn = 6}

)

=
5∑

i1,...,in−1=1

P
(
ω1 = i1, ... ,ωn−1 = in−1,ωn = 6

)
= 5n−1

(
1

6

)n

=
1

6

(
5

6

)n−1

.

This computation shows the power of a clear and rigorous formulation in solving
very concrete problems. In particular, we find that the probability that we never
throw a 6 is

P(X = ∞) = 1− P(X < ∞) = 1−
∑
n∈N∗

P(X = n) = 1− 1 = 0 .

Nevertheless, the event {X = ∞} = {ω ∈ Ω : ωk < 6 for all k ∈ N∗} is en-
ourmous, in particular uncountable.

• Continuous random variables. Let (E , E) = (Rd ,B(Rd)) and suppose that PX is abso-
lutely continuous11 with respect to Lebesgue measure. This means that there exists a
measurable function p : Rd → [0,∞) such that

PX (B) =

∫
B

p(x) dx ,

where dx denotes Lebesgue measure on Rd . The function p is called the density of the
law of X , sometimes just density of X .

1As you may know from measure theory, the notion of absolute continuity that we use here is usually a
consequence of the general definition, by the so-called Radon-Nikodym theorem. For our purposes, however,
the above definition is sufficient.
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2.4 Expectation WEEK 2

Let X be a random variable with values in R. We would like to determine a number that
represents the typical, or mean, value of X . For example, consider a random variable X

that is equal to a with probability p and to b with probability 1− p. In other words,

PX = pδa + (1− p)δb .

In school we learn that the mean value of X is

pa+ (1− p)b =

∫
R

x PX (dx) =

∫
Ω

X (ω)P(dω) ,

where the second identity follows by definition of PX (Theorem 2.22Theorem 2.22). Note that which
probability space X is defined on does not matter.

Definition 2.24 Let X be a random variable with values in R. The expectation of X
is

E[X ] :=

∫
X (ω)P(dω) ,

which is well-defined if X ⩾ 0 (in which case E[X ] ∈ [0,∞]) or if E[|X |] < ∞ (in
which case X is called integrable).
If X = (X1, ... ,Xd) ∈ Rd has values in Rd , then we define

E[X ] := (E[X1], ... ,E[Xd ]) .

The following result states how to compute the expectation of a function of a random
variable.

Proposition 2.25 Let X be a random variable with values in (E , E), and let f : E →
R ∪ {∞} be measurable. Then

E[f (X )] =

∫
f dPX

provided that f ⩾ 0 or E[|f (X )|] < ∞.

Proof The proof is an archetypal argument from measure theory, which we recall here.
See also the discussion after Theorem 1.9Theorem 1.9. Consider first the case where f is an indicator
function, f = 1B for B ∈ E . Then

E[f (X )] = E[1B(X )] = P(X ∈ B) = PX (B) =

∫
B

dPX =

∫
1B dPX =

∫
f dPX ,

as desired.

Moreover, by linearity of the integrals over P in E[·] as well as over PX , we deduce that
the claim holds for any simple function f .

Next, let f be an arbitrary nonnegative measurable function. Choose a sequence of simple
functions fn that converge to f monotonically from below. Then by using the claim for
simple functions, as well as the monotone convergence theorem twice (since (fn) and
(fn(X )) are pointwise nondecreasing sequences on E and Ω, respectively), we obtain

E[f (X )] = lim
n→∞

E[fn(X )] = lim
n→∞

∫
fn dPX =

∫
f dPX .

This concludes the proof for f ⩾ 0. If f is a general integrable function, we split f = f+−f−
into its positive and negative parts, and apply the result for positive f to f+ and f−
separately. □
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Remark 2.26 The proof used a trick that is so trivial that it may go unnoticed:
the probability of an event A can be expressed as the expectation of its indicator
function,

P(A) = E[1A] .
This trick, as simple as it seems, is extremely useful and consequenty ubiquitous in
probability. We shall use it repeatedly in this class.

Example 2.27 (Theorem 2.8Theorem 2.8 continued) Let us compute the expectation of the sum
of two throws of a die:

E[X ] =
1

36

6∑
i ,j=1

(i + j) =
1

36

(
6

6∑
i=1

i + 6
6∑

j=1

j

)
= 7 .

Example 2.28 (Theorem 2.9Theorem 2.9 continued) Let us compute the expected number of
throws until we obtain a 6:

E[X ] =
∞∑
n=1

n P(X = n) =
1

6

∞∑
n=1

n

(
5

6

)n−1

=
1

6

1

(1/6)2
= 6 ,

where we used the geometric series identity
∑∞

n=1 nx
n−1 = 1

(1−x)2 , which is proved
by differentiating in x .

We conclude this section by introducing the notion of conditional expectation.

Definition 2.29 Let B and event satisfying P(B) > 0. Let X be a random variable.
The conditional expectation of X given B is

E[X | B] := E[X1B ]

P(B)
,

i.e. the expectation of X with respect to the probability measure P(· | B).

In particular, for any events A and B we clearly have

E[1A | B] = P(A | B) .

Example 2.30 (Theorem 2.8Theorem 2.8 continued) Let us compute the expectation of the sum
of two throws of a die, given that each number is even. The event B on which we
condition is

B = {2, 4, 6}2 .
We find P(B) = 1

4 and

E[X1B ] =
1

36

∑
i ,j∈{2,4,6}

(i + j) =
1

36

(
3
∑

i∈{2,4,6}

i + 3
∑

j∈{2,4,6}

j

)
= 2 .

Hence,
E[X | B] = 2

1/4
= 8 .
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This is larger than the unconditional expectation from Theorem 2.27Theorem 2.27, which is hardly
surprising: conditioning on a number from 1 to 6 being even makes it on average
larger.

2.5 The classical laws

In this section we go to the zoo. We encounter the most common and useful laws and
learn their names, along with any parameters they depend on. We leave it as a simple
exercise to check that each of them is indeed a probability measure (i.e. that the total
measure equals one).

Discrete laws

The following laws are defined on (E , E) with E finite or countable and E = P(E ).

• Uniform. Let E be a finite set and define P(X = x) = 1
#E for all x ∈ E .

• Bernoulli (p ∈ [0, 1]). Let E = {0, 1} and set P(X = 1) = p and P(X = 0) = 1 − p.
(This law models a coin toss that is biased for p ̸= 1

2 .)
• Binomial (n ∈ N∗, p ∈ [0, 1]). Let E = {0, 1, ... , n} and

P(X = k) =

(
n

k

)
pk(1− p)n−k

for k ∈ E . Here
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient. (This law models the number
of heads when tossing a biased coin n times; see the exercises.)

• Geometric (p ∈ (0, 1)). Let E = N and

P(X = k) = (1− p)pk

for all k ∈ N. (This law models the number of heads before the first tails when tossing
a biased coin. See also Theorem 2.9Theorem 2.9 and its continuation in Section 2.3.1Section 2.3.1.) Note that
the different convention P(X = k) = (1− p)k−1p for k ∈ E = N∗ is also often used
in the literature.

• Poisson (λ > 0). Let E = N and

P(X = k) =
λk

k!
e−λ

for all k ∈ N. (This law models the number of rare events observed in a long time
interval. More precisely, if Xn has binomial law with parameters n and pn satisfying
npn → λ as n → ∞, then P(Xn = k) → P(X = k) for all k . See the exercises.)

Continuous laws

The following laws are defined on (R,B(R)). They are continuous, and therefore determ-
ined by their densities p(x).

• Uniform on [a, b]. Let

p(x) =
1

b − a
1[a,b](x) .

• Exponential (λ > 0). Let
p(x) = λe−λx1[0,∞)(x) .
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• Gaussian or normal (m ∈ R,σ > 0). Let

p(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

(m is called the mean and σ the standard deviation.)

2.6 Cumulative distribution function

The law of a real-valued random variable can be fully and equivalently characterised by a
function on R.

Definition 2.31 Let X be a random variable with values in R. We define its cumulat-
ive distribution function FX : R → [0, 1] by

FX (t) := P(X ⩽ t) .

For brevity, sometimes we simply speak of the distribution function of X .

Proposition 2.32 If F = FX is the distribution function of a random variable X , then
(i) F is nondecreasing;

(ii) limt→−∞ F (t) = 0 and limt→∞ F (t) = 1;
(iii) F is right-continuous, i.e. lims↓t F (s) = F (t) for all t ∈ R.

Proof The proof of (i)(i) is obvious.

Let us prove (ii)(ii). It uses some basic facts from measure theory, which are reviewed in
Exercise 1.1. Since the events {X ⩽ n} are increasing, we find

lim
t→∞

F (t) = lim
n→∞

P(X ⩽ n) = P

(⋃
n∈N

{X ⩽ n}

)
= P(Ω) = 1 ,

where the second step follows by σ-additivity of P and the last step from
⋃

n∈N{X ⩽
n} = Ω since X ∈ R. Analogously, since the events {X ⩽ −n} are decreasing, we find

lim
t→−∞

F (t) = lim
n→∞

P(X ⩽ −n) = P

(⋂
n∈N

{X ⩽ −n}

)
= P(∅) = 0 ,

where the second step follows by σ-additivity of P and the last step from
⋂

n∈N{X ⩽
−n} = ∅ since X ∈ R.

To prove (iii)(iii), let (an) be a strictly decreasing sequence tending to 0. Since the events
{X ⩽ t + an} are decreasing, we find

lim
n→∞

F (t + an) = lim
n→∞

P(X ⩽ t + an) = P

(⋂
n∈N

{X ⩽ t + an}

)
= P(X ⩽ t) = F (t) ,

where the second step follows by σ-additivity of P and the last step from
⋂

n∈N{X ⩽
t + an} = {X ⩽ t}. □

As a helpful check to see if you understood the proof of (iii)(iii), try to see what goes wrong if
you try to prove that F is left-continuous, which is in general wrong.

Note that the F is discontinuous whenever PX has an atom. For instance, if X is equal to
a constant a, then PX = δa and hence FX (t) = 1t⩾a.
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Conversely, it is natural to ask whether any function F satisfying the three properties (i)(i),
(ii)(ii), (iii)(iii) is the distribution function of some random variable. As the following proposition
shows, the answer is yes!

This very important result is not just a theoretical curiosity; it is extremely useful. Indeed,
the proof relies on an explicit construction that is of great use in both theoretical probab-
ility and applications. It is the standard algorithm for generating random variables with
any given distribution. See Theorem 2.34Theorem 2.34 below.

Proposition 2.33 If F : R → [0, 1] satisfies (i)(i), (ii)(ii), (iii)(iii) from Theorem 2.32Theorem 2.32 then there
exists a random variable X with values in R such that F = FX .

Proof To construct X , we have to start by constructing the probability space. We take
Ω = (0, 1), A = B((0, 1)), and P to be Lebesgue measure. Then we define

X (ω) := sup{s ∈ R : F (s) < ω} .

We note that X (ω) ∈ R for any ω ∈ (0, 1) by the assumption (ii)(ii). The rest of the proof
consists in showing that this explicit choice satisfies F = FX .

To that end, we shall show that for all t ∈ R

(2.8) {ω ∈ Ω : X (ω) ⩽ t} = {ω ∈ Ω : ω ⩽ F (t)} .

Supposing that (2.82.8) is true, we obtain

FX (t) = P(X ⩽ t) = P
(
{ω ∈ Ω : ω ⩽ F (t)}

)
= F (t)

by definition of Lebesgue measure, as desired.

Hence, what remains is to show (2.82.8), which follows from the two following observations.

• Suppose that ω ⩽ F (t). Then, by definition of X and of sup, we immediately deduce
that t ⩾ X (ω).

• Suppose that ω > F (t). Since F is right-continuous, there exists ε > 0 such that
F (t + ε) < ω. Thus, again by definition of X , we deduce that X (ω) ⩾ t + ε. Hence,
X (ω) > t. □

As a helpful check to see that you understood the proof, you can try to spot exactly where
we used each of the assumptions (i)(i), (ii)(ii), (iii)(iii) on F .

Remark 2.34 The function X : (0, 1) → R constructed in the above proof is often
called inverse of F , and denoted by F−1, even if F is not bijective. (The function F

can be locally constant.) If F is bijective, then F−1 coincides with the usual inverse.
The construction of the proof is remarkable. It provides an algorithm for generating
a random variable X with distribution function F starting from a random variable Y

which is uniformly distributed on (0, 1): simply setX := F−1(Y ). Thus, the problem
is reduced to the generation of the special and simple random variable Y .
To be more concrete, suppose that we have a computer that generates a random
floating point number ω that is uniformly distributed in (0, 1). (We shall see later
that such a generator can be easily constructed by taking the binary digits of ω to be
independent Bernoulli random variables with parameter p = 1/2. Thus, all that we
need is a random number generator that generates such Bernoulli random variables.)
We wish to generate a standard Gaussian random variable, with parameters m = 0

28



2.8 — Moments and inequalities

and σ = 1. To that end, we define the function

F (t) :=
1√
2π

∫ t

−∞
e−

x2

2 dx .

The functionF is famously not an elementary function, but it can be easily computed
numerically, and most software packages have an implementation of (a version of)
it, often called Erf. Then the desired Gaussian random variable is X := F−1(ω),
where the right-hand side is again evaluated numerically.

2.7 The σ-algebra generated by a random variable

Every random variable X gives naturally rise to a σ-algebra, which is the smallest (i.e.
coarsest) σ-algebra on Ω with respect to which X is measurable. To build intuition,
consider the case where X is a random variable with values in {1, 2, 3}, and define the
eventsAi := X−1({i}) for i = 1, 2, 3. ThenX is measurable with respect to theσ-algebra

B := {∅,A1,A2,A3,A1 ∪ A2,A1 ∪ A3,A2 ∪ A3, Ω}

= {X−1(∅),X−1({1}),X−1({2}),X−1({3}),

X−1({1, 2}),X−1({1, 3}),X−1({2, 3}),X−1({1, 2, 3})} .

You can convince yourself that this is the smallest σ-algebra with respect to which X is
measurable.

In some sense, B captures the resolving power of X , but it does not contain the full
information about X . For instance, the random variable Y = 2X generates the same
σ-algebra as X , but it is clearly different from X . However, both X and Y have the same
ability to resolve the probability space Ω. This is the basic intuition behind the following
definition.

Definition 2.35 Let X be a random variable with values in a measurable space
(E , E). Then the σ-algebra generated by X is

σ(X ) := {X−1(B) : B ∈ E} .

Note that, as advertised above, this is the smallest σ-algebra with respect to which X is
measurable. Indeed, clearly any such σ-algebra will have to contain all sets of the form
X−1(B) for B ∈ E ; moreover, the set σ(X ) is a σ-algebra.

2.8 Moments and inequalities

Definition 2.36 Let X be a random variable with values in R and p ⩾ 1. The p-th
moment ofX isE[X p], which is well-defined under either of the following conditions:
• p ∈ N∗ and E[|X |p] < ∞;
• X ⩾ 0.

In probability, we say that some property P(ω) depending on the realisation ω holds
almost surely instead of almost everywhere (as in measure theory) if P(P true) = 1. We
often abbreviate a.s. for almost surely.
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We use the following definition from measure theory (see the course Calculus II).

Definition 2.37 For p ∈ [1,∞], we denote by Lp ≡ Lp(Ω,A,P) the usual Lp-space
with norm denoted by ∥X∥p .

It might be helpful to do a quick review of measure theory to recall how these spaces
are defined. As in measure theory, there is a technical annoyance, which arises from the
need to identify random variables that are almost surely equal.

• For p ∈ [1,∞) we denote by Lp(Ω,A,P) the set of real-valued random variables X
satisfying E[|X |p] < ∞.

• We denote by L∞(Ω,A,P) the set of real-valued random variables X such that there
exists a constant C satisfying |X | ⩽ C almost surely.

• For p ∈ [1,∞] we define the equivalence relation ∼ on Lp by setting X ∼ Y if and
only if X = Y almost surely.

• For p ∈ [1,∞] we define the quotient space

Lp(Ω,A,P) := Lp(Ω,A,P)/ ∼ .

Thus an element of Lp is an equivalence class of random variables. Throughout the
following, and in accordance with the literature, we usually skirt around this issue by
abusing notation and identifying an element of Lp with a representative of its class. This
convention is consistent provided that all operations performed on such representatives
do not depend on the choice of the representative within its class. It is always good to
keep the precise definition in mind, as this subtlety is sometimes important.

• For p ∈ [1,∞) and X ∈ Lp we write

∥X∥p :=
(
E[|X |p]

)1/p
.

Note that this definition makes sense, since it is independent of the representative of
X .

• We write

∥X∥∞ := inf{C ⩾ 0 : |X | ⩽ C a.s.} .

This number is sometimes called the essential supremum of |X |. It is independent of
the representative of X (unlike sup|X |).

The following result22 was proved in the course Calculus II.

Proposition 2.38 For each p ∈ [1,∞], the space Lp(Ω,A,P) is a Banach space.

The following inequality is the most important inequality in all of analysis.

Proposition 2.39 (Hölder’s inequality) Let p, q ∈ [1,∞] satisfy 1
p + 1

q = 1 (with the
convention 1

∞ = 0). Then for any random variables X ,Y we have

∥XY ∥1 ⩽ ∥X∥p∥Y ∥q .

2Note that this result is one place where taking the quotient in the definition of Lp is essential; it is wrong for
the space Lp .
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2.8 — Moments and inequalities

Note that Propositions 2.382.38 and 2.392.39 are true for any measure space, not just for a prob-
ability space.

Let us list some obvious but important special cases of Hölder’s inequality:

(i) ∥X∥p ⩽ ∥X∥q if 1 ⩽ p ⩽ q.
(ii) E[|XY |] ⩽ ∥X∥2∥Y ∥2 (Cauchy-Schwarz inequality).

(iii) E[|X |]2 ⩽ E[X 2].

Note that (ii)(ii) is true for any measure space, while (i)(i) and (iii)(iii) are only true for a probability
space.

Definition 2.40 Let X ∈ L2. The variance of X is

Var(X ) := E[(X − E[X ])2]

and its standard deviation is σX :=
√
Var(X ).

Just as the expectation measures the typical mean value of X , the variance measures the
typical spread ofX around its mean value. It is important to realise that the variance is not
the only quantity to quantify this spread, it is merely the most convenient and the most
popular one. For example, another quantity that measures the spread is E[|X − E[X ]|];
as we shall see in the exercises, this quantity has advantages and disadvantages as
compared to the variance, and it is sometimes used in statistics where it is closely related
to the median of X (see the exercises).

Remark 2.41 The following observations follow immediately from the definition of
the variance.

(i) Var(X ) = E[X 2]− E[X ]2.
(ii) For all a ∈ R we have E[(X − a)2] = Var(X ) + (E[X ]− a)2, and hence

Var(X ) = inf
a∈R

E[(X − a)2]

This gives another, so-called variational, interpretation of the variance.
(iii) Var(X ) = 0 if and only if X is almost surely constant.

Next we state the most important inequality in probability, which is traditionally asso-
ciated with at least the names of Bienaymé, Chebyshev, and Markov. We shall call it
Chebyshev’s inequality, as it is also commonly known, for historical reasons that we do
not go into here.

Proposition 2.42 (Chebyshev) Let f : R → [0,∞) be nondecreasing and X a ran-
dom variable. Then for all a ∈ R we have

P(X ⩾ a) ⩽
E[f (X )]

f (a)
.

Proof Since f is nondecreasing, on the event X ⩾ a we have f (X ) ⩾ f (a). Thus,

P(X ⩾ a) = E[1X⩾a] ⩽ E
[
1X⩾a

f (X )

f (a)

]
⩽ E

[
f (X )

f (a)

]
,

as claimed. □
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Here are some important and famous special cases of Chebyshev’s inequality:

(i) If X ⩾ 0 and a > 0 then P(X ⩾ a) ⩽ E[X ]
a (often called Markov’s inequality).

(ii) If X ∈ L2 and a > 0 then

P(|X − E[X ]| ⩾ a) ⩽
Var(X )

a2

(often simply called Chebyshev’s inequality)
(iii) P(X ⩾ a) ⩽ e−taE[etX ] for any t > 0 (often called Chernov’s inequality). Since this

inequality holds for any t > 0, one can even take the infimum over t to deduce that
P(X ⩾ a) ⩽ e−I (a), where

I (a) := sup
t>0

{ta− logE[etX ]} .

This estimate is often very sharp, and it plays a fundamental role in the so-called
theory of large deviations and statistical mechanics, which however goes beyond
the scope of this course.

Finally, the notion of variance can be generalised to the covariance of several random
variables, which roughly measures how strongly they tend to fluctuate jointly.

Definition 2.43 For X ,Y ∈ L2 define the covariance of X and Y as

Cov(X ,Y ) := E
[
(X − E[X ])(Y − E[Y ])

]
= E[XY ]− E[X ]E[Y ] .

For a random vector X = (X1, ... ,Xd) with values in Rd with Xi ∈ L2 for all i =
1, ... , d , we define the d × d covariance matrix

Cov(X ) := (Cov(Xi ,Xj))
d
i ,j=1 .

The covariance matrix of a random vector is one of the most fundamental objects of
study in high-dimensional statistics and machine learning. We shall discuss some of its
properties in the exercises.
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CHAPTER 3

Independence WEEK 3

This chapter is devoted to independence, which is a fundamentally probabilistic notion.
Although the basic idea behind independence is very simple, a precise statement general
enough for later applications requires some care.

3.1 Independent events

Independence is classically stated on the level of events. In the real world, two events are
typically independent if they describe events that are causally unrelated. For instance, if
I flip a coin twice, whether I geat heads the first and the second time are independent
events. The mathematical definition of course goes beyond any causal or mechanical
interpretations in the real world. Informally, A and B being independent means that
knowing that B happened gives no information about the probability of A happening.
More formally, the conditional probability (see Theorem 2.12Theorem 2.12) P(A | B) is equal to P(A).
This leads to the following definition.

Definition 3.1 Two events A,B ∈ A are independent if

P(A ∩ B) = P(A) · P(B) .

Example 3.2
(i) (Theorem 2.8Theorem 2.8 continued.) When throwing a die twice, obtaining a six on the

first throw and obtaining a six on the second throw are independent events.
More precisely, setting

A = {6} × {1, ... , 6} , B := {1, ... , 6} × {6} ,

we find P(A ∩ B) = 1
36 = P(A) · P(B).

(ii) When throwing a single die, the events

A = {1, 2} , B = {1, 3, 5}

are independent: P(A ∩ B) = 1
6 = P(A) · P(B).

The notion of independence extends from two events to any, possibly infinite, collection
of events.

Definition 3.3 A collection of events {Ai}i∈I is independent if for any finite J ⊂ I

we have
P
(⋂

i∈J

Ai

)
=
∏
i∈J

P(Ai ) .
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Remark 3.4 Even if I is finite, for the collection {Ai}i∈I to be independent, it is not
sufficient that P

(⋂
i∈I Ai

)
=
∏

i∈I P(Ai ).
Moreover, for the collection {Ai}i∈I to be independent, it is not sufficient that all
pairs Ai and Aj be independent (pairwise independence).
To see this, consider flipping an unbiased coin twice, so that Ω = {0, 1}2 with the
uniform probability measure. Define the events

A = {1} × {0, 1} , B = {0, 1} × {1} , C = {0} × {0} ∪ {1} × {1} .

(What is their interpretation?) Then we have

P(A) = P(B) = P(C ) =
1

2
,

P(A ∩ B) = P(A ∩ C ) = P(B ∩ C ) =
1

4
,

P(A ∩ B ∩ C ) =
1

4
.

We conclude that they are not independent, although they are pairwise independent.

3.2 Intermezzo: monotone class lemma*

In order to extend the notion of independence to random variables, a notion that plays a
fundamental role in probability, we shall need a powerful tool from measure theory: the
monotone class lemma. It is usually not covered in a course in measure theory. Thus,
in this section we perform a measure-theoretic excursion. The section is marked with
an asterisk, which means that it does not belong to the core material of the course; in
particular, if you wish you can skip over the proofs, which will also not be asked in the
exam. All that you have to know from this section is Theorem 3.7Theorem 3.7 and Theorem 3.9Theorem 3.9.

Let E be a set.

Definition 3.5 A collection M ⊂ P(E ) is a monotone class if
(i) E ∈ M;

(ii) If A,B ∈ M satisfy A ⊂ B then B \ A ∈ M;
(iii) If An ∈ M and An ⊂ An+1 for all n ∈ N then

⋃
n∈N An ∈ M.

The term monotone class comes from the last property, which distinguishes it from a
σ-algebra, and states that the union of an increasing family of elements of M is again in
M. There is a priori no very clear intuitive interpretation of this definition. Its usefulness
will become apparent a posteriori, through its applications; see for instance Theorem 3.9Theorem 3.9
and Theorem 3.10Theorem 3.10 below.

Similarly to Theorem 1.2Theorem 1.2, any collection of subsets of E generates a monotone class.

Definition 3.6 The monotone class generated by a collection C ⊂ P(E ) is

M(C) :=
⋂

M is a monotone class
C⊂M

M .

It is left as an exercise to check that the intersection of monotone classes is a monotone
class, so that in particular M(C) is always a monotone class.
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3.2 — Intermezzo: monotone class lemma*

The following result is the main tool proved in this section. To state it, we need the
following definition.

Definition 3.7 A collection C ⊂ P(E ) is stable under finite intersections if for any
A,B ∈ C we have A ∩ B ∈ C.

Proposition 3.8 (Monotone class lemma) If C ⊂ P(E ) is stable under finite intersec-
tions, then M(C) = σ(C).

Proof Note first that a σ-algebra is a monotone class (this is left as an easy exercise).
Hence, we trivially have the inclusion M(C) ⊂ σ(C).

To prove the reverse inclusion, σ(C) ⊂ M(C), it suffices to show that M(C) is a σ-
algebra11.

We shall proceed in several steps.

Claim. A monotone class M is a σ-algebra if and only if it is stable under finite intersec-
tions.

Clearly, a σ-algebra is a monotone class that is stable under finite intersections. For
the reverse implication, suppose that M is a monotone class that is stable under finite
intersections. Then M is also stable under finite unions, since

A,B ∈ M ⇒ Ac ,Bc ∈ M ⇒ Ac ∩ Bc ∈ M ⇒ A ∪ B ∈ M .

Let now A1,A2, · · · ∈ M and set Bn := A1 ∪ · · · ∪ An. Then, by the property we just
proved,Bn ∈ M. Moreover, sinceBn ⊂ Bn+1, by Theorem 3.5Theorem 3.5 we conclude that

⋃
n An =⋃

n Bn ∈ M. We have therefore verified Theorem 1.1Theorem 1.1, and hence proved the Claim.

By the Claim, it suffices to show that M(C) is stable under finite intersections, i.e.

(3.1) A,B ∈ M(C) =⇒ A ∩ B ∈ M(C) .

To that end, we first fix A ∈ C, and define

M1 := {B ∈ M(C) : A ∩ B ∈ M(C)} .

Since by assumption C is stable under finite intersections, we have

(3.2) C ⊂ M1 .

Moreover, we claim that

(3.3) M1 is a monotone class.

To verify (3.33.3), let us verify the three properties (i)(i)–(iii)(iii) of Theorem 3.5Theorem 3.5. Property (i)(i) is
trivial. To verify (ii)(ii), we take B,B ′ ∈ M1 satisfying B ⊂ B ′, and note that

A ∩ (B ′ \ B) = (A ∩ B ′) \ (A ∩ B) ∈ M(C) ,

where the last step follows from the facts that M(C) is a monotone class and that A∩B ′

and A ∩ B are in M(C) by definition of M1. This shows that B ′ \ B ∈ M1, and hence
yields (ii)(ii). Finally, to prove (iii)(iii), let us take Bn ∈ M1 such that Bn ⊂ Bn+1. Then

A ∩
(⋃

n

Bn

)
=
⋃
n

(A ∩ Bn) ∈ M(C) ,

1Since in that case M(C) is a σ-algebra containing C, and hence it contains σ(C) by Theorem 1.2Theorem 1.2
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since A ∩ Bn ∈ M(C) by definition of M1, and M(C) is a monotone class. We conclude
that

⋃
n Bn ∈ M1. This concludes the proof of property (iii)(iii), and hence of (3.33.3).

Next, from (3.23.2) and (3.33.3), we deduce that M(C) ⊂ M1. This means that

(3.4) ∀A ∈ C,∀B ∈ M(C),A ∩ B ∈ M(C) .

Next, we repeat exactly the same argument with fixed B ∈ M(C) and

M2 := {A ∈ M(C) : A ∩ B ∈ M(C)} .

From (3.43.4) we know that C ⊂ M2.

We may repeat the proof of (3.33.3) almost to the letter to show that M2 is a monotone
class. Since C ⊂ M2, we conclude that M(C) ⊂ M2. This immediately implies (3.13.1),
and hence concludes the proof. □

The monotone class lemma may seem rather abstract, but it is very useful in probability.
It allows to verify equality of two probability measures µ and ν on a much smaller set C of
events than the full σ-algebra. Typically, verifying the equality µ(A) = ν(A) for all A ∈ A
is practically impossible. However, it is often very easy to construct a simple collection
of events C (for instance intervals, rectangles, or cylinder sets) on which the equality is
trivial. The monotone class lemma then allows to deduce equality on all sets A ∈ A.
That is its great power. The following result is a typical application of this idea.

Corollary 3.9 Let µ and ν be two probability measures on (Ω,A). If there exists a
collection C ⊂ A that is stable under finite intersections such that σ(C) = A and
µ(A) = ν(A) for all A ∈ C, then µ = ν.

Proof Let G := {A ∈ A : µ(A) = ν(A)}. Then C ⊂ G and it is easy to check that G is a
monotone class. Moreover, by Theorem 3.8Theorem 3.8,

M(C) = σ(C) = A ,

and the claim follows since M(C) ⊂ G. □

We shall use Theorem 3.9Theorem 3.9 throughout this class. Theorem 3.12Theorem 3.12 below is a typical applic-
ation. Here is an immediate application that shows its power in proving a famous and
nontrivial result.

Example 3.10 (Uniqueness of Lebesgue measure) There exists at most one probab-
ility measure λ on ([0, 1],B([0, 1])) such that λ((a, b]) = b−a for all 0 < a < b ⩽ 1.
For the proof, simply invoke Theorem 3.9Theorem 3.9 with C = {(a, b] : 0 < a < b ⩽ 1}, the
set of half-open intervals (which is obviously stable under finite intersections).

3.3 Independent σ-algebras and random variables

On the most fundamental, and general, level, independence is formulated for σ-algebras.
This notion then naturally extends to random variables through their generatedσ-algebras
(Theorem 2.35Theorem 2.35).
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3.3 — Independent σ-algebras and random variables

Definition 3.11
(i) The σ-algebras B1, ... ,Bn ⊂ A are independent if for all A1 ∈ B1, ... ,An ∈ Bn

we have P(A1 ∩ · · · ∩ An) = P(A1) · · ·P(An).
(ii) The random variables X1, ... ,Xn are independent if σ(X1), ... ,σ(Xn) are inde-

pendent.

Explicitly, recalling Theorem 2.35Theorem 2.35, we see that (ii)(ii) means that for all F1 ∈ E1, ... ,Fn ∈ En
we have22

(3.5) P(X1 ∈ F1, ... ,Xn ∈ Fn) = P(X1 ∈ F1) · · ·P(Xn ∈ Fn) ,

where Xi takes values in the measurable space (Ei , Ei ).

The following result is very convenient: it gives a concrete characterisation of independ-
ence of random variables that is very useful when working with independent random
variables.

Proposition 3.12 The random variables X1, ... ,Xn are independent if and only if the
law of (X1, ... ,Xn) is the product of the laws of X1, . . . , Xn, i.e.

(3.6) P(X1,...,Xn) = PX1 ⊗ · · · ⊗ PXn .

In this case we have

E[f1(X1) · · · fn(Xn)] = E[f1(X1)] · · ·E[fn(Xn)]

for any measurable and nonnegative functions fi .

Proof Let (Ei , Ei ) be the target space of Xi . Let Fi ∈ Ei for all i . Then we have

P(X1,...,Xn)(F1 × · · · × Fn) = P(X1 ∈ F1, ... ,Xn ∈ Fn) ,

PX1 ⊗ · · · ⊗ PXn(F1 × · · · × Fn) = P(X1 ∈ F1) · · ·P(Xn ∈ Fn) .

Using (3.53.5), we conclude that X1, ... ,Xn are independent if and only if P(X1,...,Xn) and
PX1 ⊗ · · · ⊗ PXn coincide on all rectangles of the form F1 × · · · × Fn. The family of such
rectangles,

C = {F1 × · · · × Fn : Fi ∈ Ei ∀i}
is stable under finite intersections (Theorem 3.7Theorem 3.7) and it satisfies σ(C) = E1 ⊗ · · · ⊗
En (recall Theorem 1.3Theorem 1.3 (ii)(ii)). By Theorem 3.9Theorem 3.9 we therefore conclude that X1, ... ,Xn are
independent if and only if P(X1,...,Xn) = PX1 ⊗ · · · ⊗ PXn .

For the last statement, we use the Fubini-Tonelli theorem (Theorem 1.14Theorem 1.14) to conclude

E

[∏
i

fi (Xi )

]
=

∫ ∏
i

fi (xi )PX1(dx1) · · ·PXn(dxn)

=
∏
i

∫
fi (xi )PXi (dxi ) =

∏
i

E[fi (Xi )] . □

Theorem 3.12Theorem 3.12 shows how to construct independent random variables X1, ... ,Xn with
given laws µ1, ... ,µn on the spaces (E1, E1), ... (En, En), respectively. Indeed, simply
chooseΩ = E1×· · ·×En,A = E1⊗· · ·⊗En,P = µ1⊗· · ·⊗µn, and setXi (ω1, ... ,ωn) :=

ωi . Clearly, (3.63.6) holds.

Let us record some obvious but important properties of independent random variables.

2Recalling the convention (2.62.6).
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Remark 3.13
(i) If X1, ... ,Xn are independent random variables with values in R, then

E[X1 · · ·Xn] = E[X1] · · ·E[Xn] provided that E[|Xi |] < ∞ for all i . In particular,
if X1, ... ,Xn ∈ L1 then X1 · · ·Xn ∈ L1. Without independence, this is in general
false. For instance, for X1 = X2 = X ∈ L1 in general we have X /∈ L2 (i.e.
X 2 /∈ L1).

(ii) If X1,X2 ∈ L2 are independent then Cov(X1,X2) = 0. In words: independ-
ent random variables are uncorrelated. The reverse implication (uncorrelated
random variables are independent) is in general wrong.

Example 3.14 To illustrate (ii)(ii), consider a random variable X1 ∈ L2 on R with a
symmetric densityp, i.e.p(x) = p(−x). Letχ ∈ {±1}be a random variable with law
P(χ = +1) = P(χ = −1) = 1

2 . Let X1 and χ be independent. Define X2 := χ · X1.
Then we have

Cov(X1,X2) = E[X1X2] = E[χX 2
1 ] = E[χ]E[X 2

1 ] = 0 ,

so that X1 and X2 are uncorrelated. Nevertheless, X1 and X2 are not independent.
Indeed, if they were independent, then |X1| and |X2| = |X1| would also be inde-
pendent, but a random variable that is independent of itself is necessarily constantaa.
Clearly, |X1| cannot be constant, since it has density 2p(x)1x⩾0.
Remarkably, if the law of (X1,X2) is Gaussian, then independence of X1 and X2 is
equivalent to them being uncorrelated. This is a consequence of Wick’s theorem
(Exercise 3.2).
aIf X is independent of itself then Var(X ) = 0. Hence, by Chebyshev, P(|X − E[X ]| > t) = 0 for all
t > 0, which implies that P(X ̸= E[X ]) = 0.

Remark 3.15 Let X ,Y ,Z be independent random variables. Then X and f (Y ,Z )

are independent for any measurable function f . Indeed, by Theorem 3.12Theorem 3.12,

P(X ∈ A, f (Y ,Z ) ∈ B) = (PX ⊗ PY ⊗ PZ )(A× f −1(B))

= PX (A) · PY ⊗ PZ (f
−1(B)) = P(X ∈ A) · P(f (Y ,Z ) ∈ B) .

This principle of regrouping random variables can easily be generalised in the obvi-
ous way to more random variables.
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3.4 — The Borel-Cantelli lemma

3.4 The Borel-Cantelli lemma WEEK 4

In this section we encounter the first deep result that has a genuinely probabilistic flavour.
It is the standard tool to prove that some asymptotic property holds almost surely, and it
lies at the heart of many important results in probability. A typical application is given in
Theorem 3.20Theorem 3.20 below.

Let (An)n∈N be a sequence of events in A. We define the new events

lim sup
n

An :=
⋂
n⩾0

⋃
k⩾n

Ak

lim inf
n

An :=
⋃
n⩾0

⋂
k⩾n

Ak .

The following interpretation is crucial, and it is often the better way to understand these
events:

lim sup
n

An = {ω : ω ∈ Ak infinitely often} ,

lim inf
n

An = {ω : ω ∈ Ak eventually} .

In other words:

lim supn An is the set of realisations that appear in infinitely many Ak .

lim infn An is the set of realisations that appear in all Ak beyond a certain index.

It is very important that you play with these different formulations until you are comfort-
able with them.

We always have

(3.7) lim inf
n

An ⊂ lim sup
n

An .

If you’re not sure why this is true, pause here until you see why.

The reason behind the terminology lim sup and lim inf stems from the fact that

1lim supn An = lim sup
n

1An , 1lim infn An = lim inf
n

1An ,

where the right-hand sides are the usual lim sup and lim inf on R; see the exercises. (This
remark also provides another way of seeing (3.73.7).)

The event lim supn An is more useful and more commonly used than lim infn An, which
appears quite rarely in probability.

Proposition 3.16 (Borel-Cantelli lemma)
(i) If

∑
n∈N P(An) < ∞ then P(lim supn An) = 0. In other words, almost surely An

happens only finitely often.
(ii) If

∑
n∈N P(An) = ∞ and (An)n∈N are independent, then P(lim supn An) = 1. In

other words, almost surely An happens infinitely often.

Remark 3.17 In (ii)(ii), the independence is important. The conclusion is clearly wrong
if we take An = A for all n ∈ N with 0 < P(A) < 1.
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Proof of Theorem 3.16Theorem 3.16 For (i)(i), we write (using Exercise 1.1)

P(lim sup
n

An) = lim
n

P

(⋃
k⩾n

Ak

)
⩽ lim

n

∑
k⩾n

P(Ak) = 0 ,

since the sum
∑

k P(Ak) is finite.

For (ii)(ii), we choose N ∈ N and write for any n ⩾ N , by independence of the events Ak ,

P

(
n⋂

k=N

Ac
k

)
=

n∏
k=N

P(Ac
k) =

n∏
k=N

(1− P(Ak)) ⩽
n∏

k=N

e−P(Ak ) = e−
∑n

k=N P(Ak ) ,

which tends to zero as n → ∞ because of the assumption
∑

n∈N P(An) = ∞. Here we
used the basic inequality 1 − x ⩽ e−x (which follows for instance by convexity of the
function e−x ). We conclude (by Exercise 1.1) that

P

(⋂
k⩾N

Ac
k

)
= 0 ,

and hence also

P

(⋃
N⩾0

⋂
k⩾N

Ac
k

)
= 0 ,

which is equivalent to

P

(⋂
N⩾0

⋃
k⩾N

Ak

)
= 1 . □

Remark 3.18 A somewhat different proof of (i)(i) follows from the observation that

E
[∑

n

1An

]
=
∑
n

P(An) < ∞ ,

so that the random variable
∑

n 1An is almost surely finite, which implies that An

happens only finitely often.

The Borel-Cantelli lemma states that whetherAn happens infinitely often depends on how
fast the sequence P(An) tends to zero. This principle is well illustrated by the following
example, which provides a good intuition for Theorem 3.16Theorem 3.16 (i)(i).

Example 3.19 Let b1, b2, · · · ∈ [0, 1). We partition [0,∞) into intervals [an, an+1)

of length bn, by setting a0 = 0 and an = an−1 + bn for n ⩾ 1. Now we “fold” these
intervals into the unit interval [0, 1)using the function f (x) := x−⌊x⌋, the fractional
part of x . Thus, we define An := f ([an, an+1)). You may find it helpful to draw these
sets.
• If

∑
n bn = ∞ then

⋃
n[an, an+1) = [0,∞). This means that the folded sets An

keep on “passing through” the interval [0, 1), and every ω ∈ [0, 1) is contained in
infinitely many sets An.

• If
∑

n bn < ∞ then
⋃

n[an, an+1) is a finite interval. This means that the folded
sets An do not cover enough ground to keep on passing through [0, 1), and every
ω ∈ [0, 1) is contained in only finitely many sets An.

These observations can be interpreted in light of the Borel-Cantelli lemma on
the probability space ([0, 1),B([0, 1)),P), where P is Lebesgue measure. Then
P(An) = bn (why?), and Theorem 3.16Theorem 3.16 (i)(i) is applicable. In particular, we see that the
condition

∑
n P(An) < ∞ is not only sufficient but in general also necessary. Note
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that Theorem 3.16Theorem 3.16 (ii)(ii) does not apply to this example, because the events (An) are
not independent (why?).

Example 3.20 In this example we investigate the statistics of digits of random
numbers. For simplicity, we work with binary digits, although the same argu-
ment can be easily adapted to any basis (such as 10). Take the probability
space ([0, 1),B([0, 1)),P), where P is Lebesgue measure. Use the notation ω =

0.ω1ω2ω3 · · · for the binary digits ωn ∈ {0, 1} of ω ∈ [0, 1), i.e. ω =
∑∞

n=1 ωn2
−n

(with the usual convention that we cannot have ωn = 1 for all n above a certain
index; this ensures the uniqueness of the binary representation). This definition is
not very direct, and it turns out to be more convenient to define the digits through
the events

Bn :=
2n−1⋃
k=1

[
k − 1/2

2n−1
,

k

2n−1

)
, n ⩾ 1 .

(Draw them!) Then we define the random variable Xn := 1Bn . One can then show by
induction that Xn(ω) = ωn; the details are left as an exercise (drawing the events Bn

should make this clear).
Next, we find that P(Xn = 0) = P(Xn = 1) = 1

2 for all n, and we claim that (Xn)n⩾1

are independent random variables. Indeed, for any p ∈ N∗ and x1, ... , xp ∈ {0, 1}
we find

P(X1 = x1, ... ,Xp = xp) = P

([
p∑

k=1

xk2
−k ,

p∑
k=1

xk2
−k + 2−p

))

=
1

2p
=

p∏
k=1

P(Xk = xk) ,

as desired.
Moreover, we claim that for any p ∈ N∗ and x1, ... , xp ∈ {0, 1} we have, almost
surely,

(3.8) #{k ∈ N : (Xk+1, ... ,Xk+p) = (x1, ... , xp)} = ∞ .

This is a simple consequence of Theorem 3.16Theorem 3.16 (ii)(ii). The only issue is that events{
(Xk+1, ... ,Xk+p) = (x1, ... , xp)

}
, k ∈ N ,

are not independent (since the collections of random variables on which they depend
overlap). There’s a very easy solution to this, however: we can just pick every p-th of
them, in which case they are independent. Thus, defining Yn := (Xnp+1, ... ,Xnp+p),
from Theorem 3.15Theorem 3.15 we conclude that (Yn)n∈N are independent random variables.
Setting An := {Yn = (x1, ... , xp)}, the family (An)n∈N is independent and satisfies
P(An) = 2−p . Hence Theorem 3.16Theorem 3.16 (ii)(ii) yields (3.83.8).
We can even upgradeaa (3.83.8) by taking a countable union over p ∈ N∗ and x1, ... , xp ∈
{0, 1} to show that almost surely

#{k ∈ N : (Xk+1, ... ,Xk+p) = (x1, ... , xp)} = ∞ ∀p ⩾ 1 , ∀x1, ... , xp ∈ {0, 1} .

In other words: Almost every real number exhibits every finite sequence of binary
digits infinitely often.

aThis is an important general observation. Let P(ω, i) be a statement depending on the realisation ω

and some index i ∈ I in an index set I . Then the statement

for all i ∈ I , almost surely P(ω, i)
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is weaker than
almost surely, for all i ∈ I , P(ω, i).

However, if the set I is countable, these statements are equivalent by a union bound.

3.5 Sums of independent random variables

The following definition gives the law of the sum of independent random variables in
terms of their laws.

Definition 3.21 Let µ and ν be probability measures on R. The convolution of µ
and ν is the probability measure

µ ∗ ν := p∗(µ⊗ ν) ,

where p(x , y) := x + y .

Remark 3.22 This definition is a generalisation of the usual convolution of functions
that you have learned in analysis. Indeed, suppose that µ and ν both have densities,
i.e. µ(dx) = f (x) dx and ν(dx) = g(x) dx . Then we have (µ ∗ ν)(dx) = h(x) dx ,
where

h(x) =

∫
f (x − y) g(y) dy .

The right-hand side is also usually denoted by f ∗ g and it is called the convolution
of f and g . To verify this assertion, take a nonnegative measurable function ϕ and
calculate, using Theorem 3.21Theorem 3.21,∫

ϕ(x) (µ ∗ ν)(dx) =
∫

ϕ(x + y) f (x) g(y) dx dy =

∫
ϕ(x) f (x − y) g(y) dx dy

as desired, where in the last step we used the change of variables x 7→ x − y .

Remark 3.23 If X and Y are independent random variables then clearly PX+Y =

PX ∗ PY . Moreover, Var(X + Y ) = Var(X ) + Var(Y ).

Next, we state a weak version of the most famous result in probability theory: the law of
large numbers. It states that the average of a large number of independent copies of a
random variable is close to its expectation. The following result is known as the weak law
of large numbers because it falls short of the best possible statement, for two reasons:
the assumption Xn ∈ L2 can be weakened to Xn ∈ L1, and the convergence in fact holds
almost surely instead of just in L2. Later on, we shall see how to remedy both issues. The
weak law has the advantage that it is very easy to prove.

Proposition 3.24 (Weak law of large numbers) Let (Xn)n⩾1 be independent random
variables in L2 with the same law. Then

1

n
(X1 + · · ·+ Xn)

L2

−→ E[X1] .
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Proof The proof is a simple computation using Theorem 3.23Theorem 3.23:

E

[(
1

n
(X1 + · · ·+ Xn)− E[X1]

)2
]
= Var

(
1

n
(X1 + · · ·+ Xn)

)
=

1

n2
Var(X1 + · · ·+ Xn) =

1

n2
(Var(X1) + · · ·+ Var(Xn)) =

1

n
Var(X1) . □

Note that, for this proof to work, it in fact suffices that the random variables (Xn) be
uncorrelated (i.e. Cov(Xn,Xm) = 0 for n ̸= m) instead of requiring independence (recall
Theorem 3.13Theorem 3.13 (ii)(ii)).

The following is a nice application of the law of large numbers to polynomial approxima-
tion in numerical analysis.

Example 3.25 (Polynomial approximation) The problem of polynomial approxim-
ation is one of the classical problems in numerical analysis: Suppose that we are
given the values of an unknown function f at n + 1 points. How do we approximate
f with a polynomial of degree n?
To be more precise, let f be continuous on [0, 1]. Define the Bernstein polynomial

fn(x) :=
n∑

k=0

(
n

k

)
xk(1− x)n−k f

(
k

n

)
.

Then we claim that fn converges to f uniformly on [0, 1].
To see why, take independent random variables X1, ... ,Xn, each having a Bernoulli
law with parameter p. Then Sn = X1 + · · ·+ Xn has binomial law (recall Exercise
2.2)

P(Sn = k) =

(
n

k

)
pk(1− p)n−k

and hence

(3.9) E
[
f

(
Sn
n

)]
= fn(p) .

Then by the law of large numbers we have Sn

n → p in L2, so that we expect fn(p) →
f (p). Let us carry out this argument carefully. Let ε > 0 and choose δ > 0 such that
|x − y | < δ implies |f (x)− f (y)| < ε (since f is continuous, and hence uniformly
continuous, on the compact interval [0, 1].) Then we partition

1 = 1|Sn/n−p|<δ + 1|Sn/n−p|⩾δ

and use this to estimate∣∣∣∣E[f(Sn
n

)]
− f (p)

∣∣∣∣ ⩽ ε+ 2∥f ∥L∞P
(∣∣∣∣Snn − p

∣∣∣∣ ⩾ δ

)
⩽ ε+ 2∥f ∥L∞

Var(Sn/n)

δ2
= ε+ 2∥f ∥L∞

p(1− p)

nδ2
⩽ ε+ ∥f ∥L∞

1

2nδ2
,

where in the second step we used Chebyshev’s inequality. Recalling (3.93.9), we con-
clude the proof.

As advertised, the convergence in L2 in Theorem 3.24Theorem 3.24 is often not strong enough, and we
would need almost sure convergence. This issue is clarified in the following remark.

Remark 3.26 IfYn → Y in Lp for p ⩾ 1, it could well be thatYn(ω) fails to converge
for every ω ∈ Ω. In other words, in no realisation of the randomness does Yn

converge. This is a major weakness of convergence in Lp .
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For an example, we continue with Theorem 3.19Theorem 3.19. Suppose that
∑

n bn = ∞. Take
the random variable Yn := 1An . Then ∥Yn∥p = b

1/p
n → 0, so that Yn converges to

Y = 0 in Lp . However, for all ω ∈ Ω we have Yn(ω) = 1 infinitely often. In particular,
although Yn converges to 0 in Lp for any p ⩾ 1, almost surely Yn does not converge.
Note, however, that if

∑
n bn < ∞ then Yn → 0 almost surely.

Using the Borel-Cantelli lemma, we can upgrade the convergence in L2 to almost sure
convergence. The result is the following proposition. It represents an archetypal use of
the Borel-Cantelli lemma.

Proposition 3.27 (Strong law of large numbers in L4) Let (Xn)n⩾1 be independent
random variables in L4 with the same law. Then

1

n
(X1 + · · ·+ Xn)

a.s.−→ E[X1] .

Proof The proof is very constructive. It consists of two main ideas. The first is that if we
repeat the proof of Theorem 3.24Theorem 3.24 with a higher Lp norm, we get stronger decay in n of
the error probabilities. The second is that if these error probabilities are summable over
n, we can use the Borel-Cantelli lemma to conclude almost sure convergence.

To begin with, without loss of generality we can replace Xn with Xn − E[Xn], and hence
suppose that E[Xn] = 0. Then we simply calculate, using the independence of the
random variables (Xn), to get

E

[(
1

n

n∑
k=1

Xk

)4
]
=

1

n4

n∑
k1,...,k4=1

E[Xk1Xk2Xk3Xk4 ]

=
1

n4

(
nE[X 4

1 ] + 3n(n − 1)E[X 2
1 ]

2

)
= O

(
1

n2

)
,

where in the second step we classified the indices k1, k2, k3, k4 according to their coincid-
ences: to obtain a nonzero contribution we need either all four indices to coincide, or
two and two indices to coincide, which gives rise to the two terms in the third step.

We conclude that∑
n⩾1

E

[(
1

n

n∑
k=1

Xk

)4
]
= E

[∑
n⩾1

(
1

n

n∑
k=1

Xk

)4
]
< ∞ ,

and hence ∑
n⩾1

(
1

n

n∑
k=1

Xk

)4

< ∞

almost surely, from which the claim follows. This is an application of the (proof of the)
Borel-Cantelli lemma (see also Theorem 3.18Theorem 3.18). □
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Remark 3.28 The condition that Xn ∈ L4 is not optimal. In fact, Theorem 3.27Theorem 3.27
remains true under the weaker assumption Xn ∈ L1 (see Theorem A.5Theorem A.5 in Chapter AChapter A).
This assumption is known to be optimal (in the sense that the conclusion must
be wrong if Xn /∈ L1). This optimal result is usually known as the strong law of
large numbers or just the law of large numbers. It turns out that, unlike the relat-
ively straightforward proof of Theorem 3.27Theorem 3.27, the proof of the law of Theorem A.5Theorem A.5 is
somewhat involved, and was a major achievement in 20th century probability. Its
proof relies on some far-reaching and deep ideas of probability theory. If you are
interested, you can read all about it in Chapter AChapter A.
However, the L4 assumption from Theorem 3.27Theorem 3.27 is good enough for mostaa applica-
tions, and in this course we shall restrict ourselves to it.
aAlthough not all; see e.g. the proof of Theorem 5.45Theorem 5.45 below.

Let us discuss some application of the strong law of large numbers.

Corollary 3.29 Let (An)n⩾1 be independent of events of constant probability. Then

1

n

n∑
k=1

1Ak

a.s.−→ P(A1) .

We can use this result to bring Theorem 3.20Theorem 3.20 to a striking conclusion.

Example 3.30 (Theorem 3.20Theorem 3.20 continued) Let p ∈ N∗ and l ∈ {1, ... , p}. Define

Y l
n := (X(n−1)p+l , ... ,X(n−1)p+l+p−1) .

Explicitly, the sequence Y l
1 ,Y

l
2 , ... is

(Xl , ... ,Xl+p−1), (Xp+l , ... ,Xp+l+p−1), ...

By Theorem 3.20Theorem 3.20 and Theorem 3.15Theorem 3.15, (Y l
n)n∈N∗ is an independent family of random

variables, for each l ∈ {1, ... , p}. Hence, for any x = (x1, ... , xp) ∈ {0, 1}p , applying
Theorem 3.29Theorem 3.29 to the events An = {Y l

n = x}, we find that
1

n
#
{
i ∈ {1, ... , n} : Y l

i = x
}

a.s.−→ 1

2p
.

Since this holds for all l ∈ {1, ... , p} we deduce that
1

n
#
{
i ∈ {1, ... , n} : (Xi , ... ,Xi+p−1) = x

}
a.s.−→ 1

2p
.

Taking the countable union over p ∈ N∗ and x ∈ {0, 1}p , we conclude: almost
surely, for all p ∈ N∗, x ∈ {0, 1}p ,

1

n
#
{
i ∈ {1, ... , n} : (Xi , ... ,Xi+p−1) = x

}
−→ 1

2p
.

In words: for almost every real number ω ∈ [0, 1), any finite sequence of length p

appears with frequency 2−p in the binary digits of ω.
Note that it is difficult to construct a number ω with this rather striking property.
The easiest way to show that such a number exists is the preceding probabilistic
argument. Not only does it show that such a number exists, but it shows that almost
all numbers have this property.
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CHAPTER 4

Convergence of random variables WEEK 5

In this chapter we study the convergence of random variables in detail. We shall study
the most important notions of convergence: almost surely, in probability, in Lp , and in
law.

4.1 Notions of convergence

Let (Xn)n∈N∗ and X be random variables with values in R. In this section we wish to
understand different notions of the convergence Xn → X and any logical implications
between them.

Recall that we have already seen two notions of convergence:

• Xn
a.s.−→ X if P(limn Xn = X ) = 1.

• Xn
Lp

−→ X if limn E[|Xn − X |p] = 0.

The following definition is very useful, and specific to probability.

Definition 4.1 The random variables Xn converge in probability to X , denoted
Xn

P−→ X , if for all ε > 0 we have

lim
n

P(|Xn − X | > ε) = 0 .

It is often useful to observe that this notion of convergence is metrisable, i.e. it arises
from a metric on the space of all random variables.

Definition 4.2 Let L0 be the space of random variables on (Ω,A,P) with values in
R, and let L0 := L0/ ∼, where ∼ is the equivalence relation defined by X ∼ Y if
and only if X = Y almost surely. For X ,Y ∈ L0 we define

d(X ,Y ) := E[|X − Y | ∧ 1] .

Proposition 4.3 The space (L0, d) is a complete metric space, and Xn
P−→ X if and

only if d(Xn,X ) → 0.

Proof It is easy to check that d is a metric.
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Let us now verify that Xn
P−→ X implies d(Xn,X ) → 0. Suppose that Xn

P−→ X and
choose an arbitrary ε ∈ (0, 1]. Then

d(Xn,X ) = E[|Xn − X | ∧ 1] = E[|Xn − X | 1|Xn−X |⩽ε] + E[(|Xn − X | ∧ 1) 1|Xn−X |>ε]

⩽ ε+ P(|Xn − X | > ε) −→ ε ,

by assumption. Since ε > 0 was arbitrary, we conclude that d(Xn,X ) → 0.

Conversely, suppose that d(Xn,X ) → 0. Then for all ε ∈ (0, 1] we have, by Chebyshev’s
inequality,

P(|Xn − X | > ε) ⩽
1

ε
E[|Xn − X | ∧ 1] → 0 ,

i.e. Xn
P−→ X .

All that remains, therefore, is to show that the metric space (L0, d) is complete. To that
end, let (Xn) be a Cauchy sequence for d(·, ·). Choose a subsequence Yk = Xnk such that
d(Yk ,Yk+1) ⩽ 2−k . We then use the Borel-Cantelli lemma (see also Theorem 3.18Theorem 3.18) with

E

[ ∞∑
k=1

(|Yk+1 − Yk | ∧ 1)

]
⩽

∞∑
k=1

2−k < ∞ ,

so that
∞∑
k=1

(|Yk+1 − Yk | ∧ 1) < ∞ a.s. ,

which implies
∞∑
k=1

|Yk+1 − Yk | < ∞ a.s. .

Defining

X := Y1 +
∞∑
k=1

(Yk+1 − Yk) ,

we therefore have Yk
a.s.−→ X as k → ∞. Hence,

d(Yk ,X ) = E[|Yk − X | ∧ 1] −→ 0

as k → ∞, by dominated convergence. We conclude that d(Xn,X ) → 0 as n → ∞. □

The argument in the preceding proof of completeness is a general and important fact
from probability and measure theory: convergence in probability does not in general
imply almost sure convergence, but it does so provided that we restrict ourselves to a
suitable subsequence. This is made precise in the following proposition.

Proposition 4.4 Let Xn,X be random variables with values in R.

(i) If Xn
a.s.−→ X or Xn

Lp

−→ X then Xn
P−→ X .

(ii) If Xn
P−→ X then there exists a subsequence (Xnk ) such that Xnk

a.s.−→ X .

Proof Part (ii)(ii) was already established in the proof of Theorem 4.3Theorem 4.3. For part (i)(i), if Xn
a.s.−→

X then P(|Xn − X | > ε) = E[1|Xn−X |>ε] → 0 by dominated convergence, and if Xn
Lp

−→
X then P(|Xn − X | > ε) ⩽ 1

εp E[|Xn − X |p] → 0 for any ε > 0. □

Remark 4.5 In Theorem 4.4Theorem 4.4 (ii)(ii), it is in general necessary to take a subsequence;
see Theorem 3.26Theorem 3.26. (In this example, after taking a subsequence we can ensure that∑

n bn < ∞.)
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4.2 Convergence in law

In this section we introduce the final notion of convergence of random variables in this
course. We fix the dimension d ∈ N∗ throughout. We denote by Cb ≡ Cb(Rd) the space
of bounded continuous real-valued functions on Rd .

Definition 4.6
(i) Let µn, n ∈ N∗, and µ be probability measures on Rd . We say that µn converges

weakly to µ, denoted by µn
w−→ µ, if∫

φ dµn −→
∫

φ dµ , ∀φ ∈ Cb .

(ii) Let Xn, n ∈ N∗, and X be random variables with values in Rd . We say that Xn

converges in law, or in distribution, to X , denoted by Xn
d−→ X , if

PXn

w−→ PX .

Explicitly, this means that

E[φ(Xn)] −→ E[φ(X )] , ∀φ ∈ Cb .

Remark 4.7 The convergence in law d−→ is very different in nature from the other
modes of convergence a.s.−→, P−→, L2

−→ that we have seen up to now: it only pertains
to the laws of the random variables. In particular, the random variables Xn and X

can all be defined on different probability spaces. Moreover, the limit is (trivially) not
unique: if X and Y are different random variables with the same law and Xn

d−→ X

then clearly alsoXn
d−→ Y . (In contrast, the limit of weak convergence of probability

measures is unique.)

Example 4.8
(i) If an → a then δan

w−→ δa (by definition of continuity).
(ii) If the law ofXn is uniform on { 1

n ,
2
n , ... ,

n
n} and the law ofX is Lebesgue measure

on [0, 1], then Xn
d−→ X (by the Riemann sum approximation of integrals of

continuous functions).
(iii) Letµbe a probability measure onR and define the scaling function sη(x) := ηx

for η > 0. Then sη∗µ
w−→ δ0 as η → 0. To show this, take a function φ ∈ Cb and

write, using the change of variables x = sη(y),∫
φ(x) sη∗µ(dx) =

∫
φ(sη(y))µ(dy) =

∫
φ(ηy)µ(dy) → φ(0)

as η → 0, by dominated convergence.
In the important special case where µ(dx) = p(x) dx has a density p, we

have
sη∗µ(dx) =

1

η
p

(
x

η

)
dx .

The right-hand side is usually known as an approximate delta function. Such
functions play a very important role in analysis. One such application is given
in the Fourier inversion formula in Section 4.3Section 4.3.
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Proposition 4.9 If Xn
P−→ X then Xn

d−→ X .

Proof We proceed by contradiction and suppose that Xn
P−→ X but Xn does not con-

verge to X in law. The latter means that there exists φ ∈ Cb such that E[φ(Xn)] ̸→
E[φ(X )]. Hence, there exists a subsequence (nk) and ε > 0 such that

(4.1)
∣∣E[φ(Xnk )]− E[φ(X )]

∣∣ ⩾ ε

for all k . Moreover, by Theorem 4.4Theorem 4.4 (ii)(ii), there exists a further subsequence (nkl ) such that
Xnkl

→ X a.s. as l → ∞. But by dominated convergence, we have

|E[φ(Xnkl
)]− E[φ(X )]| → 0

as l → ∞, in contradiction to (4.14.1). □

Remark 4.10 The reverse implication of Theorem 4.9Theorem 4.9 is false. Worse: if Xn
d−→ X

then the very statement Xn
P−→ X is in general meaningless! This is because

Xn
d−→ X does not imply that Xn and X are all defined on the same probability

space, while Xn
P−→ X requires all random variables to be defined on the same

probability space (see Theorem 4.7Theorem 4.7). Even when all random variables are defined
on the same probability space, it is easy to think of counterexamples. For example,
let X have a Bernoulli law with parameter p = 1/2 and set Xn := 1 − X for all n.
Then clearly PXn = PX , so that Xn

d−→ X , but because |X − Xn| = 1 a.s., clearly Xn

does not converge to X is probability.
However, if Xn

d−→ a for some constant a then the implication Xn
P−→ a does hold.

To show this, let ε > 0 and define the continuous bounded function

φ(x) :=
|x − a|

ε
∧ 1 .

(Plot this function!) Then

P(|Xn − a| > ε) = E[1|Xn−a|>ε] ⩽ E[φ(Xn)] → φ(a) = 0

as n → ∞, by assumption Xn
d−→ a.

It turns out that weak convergence is a remarkably polyvalent concept, and there are
many, very useful, equivalent criteria to characterise it. The following proposition is the
first step in this direction. To state it, we use the notation Cc ≡ Cc(Rd) to denote the
space of continuous functions of compact support11. We recall the supremum norm

∥φ∥∞ := sup
x∈Rd

|φ(x)|

for any φ ∈ Cb.

Proposition 4.11 Let H ⊂ Cc be such that the closure of H under ∥·∥∞ contains Cc .
Let µn and µ be probability measures on Rd . Then the following are equivalent.

(i) µn
w−→ µ (i.e. ∀φ ∈ Cb,

∫
φ dµn →

∫
φ dµ).

(ii) ∀φ ∈ Cc ,
∫
φ dµn →

∫
φ dµ.

(iii) ∀φ ∈ H ,
∫
φ dµn →

∫
φ dµ.

1We recall that the support of a function f : Rd → R is the set supp f := {x ∈ Rd : f (x) ̸= 0}. Hence, the
condition that supp f be compact simply means that it is bounded.
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Proof The implications (i)(i)⇒(ii)(ii) and (i)(i)⇒(iii)(iii) are obvious. We shall show (ii)(ii)⇒(i)(i) and
(iii)(iii)⇒(ii)(ii).

To show (ii)(ii)⇒(i)(i), suppose (ii)(ii). Let φ ∈ Cb. Choose a sequence fk ∈ Cc such that 0 ⩽
fk ⩽ 1 and fk ↑ 1 as k → ∞ (you can take for instance fk(x) = (1− |x/k |)+). Then we
telescope ∫

φ dµn −
∫

φ dµ =

∫
φ dµn −

∫
φfk dµn

+

∫
φfk dµn −

∫
φfk dµ

+

∫
φfk dµ−

∫
φ dµ ,

and estimate each line on the right-hand side separately.

• For any k ∈ N∗, the second line tends to zero as n → ∞, by assumption (ii)(ii) since
φfk ∈ Cc .

• For any k ∈ N∗, the first line is estimated in absolute value by

∥φ∥∞
(
1−

∫
fk dµn

)
−→
n→∞

∥φ∥∞
(
1−

∫
fk dµ

)
,

where we again used (ii)(ii) since fk ∈ Cc .
• The third line is estimated in absolute value by

∥φ∥∞
(
1−

∫
fk dµ

)
.

Putting everything together, we conclude that for any k ∈ N∗ we have

lim sup
n→∞

∣∣∣∣∫ φ dµn −
∫

φ dµ

∣∣∣∣ ⩽ 2∥φ∥∞
(
1−

∫
fk dµ

)
.

Since k was arbitrary, we can take k → ∞, under which the right-hand side tends to zero
by dominated convergence. This concludes the proof of (ii)(ii)⇒(i)(i).

To show (iii)(iii)⇒(ii)(ii), suppose (iii)(iii). Let φ ∈ Cc . Choose a sequence φk ∈ H such that
∥φk − φ∥∞ → 0 as k → ∞. Then for any k ∈ N∗ we have, again by telescoping,

lim sup
n→∞

∣∣∣∣∫ φ dµn −
∫

φ dµ

∣∣∣∣
⩽ lim sup

n→∞

(∣∣∣∣∫ φ dµn −
∫

φk dµn

∣∣∣∣+ ∣∣∣∣∫ φk dµn −
∫

φk dµ

∣∣∣∣+ ∣∣∣∣∫ φk dµ−
∫

φ dµ

∣∣∣∣
)

⩽ 2∥φ− φk∥∞ −→
k→∞

0 ,

where we used that for any k ∈ N∗, the middle term on the second line tends to zero as
n → ∞ by (iii)(iii). This concludes the proof of (iii)(iii)⇒(ii)(ii). □
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WEEK 6

Next, we state the most useful set of equivalent criteria characterising weak convergence
of probability measures. It is usually called, somewhat cryptically, the portmanteau
theorem22.

Before stating the portmanteau theorem, we remark that µn
w−→ µ does in general

not imply that µn(B) → µ(B) for all B ∈ B(Rd). A counterexample is provided by
Theorem 4.8Theorem 4.8 (i)(i): δ1/n

w−→ δ0, but δ1/n({0}) = 0, which does not converge to δ0({0}) = 1.
We shall see that weak convergence is equivalent to convergence on a subset of sets

B ∈ B(Rd), namely those whose boundary ∂B = B̄ \
◦
B has limiting measure zero.

Proposition 4.12 (Portmanteau theorem) Let µn and µ be probability measures on
Rd . Then the following are equivalent.

(i) µn
w−→ µ.

(ii) For any open G ⊂ Rd , lim infn µn(G ) ⩾ µ(G ).
(iii) For any closed F ⊂ Rd , lim supn µn(F ) ⩽ µ(F ).
(iv) For any B ∈ B(Rd) such that µ(∂B) = 0, limn µn(B) = µ(B).

Proof We prove the following implications.

(i)(i)⇒(ii)(ii). Let G be open. Then there exists a sequence φk ∈ Cb such that 0 ⩽ φk ⩽ 1G
and φk ↑ 1G . For instance, we can take

φk(x) := (k dist(x ,G c)) ∧ 1 .

(Note that the property φk ↑ 1G holds because G is open.) Since φk ⩽ 1G , we find

lim inf
n

µn(G ) ⩾ sup
k

(
lim inf

n

∫
φk dµn

)
= sup

k

∫
φk dµ = µ(G ) ,

where the last step follows by monotone convergence.

(ii)(ii)⇔(iii)(iii). This is obvious by taking F = G c .

(ii)(ii), (iii)(iii)⇒(iv)(iv). Let B ∈ B(Rd). Then by (iii)(iii) we have

lim sup
n

µn(B) ⩽ lim sup
n

µn(B̄) ⩽ µ(B̄)

and by (ii)(ii) we have

lim inf
n

µn(B) ⩾ lim inf
n

µn(
◦
B) ⩾ µ(

◦
B) .

If µ(∂B) = 0 then µ(B̄) = µ(
◦
B) = µ(B), and we conclude (iv)(iv).

(iv)(iv)⇒(i)(i). This is the last remaining implication. Let φ ∈ Cb and suppose without loss
of generality that φ ⩾ 0 (otherwise split φ = φ+ − φ− with φ+,φ− ⩾ 0). With K :=

supx φ(x) we have (recall Exercise 2.4)∫
φ(x)µ(dx) =

∫ ∫ K

0

1t⩽φ(x) dt µ(dx) =

∫ K

0

µ(Eφ
t ) dt ,

2The origin of this term is somewhat unclear. In English, a portmanteau is traditionally a large suitcase made of
leather, that opens into two equal parts, usually used to transport coats. Similarly, the portmanteau theorem
bundles together multiple conditions that are each equivalent to weak convergence. (Confusingly, although
the word is obviously of French origin, in French the word portemanteau means something altogether different:
a standing piece of furniture on which one can hang coats.) In his 1871 work Through the Looking Glass, the
sequel to Alice in Wonderland, Lewis Carroll coined the term portmanteau to denote a word that has been
obtained by gluing pieces of other words together (such as “motel” from “motor” and “hotel”).
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4.2 — Convergence in law

where in the last step we used Fubini’s theorem and defined

Eφ
t := {x ∈ Rd : φ(x) ⩾ t} .

By the same argument, ∫
φ(x)µn(dx) =

∫ K

0

µn(E
φ
t ) dt .

To conclude the argument, we make two claims.

• First, ∂Eφ
t ⊂ {x ∈ Rd : φ(x) = t}. To see this, we note that since φ is continuous, Eφ

t

is closed as the preimage of a closed set. Moreover,
◦
Eφ

t ⊃ {x ∈ Rd : φ(x) > t} ,

since the right-hand side is open (as the preimage of an open set) and contained in Eφ
t .

Hence,

∂Eφ
t = Eφ

t \
◦
Eφ

t ⊂ {x ∈ Rd : φ(x) = t} ,
as claimed.

• Second, the set {
t ∈ [0,K ] : µ({x : φ(x) = t}) > 0

}
is at most countable. This follows from the observation that this set can be written as⋃

k⩾1

{
t ∈ [0,K ] : µ({x : φ(x) = t}) ⩾ 1

k

}
,

and for each k ⩾ 1 the set on the right-hand side is a set of cardinality at most k (recall
that µ has total measure 1), in particular finite.

Putting both claims together, we use (iv)(iv) to conclude that µn(E
φ
t ) → µ(Eφ

t ) as n → ∞
for almost all t. Hence, by dominated convergence we have∫

φ(x)µn(dx) =

∫ K

0

µn(E
φ
t ) dt −→

∫ K

0

µ(Eφ
t ) dt =

∫
φ(x)µ(dx) ,

as desired. □

As a corollary of the portmanteau theorem, we deduce yet another criterion for conver-
gence in law on R: pointwise convergence of the distribution function at its points of
continuity (think again of Example 4.84.8 (i)(i) for why the last condition is needed).

Proposition 4.13 Let Xn,X be real-valued random variables. Then Xn
d−→ X if and

only if FXn(x) → FX (x) for all x where FX is continuous.

Proof The “only if” implication is immediate from Theorem 4.12Theorem 4.12 (iv)(iv). Indeed, by Theorem 4.12Theorem 4.12
(iv)(iv), convergence in law implies that

FXn(x) = P(Xn ⩽ x) = PXn((−∞, x ]) −→ PX ((−∞, x ]) = P(X ⩽ x) = FX (x)

for all x ∈ R such that PX ({x}) = P(X = x) = 0 (since ∂(−∞, x ] = {x}). Moreover,
if F is continuous at x it means that limn→∞ F (x − 1/n) = F (x), which implies that
P(X = x) = P(X ⩽ x)− P(X < x) = 0.

For the “if” implication, we abbreviate µ := PX and F := FX as well as µn := PXn and
Fn := FXn . First we claim that the setD of points of discontinuity ofF is at most countable.
This is an exercise in real analysis that we recall here. Since F is right-continuous and
nondecreasing, at any x ∈ D we haveF (x−) := limy↑x F (y) < F (x). Hence, there exists
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CHAPTER 4 — CONVERGENCE OF RANDOM VARIABLES

q(x) ∈ Q∩ (F (x−),F (x)). By monotonicity of F , the map q : D → Q is injective, which
proves the claim. In particular, the set R \ D of points of continuity of F is dense in R.

Next, by right-continuity and by definition of F (x−), for any x ∈ R and any ε > 0, there
exists δ > 0 such that

F (x + δ) ⩽ F (x) + ε , F (x − δ) ⩾ F (x−)− ε .

Choosing a, b ∈ R\D satisfying x−δ ⩽ a ⩽ x ⩽ b ⩽ x+δ (which is possible by density
of R \ D), we have, by assumption and by monotonicity of F ,

lim
n

Fn(a) = F (a) ⩾ F (x − δ) ⩾ F (x−)− ε ,

which implies
lim inf

n
Fn(x−) ⩾ lim inf

n
Fn(a) ⩾ F (x−)− ε .

Since ε > 0 was arbitrary, we conclude that

(4.2) lim inf
n

Fn(x−) ⩾ F (x−) .

Let us repeat the same argument for the lim sup:

lim
n

Fn(b) = F (b) ⩽ F (x + δ) ⩽ F (x) + ε ,

which implies
lim sup

n
Fn(x) ⩽ lim sup

n
Fn(b) ⩽ F (x) + ε .

Since ε > 0 was arbitrary, we conclude that

(4.3) lim sup
n

Fn(x) ⩽ F (x) .

Let33 a < b, and notice that µ((a, b)) = F (b−)− F (a). From (4.24.2) and (4.34.3), we therefore
conclude

(4.4) lim inf
n

µn((a, b)) = lim inf
n

(Fn(b−)− Fn(a)) ⩾ F (b−)− F (a) = µ((a, b)) .

Hence, we have verified Theorem 4.12Theorem 4.12 (ii)(ii) for the special case that G is an interval.

To obtain the general case, we recall from analysis that any open set G can be written
as a countable disjoint union of open intervals Ik , i.e. G =

⋃
k⩾1 Ik . (For the proof, we

simply decompose G into its connected components, which are intervals, and note that,
since each such interval contains a point in Q unique to that interval, there are at most
countably many intervals.) Hence,

lim inf
n

µn(G ) = lim inf
n

µn

(⋃
k⩾1

Ik

)
= lim inf

n

∑
k⩾1

µn(Ik)

⩾
∑
k⩾1

lim inf
n

µn(Ik) ⩾
∑
k⩾1

µ(Ik) = µ(G ) ,

where in the third step we used Fatou’s lemma (for the counting measure
∑

k⩾1), and in
the fourth step we used (4.44.4). We have therefore proved Theorem 4.12Theorem 4.12 (ii)(ii) for a general
open set G . □

3Note that these a, b are different from the ones above used to prove (4.24.2) and (4.34.3).
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4.3 — Characteristic function

4.3 Characteristic function WEEK 7

The term characteristic function is used in probability theory to denote the Fourier trans-
form of a law. As we shall see, it is a beautiful and incredibly powerful tool. Before giving
the precise definition, for your general mathematical culture it is helpful to review the
key ideas and definitions of Fourier analysis. For any ξ ∈ Rd , we define the plane wave
to be the function Rd → C defined by

x 7→ e−iξ·x .

To understand the term of plane wave, you can simply decompose e−iξ·x into its real and
imaginary parts44 and plot these as a function of x (for instance for d = 2): you will see a
series of parallel waves, like ones at open sea far from the shore.

The main idea behind Fourier analysis is that any function can be represented as a super-
position of plane waves and the corresponding coefficients are explicitly computable. This
is very plainly illustrated in the following finite-dimensional setting. For each N ∈ N∗,
define the discrete cube

Λ := {0, 1, ... ,N − 1}d

and the dual cube
Λ∗ :=

2π

N
Λ .

Consider the finite-dimensional complex Hilbert spaces V := CΛ and V ∗ := CΛ∗
. We

use the notations f = (f (x))x∈Λ ∈ V and f = (f (ξ))ξ∈Λ∗ ∈ V ∗ for vectors in these
spaces. They carry the complex inner products

⟨f , g⟩V :=
∑
x∈Λ

f (x)g(x) , ⟨f , g⟩V ∗ :=
∑
ξ∈Λ∗

f (ξ)g(ξ) .

For any ξ ∈ Λ∗ we define the vector eξ ∈ V as the normalized plane wave

eξ(x) :=
1

Nd/2
e−iξ·x .

Now the truly wonderful fact is that the family (eξ)ξ∈Λ∗ is an orthonormal basis of V !
I strongly recommend that you check this carefully; it is a simple exercise using finite
geometric series.

The Fourier transform of a vector f ∈ V is the vector f̂ ∈ V ∗ defined by

(4.5) f̂ (ξ) := ⟨eξ , f ⟩ .

In other words, Fourier transformation is nothing but a change of basis from one or-
thonormal basis (the standard basis of CΛ) to another orthonormal basis (the basis (eξ)).
Hence, we can write f as a superposition of plane waves,

(4.6) f =
∑
ξ∈Λ∗

f̂ (ξ) eξ .

The relations (4.54.5) and (4.64.6) can be explicitely written as

(4.7) f̂ (ξ) =
1

Nd/2

∑
x∈Λ

eiξ·x f (x) , f (x) =
1

Nd/2

∑
ξ∈Λ∗

e−iξ·x f̂ (ξ) ,

respectively. The former is usually called the Fourier transform and the latter the inverse
Fourier transform. Remarkably, they have almost exactly the same form (up to the sign
of the argument).

4Fourier analysis is indeed sometimes performed for real functions only, which requires dealing with the real
and imaginary parts of e−iξ·x separately, resulting in complicated formulas involving sines and cosines. This
approach leads to a hot complicated mess, which makes everything harder without any advantages to make
up for it.
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Summarising, Fourier transformation can be viewed as simply a change of orthonormal
basis. This is somewhat complicated by the fact that, as in this class, it is often applied
in infinite dimensions, which leads to analytic complications (see e.g. the precise state-
ment of Theorem 4.16Theorem 4.16 below, as well as Theorem 4.17Theorem 4.17 for a simplified formulation under
stronger analytic assumptions). It is a tremendously useful tool for many reasons. One
such reason is that it diagonalises all differential operators (to see why, you can immedi-
ately check that differentiating a plane wave e−iξ·x gives −iξ times the same plane wave,
so that a plane wave is an eigenfunction of the derivative operator). As a consequence,
it is the most important and celebrated tool in all of analysis, upon which basically the
entire modern theory of partial differential equations is founded. In this section we shall
see other remarkable properties that make it particularly useful in probability theory.
For another application, see Theorem 5.21Theorem 5.21 below.

Let us now bring this introductory digression to a close and return to probability theory.
We begin with the following definition.

Definition 4.14
(i) Let µ be a finite complex measureaa on Rd . Define the Fourier transform of µ,

denoted by µ̂ : Rd → C, through

µ̂(ξ) :=

∫
eiξ·x µ(dx) .

(ii) Let X be a real-valued random variable. Define the characteristic function of X ,
denoted by ΦX : Rd → C, as the Fourier transform of its law PX . That is,

ΦX (ξ) = P̂X (ξ) =

∫
eiξ·x PX (dx) = E[eiξ·X ] .

aThis means µ = µ1 + iµ2, where µ1 and µ2 are signed measures of finite total variation.

By dominated convergence, ΦX ∈ Cb(Rd).

The most important observation in all of Fourier analysis is the following computation
for a Gaussian. For σ > 0, define

(4.8) gσ(x) :=
1

σ
√
2π

e−
x2

2σ2 ,

the density of the Gaussian law with mean zero and variance σ2.

Proposition 4.15 LetX ∈ R be a Gaussian random variable with law gσ(x) dx . Then

ΦX (ξ) = e−
σ2

2 ξ2 .

Proof By definition,

ΦX (ξ) =

∫
1

σ
√
2π

e−
x2

2σ2 eiξx dx .

By the change of variables x 7→ σx , we may suppose that σ = 1 and compute

f (ξ) :=

∫
1√
2π

e−
x2

2 eiξx dx .
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Differentiating under the integral and then integrating by parts, we find

f ′(ξ) =

∫
1√
2π

e−
x2

2 ix eiξx dx

=

∫
1√
2π

(−i)∂x
(
e−

x2

2

)
eiξx dx

=

∫
1√
2π

(−1)
(
e−

x2

2

)
ξ eiξx dx

= −ξf (ξ) .

Thus, f satisfies the ordinary differential equation{
f (0) = 1

f ′(ξ) = −ξf (ξ) .

As seen in analysis (since f ′ is a Lipschitz continuous function of f ), this equation has a
unique solution, f (ξ) = e−

ξ2

2 . □

Thanks to the preceding computation, we can invert the Fourier transform in the following
sense. For simplicity, set d = 1; the case d > 1 is done in exactly the same way.

Since the measure µ can be quite rough (it need not have a density), it is very helpful
to mollify55 it by convolving (recall Theorem 3.21Theorem 3.21 and Theorem 3.22Theorem 3.22) it with the smooth
function (4.84.8). This convolution has density

(4.9) fσ(x) :=

∫
gσ(x − y)µ(dy) .

Lemma 4.16 (Fourier inversion formula for measures) For any finite complex meas-
ure µ on R, we have

(4.10) fσ(x) =
1

2π

∫
e−iξx e−

σ2

2 ξ2 µ̂(ξ) dξ .

Proof By Theorem 4.15Theorem 4.15 with σ replaced by 1/σ, we have

σ
√
2πgσ(x) = e−

x2

2σ2 =

∫
eiξx g1/σ(ξ) dξ .

Hence,

fσ(x) =

∫
gσ(x − y)µ(dy)

=
1

σ
√
2π

∫ ∫
eiξ(x−y) g1/σ(ξ) dξ µ(dy)

=
1

2π

∫ ∫
eiξ(x−y) e−

σ2

2 ξ2 dξ µ(dy)

=
1

2π

∫
eiξx e−

σ2

2 ξ2
∫

e−iξyµ(dy) dξ

=
1

2π

∫
eiξx e−

σ2

2 ξ2 µ̂(−ξ) dξ ,

where in the fourth step we used Fubini’s theorem. The claim follows by the change of
variables ξ 7→ −ξ. □

5Note that the function gσ is (the density of) an approximate delta function (recall Theorem 4.8Theorem 4.8 (iii)(iii)).
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Remark 4.17 If the measure µ is sufficiently regular, then the Fourier inversion
formula takes on a simpler form because one can take the limit σ → 0 and hence get
rid of the mollifiers gσ. Suppose that µ(dx) = f (x) dx has a continuous density f

that also satisfies f̂ := µ̂ ∈ L1. (The latter condition is true provided that f is smooth
enough.) Then by takingσ → 0 in (4.104.10), using Theorem 4.8Theorem 4.8 (iii)(iii) on the left-hand side
and dominated convergence on the right-hand side, we find the Fourier inversion
formula for regular functions

f (x) =
1

2π

∫
e−iξx f̂ (ξ) dξ ,

where we recall that the Fourier transformation is given by

f̂ (ξ) =

∫
eiξx f (x) dx .

Therefore, inverse Fourier transformation is, up to a sign in the argument, simply
Fourier transformation itself! Compare these expressions to the finite-dimensional
ones from (4.74.7).

The characteristic function provides yet another, extremely useful, equivalent criterion
for convergence in law of random variables (to complement Propositions 4.114.11 and 4.124.12) –
pointwise convergence of the characteristic function.

Proposition 4.18 Let µn and µ be probability measures on Rd . Then µn
w−→ µ if and

only if µ̂n(ξ) → µ̂(ξ) for all ξ ∈ Rd .

Proof The “only if” implication is obvious by definition of weak convergence, since the
real and imaginary parts of the function x 7→ eiξ·x are continuous and bounded for all
x ∈ Rd .

To prove the “if” implication, we again suppose for simplicity that d = 1 (the case d > 1

is very similar). Suppose therefore that µ̂n(ξ) → µ̂(ξ) for all ξ ∈ Rd . For φ ∈ Cc(R) we
have, by Fubini’s theorem,∫

gσ ∗ φ dµ =

∫
φ(x) (gσ ∗ µ)(x) dx .

The function gσ ∗ µ is simply (4.94.9), so that Theorem 4.16Theorem 4.16 yields∫
gσ ∗ φ dµ =

∫
φ(x)

1

2π

∫
e−iξx e−

σ2

2 ξ2 µ̂(ξ) dξ dx .

An analogous formula holds for µn. By dominated convergence, for any σ > 0 we have∫
e−iξx e−

σ2

2 ξ2 µ̂n(ξ) dξ −→
∫

e−iξx e−
σ2

2 ξ2 µ̂(ξ) dξ

as n → ∞ for all x , so that another application of dominated convergence (to the integral
over x ) yields, for all φ ∈ Cc ,

(4.11)
∫

gσ ∗ φ dµn −→
∫

gσ ∗ φ dµ

as n → ∞.

To conclude the argument, we define the space of functions

H := {gσ ∗ φ : σ > 0,φ ∈ Cc} .

If we can prove that the closure of H under ∥·∥∞ contains Cc , then the proof will be
complete by applying Theorem 4.11Theorem 4.11 to (4.114.11).

58



4.4 — The central limit theorem

What remains, therefore, is to prove that the closure of H under ∥·∥∞ contains Cc . To
that end, choose φ ∈ Cc and estimate

∥gσ ∗ φ− φ∥∞ = sup
x

∣∣∣∣∫ 1

σ
√
2π

e−
y2

2σ2
(
φ(x − y)− φ(x)

)
dy

∣∣∣∣
= sup

x

∣∣∣∣∫ 1√
2π

e−
y2

2

(
φ(x − σy)− φ(x)

)
dy

∣∣∣∣ .
Now let ε > 0 and choose K > 0 such that∫

|y |>K

1√
2π

e−
y2

2 dy ⩽
ε

∥φ∥∞
.

Splitting the y -integration into |y | ⩽ K and |y | > K , we conclude that

∥gσ ∗ φ− φ∥∞ ⩽ sup
x

∣∣∣∣∫
|y |⩽K

1√
2π

e−
y2

2

(
φ(x − σy)− φ(x)

)
dy

∣∣∣∣+ 2ε .

On the support of the integral, the vector σy has norm bounded by σK , so that by
uniform continuity of φ we deduce that the right-hand side converges to 2ε as σ → 0.
This concludes the proof. □

4.4 The central limit theorem

The central limit theorem is, together with the law of large numbers, the second most
fundamental result in probability. It states that the sum of a large number of independent
identically distributed random variables has approximately a Gaussian distribution, no
matter what the distribution of these variables is. This provides at least a partial theoret-
ical justification66 for the ubiquity of the Gaussian distribution in probability and statistics.
This represents the first instance of a remarkable phenomenon in probability and statist-
ical physics called universality: if you take a complicated system made up of many small
parts, the behaviour of the system on large scales is universal in the sense that it does not
depend on the details of the individual parts77. In this instance, the universal behaviour is
the Gaussian distribution of the sum, no matter the distribution of the individual random
variables.

Let X1,X2, ... be a sequence of independent identically distributed real-valued random
variables in L1. The strong law of large numbers states that

1

n
(X1 + · · ·+ Xn) −→ E[X1]

almost surely as n → ∞. It is natural to ask how fast this convergence takes place, i.e.
what is the typical size, or scale, of 1

n (X1 + · · ·+ Xn)− E[X1], as a function of n.

For X1 ∈ L2, the answer is easy. Indeed, since

E
[
(X1 + · · ·+ Xn − nE[X1])

2
]
= Var(X1 + · · ·+ Xn) = nVar(X1) ,

we find that

(4.12)
1√
n
(X1 + · · ·+ Xn − nE[X1])

6Another, perhaps more pragmatic, justification is that, if one does not know the distribution of a random
variable one is considering, we have no choice but to guess, and the Gaussian is a particularly convenient guess.
Even if this is not correct, in many applications the Gaussian is a good enough approximation.
7As a consequence, some very complicated systems admit a remarkably simple emergent effective description
on large scales, although the full analysis of their individual components is hopelessly complicated. An example
is the derivation of the emergent laws of hydrodynamics from a microscopic theory of matter. This idea is also
famously at the core of Isaac Asimov’s Foundation trilogy.
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is typically of order one (since the expectation of its square is equal to Var(X1), which
does not depend on n).

The central limit theorem is a more precise version of this observation, as it even identifies
the limiting law of (4.124.12).

Proposition 4.19 (Central limit theorem) Let X1,X2, ... be independent identically
distributed random variables in L2, with variance σ2. Then, as n → ∞, the quantity
(4.124.12) converges in law to a Gaussian random variable with mean zero and variance
σ2.

Proof Using the technology of characteristic functions developed in the previous section,
the proof is remarkably straightforward. First, without loss of generality we may suppose
that E[X1] = 0 (otherwise just replace Xn with Xn − E[Xn]).

We shall use that for any random variable X ∈ L2 we have88

(4.13) ΦX (ξ) = 1 + iξE[X ]− 1

2
ξ2E[X 2] + o(ξ2)

as ξ → 0. To show (4.134.13), we differentiate under the expectation, using that X ∈ L2, to
obtain

Φ′
X (ξ) = iE[X eiξX ] ,

and differentiating again yields

Φ′′
X (ξ) = −E[X 2 eiξX ] .

Note that differentiating inside the expectation is allowed since X ∈ L2. By Taylor’s
theorem, we therefore have

ΦX (ξ) = 1 + iE[X ] ξ −
∫ ξ

0

E[X 2 eitX ] (ξ − t) dt

= 1 + iE[X ] ξ − 1

2
ξ2E[X 2]−

∫ ξ

0

E[X 2 (eitX − 1)] (ξ − t) dt .

The expectation under the last integral tends to zero as t → 0, by the dominated conver-
gence theorem. Hence, the whole integral is o(ξ2), and we obtain (4.134.13).

With Zn := X1+···+Xn√
n

we have, by independence of the variables X1, ... ,Xn,

ΦZn(ξ) = E
[
exp

(
iξ
X1 + · · ·+ Xn√

n

)]
= E[exp(iξX1/

√
n)]n = ΦX1(ξ/

√
n)n .

By (4.134.13), we therefore get, for any ξ ∈ R,

ΦZn(ξ) =

(
1− σ2ξ2

2n
+ o

(
ξ2

n

))n

−→ e−
σ2

2 ξ2

as n → ∞. The claim now follows from Propositions 4.154.15 and 4.184.18. □

8Here we recall the “little-o” notation for some complex-valued function f and nonnegative function g : “f (ξ) =
o(g(ξ)) as ξ → 0” means that limξ→0

f (ξ)
g(ξ)

= 0; informally: “f is much smaller than g”. Contrast this to the

“big-O” notation: “f (ξ) = O(g(ξ))” means that |f (ξ)|
g(ξ)

⩽ C for some constant C independent of ξ; informally:

“f is not much larger than g”.
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CHAPTER 5

Markov chains and random walks WEEK 8

Markov chains are some of the most useful and fundamental objects in probability theory.
They constitute the paradigm of a random dynamical system, and as such have innumer-
able applications from physics to biology and economics11. Informally, a Markov chain is
a stochastic process, i.e. a random variable depending on time, whereby the law of the
future of the process depends only on the present and not the whole past. In other words,
the process has no memory: knowing its entire history gives me no useful information
for predicting the future as compared to knowing just its value today.

Before moving on, let us briefly unwrap the notion of a stochastic process. In this course,
time is always discrete, i.e. an integer n ∈ N. (Think n labelling days starting from some
arbitrary starting point.) A stochastic process is a family of random variables (Xn)n∈N
taking values in some set S (which can be, for instance, Rd , Zd , or some finite set). In
other words, a stochastic process on the probability space Ω is a function

X : N× Ω → S ,

such thatXn(·) is measurable for each n ∈ N. It is helpful to note that a stochastic process
can be though of in two different ways.

• As a collection of random variables. Here, one chooses a time n ∈ N and regards
ω 7→ Xn(ω) as a function of ω ∈ Ω.

• As a random collection of trajectories. Here, one chooses a realization ω ∈ Ω and
regards n 7→ Xn(ω) as a fixed S-valued sequence.

5.1 Definition and basic properties

Throughout this chapter, we fix a set S , which we always assume to be discrete, i.e. finite
or countable. A prominent example of the latter is S = Zd .

Definition 5.1
(i) A stochastic process (Xn)n∈N is a Markov chain, or a Markov process, if for any

n ∈ N and x0, ... , xn, y ∈ S we have

(5.1) P(Xn+1 = y | Xn = xn, ... ,X0 = x0) = P(Xn+1 = y | Xn = xn) .

(ii) The Markov chain is homogeneous if the function

(x , y) 7→ P(Xn+1 = y | Xn = x)

does not depend on n ∈ N.

1Applications of Markov chains represents a good proprtion of all of science, and as such we do not even
attempt an overview here. Some famous examples are Markov chain Monte Carlo (see Section 5.9Section 5.9 below) and
Google’s PageRank algorithm.
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Throughout this chapter, we shall always and without further mention suppose that (Xn)

is a homogeneous Markov chain.

Theorem 5.1Theorem 5.1 says informally that, conditioned on the past X0, ... ,Xn−1,Xn, the law of
the future Xn+1 depends only on the present Xn. The homogeneous property says that
this law does not depend on the time n.

Definition 5.2 We define the transition matrix Q : S × S → [0, 1] of the chain (Xn)

through
Q(x , y) := P(X1 = y | X0 = x) .

By homogeneity, we have Q(x , y) = P(Xn+1 = y | Xn = x) for all n ∈ N. The number
Q(x , y) is therefore the probability of going from x to y in one time step of the chain.

The following remark follows immediately from Theorem 5.2Theorem 5.2.

Remark 5.3 The transition matrix Q satisfies the follows properties.
(i) For all x , y ∈ S we have Q(x , y) ∈ [0, 1].

(ii) For all x ∈ S we have
∑

y∈S Q(x , y) = 1.

Definition 5.4 A matrix Q satisfying the properties (i)(i) and (ii)(ii) from Theorem 5.3Theorem 5.3 is
called stochastic.

Proposition 5.5 Let Q be the transition matrix of the chain (Xn). Then Q and the
law of X0 fully determine the law of the entire process (Xn), through the formula

(5.2) P(X0 = x0,X1 = x1, ... ,Xn = xn) = P(X0 = x0)Q(x0, x1) · · ·Q(xn−1, xn) .

Proof By definition of conditional expectation and by Theorem 5.1Theorem 5.1, we get

P(Xn = xn, ... ,X0 = x0)

= P(Xn = xn | Xn−1 = xn−1, ... ,X0 = x0)P(Xn−1 = xn−1, ... ,X0 = x0)

= Q(xn−1, xn)P(Xn−1 = xn−1, ... ,X0 = x0) .

Repeatedly applying the same argument to the second term on the right-hand side yields
the claim. □

Definition 5.6 The law of X0 is called the initial distribution of the chain (Xn).

Remark 5.7 Conversely, given a probability measure µ and a stochastic matrix Q ,
can we construct a Markov chain with initial distribution µ and transition matrix Q?
The answer is yes.
For any finite time N ∈ N, we can define the law of the vector (X0, ... ,XN) as in
(5.25.2):

P(X0 = x0,X1 = x1, ... ,XN = xN) := µ(x0)Q(x0, x1) · · ·Q(xN−1, xN) .

62



5.1 — Definition and basic properties

Because Q is stochastic, the right-hand side is indeed a probability measure on Sn,
and moreover for any n ⩽ N the relation (5.25.2) holds. Hence, for any n ⩽ N − 1, we
have

P(Xn+1 = y | X0 = x0, ... ,Xn = xn) =
P(Xn+1 = xn+1, ... ,X0 = x0)

P(Xn = xn, ... ,X0 = x0)

=
µ(x0)Q(x0, x1) · · ·Q(xn−1, xn)Q(xn, y)

µ(x0)Q(x0, x1) · · ·Q(xn−1, xn)

= Q(xn, y) .

Therefore, the process X0,X1, ... ,XN satisfies (5.15.1) up to time N . This construction
can be extended to infinite times with a bit more work (e.g. using Kolmogorov’s
extension theorem), which we shall not go into here.

Summarizing, one can equivalently consider

(i) a Markov chain (as in Theorem 5.1Theorem 5.1), or
(ii) its initial distribution and its transition matrix.

The latter two in (ii)(ii) are often easier to work with.

Example 5.8 Consider the following very simple weather model. Let p, q ∈ [0, 1].
Suppose that a day is either dry (D) or rainy (R). If today is rainy, then with probability
p tomorrow is rainy. If today is dry, then with probability q tomorrow is dry.
This specifies the transition matrix Q on the state space {R,D} through

Q(R, R) = p , Q(R,D) = 1− p , Q(D,D) = q , Q(D, R) = 1− q .

It is very convenient to interpret Q ∈ [0, 1]S×S literally as a matrix and use the usual
notations for matrix multiplication, according to the following definition.

Definition 5.9 Let Q be a stochastic matrix on S .
(i) For n ∈ N we define the matrix Qn ∈ [0, 1]S×S through Q0(x , y) = δxy ,

Q1(x , y) := Q(x , y), and

Qn+1(x , y) :=
∑
z∈S

Qn(x , z)Q(z , y)

by recurrence.
(ii) For a bounded function f : S → R we define Qf (x) :=

∑
y∈S Q(x , y)f (y) .

(iii) For a probability measure µ : S → [0, 1] we define µQ(x) :=∑
y∈S µ(y)Q(y , x) .

Hence, according to the conventions of linear algebra, we interpret Q as an S × S matrix,
f as an S-dimensional column vector, and µ as an S-dimensional row vector.

Note that if µ is a probability measure then so is µQn for any n ∈ N. Moreover, by (5.25.2)
we have

P(Xn = xn | X0 = x0) = Qn(x0, xn) .

Thus, the matrix Qn has the interpretation of the n-step transition matrix of the Markov
chain.
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For a Markov chain (Xn) with initial distribution µ and transition matrix Q, in matrix
notation we can for instance compute

E[f (Xn)] =
∑
xn∈S

f (xn)P(Xn = xn) =
∑
xn∈S

∑
x0∈S

f (xn)P(Xn = xn | X0 = x0)P(X0 = x0)

=
∑
xn∈S

∑
x0∈S

f (xn)Q
n(x0, xn)µ(x0) = µQnf .

Example 5.10 (Theorem 5.8Theorem 5.8 continued) For the Markov chain from Theorem 5.8Theorem 5.8 we
can use the matrix notation to write

Q =

(
p 1− p

1− q q

)
,

as an {R,D} × {R,D} matrix.

We conclude this section with a few more examples.

Example 5.11 (Random walk on Zd ) Let d ∈ N∗ and ν a probability measure on Zd .
Define the stochastic matrix Q(x , y) := ν(y − x). A Markov chain with transition
matrix Q is called a random walk on Zd . The interpretation is that at each step of
the walk, the chain takes a random step from its current location, with the law of
the step being given by ν. The random walk can also be explicitly written as a sum

(5.3) Xn = X0 +
n∑

i=1

Zi ,

where Z1,Z2, ... are independent random variables with law ν, independent of X0.
Indeed, to verify Theorem 5.1Theorem 5.1, we simply note that (5.35.3) satisfies

P(Xn+1 = y | Xn = xn, ... ,X0 = x0) = P(Xn + Zn+1 = y | Xn = xn, ... ,X0 = x0)

= P(Zn+1 = y − x)

= Q(x , y) ,

by independence of Zn+1 and (X0,Z1, ... ,Zn).
If

(5.4) ν(x) =
1

2d
1|x|=1 ,

then the walk is called simple (the walk jumps to the nearest neighbours with equal
probability).

Example 5.12 (Knight’s random walk) Random walks can take place in a more gen-
eral setting than the lattice Zd . As an example, let S = {1, ... , 8}2 be a chessboard.
For each square x ∈ S denote by K (x) ⊂ S the set of squares of the board that can
be reached by a single move of a knight from x . Then we can define the “knight’s
random walk” as the Markov chain with transition matrix

Q(x , y) =
1

|K (x)|
1y∈K(x) .

Thus, at each step, the knight moves uniformly at random to any square it can reach.
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Example 5.13 (Simple random walk on general graph) The previous example can
be greatly generalised as follows. Let (S ,E ) be a connected graph on the vertex set
S such that the degree Dx := |{e ∈ E : x ∈ e}| of each vertex x ∈ S is finite (such
a graph is called locally finite). Define the stochastic matrix Q on S × S through

Q(x , y) :=
1

Dx
1{x ,y}∈E .

Here, at each step the walk moves uniformly at random along an incident edge.

Example 5.14 (Ehrenfest model of diffusion) Here is a primitive model of diffusion
names after its inventors, Tatiana and Paul Ehrenfest. Suppose that we have a
container containing N gas molecules. The container is split in two halves separated
by a small hole. Sometimes molecules will travel from one half to the other. We are
interested in the number x of molecules in the left half. We take the following, rather
naive, model of diffusion: at each time step we choose one molecule uniformly at
random and bring it to the other side of the container.
Thus, we set S = {0, 1, ... ,N} and define the transition matrix

Q(x , y) =


N−x
N if y = x + 1

x
N if y = x − 1

0 otherwise .

5.2 The Markov property

In this section we introduce a result, often simply referred to the Markov property, which
will be our main tool in studying Markov chains. It is a generalisation of the condition
(5.15.1) from Theorem 5.1Theorem 5.1.

Proposition 5.15 (Markov property) Let n,m ∈ N. Let f be a nonnegative function
on Sm+1 and A ⊂ Sn+1. Then for any x ∈ S we have

E[f (Xn, ... ,Nn+m) | Xn = x , (X0, ... ,Xn) ∈ A] = E[f (X0, ... ,Xm) | X0 = x ] .

In words, the Markov property says that the law of the entire future of the process,
conditioned on the entire past and being at x today, is the same as the law of a process
simply starting at x at time zero. In other words, what happened before the present does
not matter. This is a strong manifestation of the memoryless and homogeneity properties
of Markov chains.

Proof of Theorem 5.15Theorem 5.15 For x0, ... , xn−1 ∈ S , we get from Theorem 5.1Theorem 5.1

E[f (Xn, ... ,Xn+m) | X0 = x0, ... ,Xn−1 = xn−1,Xn = x ]

=
∑

y1,...,ym∈S

f (x , y1, ... , ym)

× P(Xn+m = ym, ... ,Xn+1 = y1 | X0 = x0, ... ,Xn−1 = xn−1,Xn = x)

=
∑

y1,...,ym∈S

f (x , y1, ... , ym)P(Xn+m = ym, ... ,Xn+1 = y1 | Xn = x)

= E[f (X0, ... ,Xm) | X0 = x ] .
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Therefore,

E[f (Xn, ... ,Nn+m)1Xn=x ,(X0,...,Xn)∈A]

=
∑

x0,...,xn−1∈S

1(x0,...,xn−1,x)∈A E[f (Xn, ... ,Nn+m)1X0=x1,...,Xn−1=xn−1,Xn=x ]

=
∑

x0,...,xn−1∈S

1(x0,...,xn−1,x)∈A E[f (Xn, ... ,Nn+m) | X0 = x1, ... ,Xn−1 = xn−1,Xn = x ]

× P(X0 = x1, ... ,Xn−1 = xn−1,Xn = x)

=
∑

x0,...,xn−1∈S

1(x0,...,xn−1,x)∈A E[f (X0, ... ,Nm) | X0 = x ]

× P(X0 = x1, ... ,Xn−1 = xn−1,Xn = x)

= E[f (X0, ... ,Nm) | X0 = x ]P(Xn = x , (X0, ... ,Xn) ∈ A) ,

and the claim follows after dividing by P(Xn = x , (X0, ... ,Xn) ∈ A). □

The Markov property can be rewritten in the following form, which is sometimes useful.
At a first reading, I suggest that you skip over it and return to it when you read the proof
of Theorem 5.45Theorem 5.45 where it is used.

Corollary 5.16 Let n,m ∈ N. Let f be a nonnegative function on Sm+1 and g a
nonnegative function on Sn+1. Then for any x ∈ S we have

E[f (Xn, ... ,Nn+m) g(X0, ... ,Xn) | Xn = x ]

= E[f (X0, ... ,Xm) | X0 = x ]E[g(X0, ... ,Xn) | Xn = xn] .

Proof Abbreviating xn := x , we obtain from Theorem 5.15Theorem 5.15∑
x0,...,xn−1∈S

g(x0, ... , xn)E[f (Xn, ... ,Nn+m) 1X0=x0 · · · 1Xn−1=xn−1 | Xn = xn]

=
∑

x0,...,xn−1∈S

g(x0, ... , xn)E[f (Xn, ... ,Nn+m) | X0 = x0, ... ,Xn = xn]

× P(X0 = x0, ... ,Xn−1 = xn−1 | Xn = xn)

=
∑

x0,...,xn−1∈S

g(x0, ... , xn)E[f (X0, ... ,Nm) | X0 = xn]

× P(X0 = x0, ... ,Xn−1 = xn−1 | Xn = xn)

= E[f (X0, ... ,Nm) | X0 = xn]E[g(X0, ... ,Xn) | Xn = xn] . □
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5.3 Recurrence and transience WEEK 9

Suppose that a Markov chain starts from state x ∈ S . How long does it take for it to return
to x? How often will it return? These questions are two of the most central ones in the
study of Markov chains, and lead to the notions of recurrence and transience of Markov
chains.

To study these questions, we introduce two fundamental variables. In their definition,
we always use the convention that inf ∅ = ∞.

Definition 5.17 Let x ∈ S .
• The time of first visit at x , or first return to x , is

Hx := inf{n ⩾ 1 : Xn = x} .

• The number of visits at x is

Nx :=
∑
n⩾0

1Xn=x .

We emphasize that Hx cannot be 0, i.e. if the chain starts at x then Hx counts the time
of the first return to x . On the other hand, if the chain starts at x then this initial visit is
counted in Nx .

Remark 5.18 The random variableHx is an example of a stopping time, i.e. a random
time T ∈ N such that, for each n ∈ N, the event {T = n} is in σ(X0, ... ,Xn) (i.e. it is
determined only by the values of the process up to time n). The intuition is that the
decision to stop at a certain time n, i.e. the event {T = n}, can only be made based
on the information X0, ... ,Xn available up to time n: we cannot see into the future.
Indeed, for T = Hx we have

(5.5) {Hx = n} = {X1 ̸= x , ... ,Xn−1 ̸= x ,Xn = x} ∈ σ(X0, ... ,Xn) ,

Definition 5.19 We often use the abbreviations

Px(·) := P(· | X0 = x) , Pµ(·) :=
∑
x∈S

µ(x)Px(·) ,

where µ is a probability measure on S . We denote by Ex and Eµ the corresponding
expectations.

The next proposition establishes the crucial dichotomy for the number of visits at x .

Proposition 5.20 Let x ∈ S .
(i) If Px(Hx < ∞) = 1 then Nx = ∞ Px -a.s. In this case x is called recurrent.

(ii) If Px(Hx < ∞) < 1 then Ex [Nx ] < ∞. In this case x is called transient.

67



CHAPTER 5 — MARKOV CHAINS AND RANDOM WALKS

Proof The proof is a typical application of the Markov property, Theorem 5.15Theorem 5.15. To avoid
technical issues, we shall first work with the truncated number of visits,

Nm
x :=

m∑
n=0

1Xn=x ,

which only depends on a finite number of random variables.

The main idea of the proof is to condition on the random time Hx , i.e. to sum over all of its
possible values, to compute the probability of at least k + 1 visits at x . For k ⩾ 1 we get

Px(N
m
x ⩾ k + 1) =

∑
n⩾1

Px(N
m
x ⩾ k + 1,Hx = n)

=
∑
n⩾1

Px

( m∑
i=0

1Xi=x ⩾ k + 1,Hx = n

)

=
∑
n⩾1

Px

( m∑
i=n

1Xi=x ⩾ k,Hx = n

)
,

where the last step follows from the definition of the time of first return Hx . Using (5.55.5)
we can use Theorem 5.15Theorem 5.15 to get

Px(N
m
x ⩾ k + 1) =

∑
n⩾1

Px

( m∑
i=n

1Xi=x ⩾ k

∣∣∣∣X1 ̸= x , ... ,Xn−1 ̸= x ,Xn = x

)
P(Hx = n)

=
∑
n⩾1

P
(m−n∑

i=0

1Xi=x ⩾ k

∣∣∣∣X0 = x

)
P(Hx = n)

=
∑
n⩾1

Px(N
m−n
x ⩾ k)P(Hx = n) .

Next, we let m → ∞. To that end, we note that for any k ⩾ 1 the sequence of random
variables 1Nm

x ⩾k is pointwise nondecreasing in m, with limit 1Nx⩾k . Hence, by monotone
convergence (recall Theorem 2.26Theorem 2.26), we conclude that

Px(Nx ⩾ k + 1) =
∑
n⩾1

Px(Nx ⩾ k)P(Hx = n) = Px(Nx ⩾ k)P(Hx < ∞) .

(Notice that on the right-hand side, we used monotone convergence twice; once for the
sum over n and then for the expectation Ex .)

Since Px(Nx ⩾ 1) = 1 trivially, we conclude by induction that

(5.6) Px(Nx ⩾ k) = Px(Hx < ∞)k−1 .

Using (5.65.6), it is now easy to conclude the proof.

• If Px(Hx < ∞) = 1 then Px(Nx ⩾ k) = 1 for all k , and hence

Px(Nx = ∞) = Px

(⋂
k⩾1

{Nx ⩾ k}
)

= 1 .

• If Px(Hx < ∞) < 1 then

Ex [Nx ] =
∑
k⩾1

Px(Nx ⩾ k) =
∑
k⩾1

Px(Hx < ∞)k−1

=
1

1− Px(Hx < ∞)
=

1

Px(Hx = ∞)
< ∞ . □
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Informally, we have a dichotomy for a Markov chain starting from x : either the walk
returns to x almost surely (recurrent) or there is a positive probability that it never returns
to x (transient). Theorem 5.20Theorem 5.20 gives a simple criterion for analysing the recurrence or
transience: check whether the sum

(5.7) Ex [Nx ] =
∑
n∈N

Px(Xn = x) =
∑
n∈N

Qn(x , x)

is finite. Thus, the problem reduces to a question about the analysis of the matrix Q . We
illustrate this for the simple random walk on Zd .

Example 5.21 (Theorem 5.11Theorem 5.11 continued) Let us consider the simple random walk
on Zd from Theorem 5.11Theorem 5.11. In principle, one can find explicit combinatorial formulas
for Qn(x , x) and perform an asymptotic analysis to determine the convergence of
(5.75.7). In practice, this can be rather tedious and the analysis depends strongly on
the precise transition matrix we are considering.
A far more powerful and versatile approach is to use Fourier analysis (cf. Section 4.3Section 4.3).
We observe first that for x ∈ Zd we have∫

−[π,π]d

dξ

(2π)d
eiξ·x = δx0 ,

as follows by a simple application of Fubini’s theorem to evaluate the integral. Hence,

P0(Xn = 0) =

∫
−[π,π]d

dξ

(2π)d
E0[e

iξ·Xn ]

By the representation (5.35.3), we find for the characteristic function of Xn

E0[e
iξ·Xn ] = Φ(ξ)n ,

where we abbreviated

Φ(ξ) := E0[e
iξ·Z1 ] =

1

d

d∑
i=1

cos(ξi ) ,

where the last step follows from by an explicit calculation using the law (5.45.4) of Z1.
By Fubini’s theorem, we conclude that for any 0 < λ < 1 we have∑

n∈N
λnP0(Xn = 0) =

∫
−[π,π]d

dξ

(2π)d

∑
n∈N

λnΦ(ξ)n =

∫
−[π,π]d

dξ

(2π)d
1

1− λΦ(ξ)
.

We shall now take the limit λ ↑ 1. By monotone convergence, the left-hand side
converges to (5.75.7). As for the right-hand side, we note that there exists a constant
c > 0 such that ϕ(x) ⩽ 1 − c if ξ ∈ [−π.π]d \ [−1, 1]d and that Φ(ξ) ⩾ 0 for ξ ∈
[−1, 1]d . We now split the integral over [−π.π]d into two pieces: [−π.π]d \ [−1, 1]d

and [−1, 1]d . We can now take the limit λ ↑ 1 by applying dominated convergence
to the former piece and monotone convergence to the latter piece. This yields

(5.8)
∑
n∈N

P0(Xn = 0) =

∫
−[π,π]d

dξ

(2π)d
1

1− Φ(ξ)
.

The denominator of the integral has a singularity at ξ = 0, whose integrability we
need to analyse. From Taylor’s theorem we obtain for t ∈ [−1, 1]

cos(t) = 1− 1

2
t2 +

1

24
s4

for some 0 ⩽ s ⩽ t, from which we deduce that

1− 1

2
t2 ⩽ cos(t) ⩽ 1− 11

24
t2

for t ∈ [−1, 1]. Hence,
1

2d
|ξ|2 ⩾ 1− Φ(ξ) ⩾

11

24d
|ξ|2
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in a neighbourhood of 0. We conclude that the integral in (5.85.8) is finite if and only if
d ⩾ 3.
Summarising: the simple random walk on Z2 is recurrent if d ⩽ 2 and transient for
d ⩾ 3. Or, as Shizuo Kakutani put it, “A drunk man will find his way home, but a
drunk bird may get lost foreveraa.”

aThis is a memorable quote, but you may already spot a flaw in the analogy: the earth is a finite planet
and its atmosphere has a finite thickness. Even in an infinite flat earth model, the drunk bird would still
be doing an effectively two-dimensional random walk, since it cannot fly into space: the vertical direction
is bounded. A more accurate, but admittedly less catchy, version of this quote would therefore be: “A
drunk man on an infinite flat earth will find his way home, but a drunk alien in a spacecraft in an infinite
universe may get lost forever.”

5.4 Stationary and reversible measures

Throughout this section, µ always denotes a measure on S satisfying µ(S) > 0 and
0 ⩽ µ(x) < ∞ for all x . In particular, µ(S) may be infinite.

Definition 5.22 (Stationary measure) Let Q be a stochastic matrix on S . A measure
µ is stationary with respect to µ if µ = µQ . Explicitly, this means that

µ(y) =
∑
x∈S

µ(x)Q(x , y) , ∀y ∈ S .

To explain in more detail the adjective stationary, suppose that (Xn) is a Markov chain
with initial distribution µ and transition matrix Q , such that µ is stationary with respect
to Q . Then the law of Xn is

Pµ(Xn = x) = µQnδx = µQn−1δx = · · ·µδx = µ(x)

for all n ∈ N. Hence, the law of Xn is µ for all n. In this sense, the process (Xn) is in the
stationary state µ: it is an example of a dynamic process in equilibrium.

Example 5.23 (Theorem 5.11Theorem 5.11 continued) Consider a random walk on Zd with trans-
ition matrix Q(x , y) = ν(y − x), as in Theorem 5.11Theorem 5.11. The counting measure µ on
Zd is stationary with respect to Q . (Because

∑
x Q(x , y) =

∑
x ν(y − x) = 1.)

Definition 5.24 (Reversible measure) The measure µ is reversible with respect to Q

if

(5.9) µ(x)Q(x , y) = µ(y)Q(y , x) , ∀x , y ∈ S .

The condition (5.95.9) is often called detailed balance. Interpreting Q(x , y) as the flow of
probability from x to y per unit probability in x , the detailed balance condition states that
the flow from x to y is the same as the flow from y to x . It is a remarkable and extremely
useful condition in both pure mathematics and innumerable applications, for instance
in so-called Markov chain Monte Carlo methods (see Section 5.9Section 5.9 below). Its usefulness
relies on the following observation.
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Remark 5.25 Reversibility is a stronger condition than stationarity (i.e.
Theorem 5.24Theorem 5.24 implies Theorem 5.22Theorem 5.22). Indeed, if µ is reversible then∑

x

µ(x)Q(x , y) =
∑
x

µ(y)Q(y , x) = µ(y) .

Thus, a simple way to verify that a measure is stationary is to verify that it is reversible.
In practice, reversibility is often much easier to check, since it presents a simple local
equation that can often be explicitly solved, whereas it can be very difficult to find
stationary measures. However, it is worth keeping in mind that there are measures
that are stationary but not reversible; see Theorem 5.26Theorem 5.26.

Remark 5.26 The converse implication is wrong: in general stationarity does not
imply reversibility. For instance, in the random walk on Zd from Theorem 5.11Theorem 5.11, if ν
is not symmetric, ν(−x) ̸= ν(x) for some x ∈ Zd , then the counting measure µ is
stationary (see Theorem 5.23Theorem 5.23) but not reversible.

Example 5.27 Consider the simple asymmetric random walk on Z, with transition
matrix

Q(x , x + 1) = p , Q(x , x − 1) = 1− p , ∀x ∈ Z ,

where 0 < p < 1.
We know from Theorem 5.23Theorem 5.23 and Theorem 5.26Theorem 5.26 that the counting measure on Z is
stationary but, if p ̸= 1/2, not reversible.
Can we find a reversible measure µ? The equation we have solve is

µ(x)Q(x , x + 1) = µ(x + 1)Q(x + 1, x) ,

i.e.
µ(x) p = µ(x + 1) (1− p) ,

whose can be solved by induction to yield

(5.10) µ(x) = µ(0)

(
p

1− p

)x

.

This measure coincides with the counting measure if and only if p = 1/2, in which
case µ is stationary and reversible.
If p ̸= 1/2, we conclude that Q has two different stationary measures: the counting
measure, which is not reversible, and µ, which is reversible.

Example 5.28 (Theorem 5.13Theorem 5.13 continued) Consider the simple random walk on a
connected locally finite graph (S,E). Can we find a stationary measure? It is much
easier to look for a reversible measure by solving the detailed balance equation,
which can be written as

µ(x)
1

Dx
= µ(y)

1

Dy

for any adjacent x , y . Since the graph is connected, we easily find that µ must be of
the form

µ(x) = CDx

for some positive constant C .
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Example 5.29 (Theorem 5.14Theorem 5.14 continued) Let us look for a stationary measure of
the Ehrefest model from Theorem 5.14Theorem 5.14. As before, the best approach is to find a
reversible measure by solving the detailed balance equations, which read

µ(x)
N − x

N
= µ(x + 1)

x + 1

N
, 0 ⩽ x ⩽ N − 1 .

This can be solved by induction on x to yield

µ(x) = C

(
N

x

)
, 0 ⩽ x ⩽ N .

For a probability measure, we take C = 2−N . This stationary measure corresponds
to the equilibrium measure of the diffusion model. It is strongly concentrated around
x = N/2, as one would expect based on the physical interpretation of the model.

5.5 The Green function

In this Section we introduce a tool of great power, which bears many names in the
literature: the Green function, the potential kernel, the fundamental matrix, ... Green func-
tions appear throughout mathematics; informally, Green functions are always inverses
of some basic matrix or operator underlying the problem one is considering (see also
Theorem 5.31Theorem 5.31 (i)(i) below).

Definition 5.30 The Green function of a Markov chain is the function U : S2 →
[0,∞] defined by

U(x , y) := Ex [Ny ] ,

i.e. the expected number of visits in y starting from x .

Remark 5.31
(i) Clearly,

U(x , y) = Ex

[∑
n∈N

1Xn=y

]
=
∑
n∈N

Px(Xn = y) =
∑
n∈N

Qn(x , y) .

Hence, U(x , y) > 0 if and only if there is an n ∈ N such that Qn(x , y) > 0. In
matrix notation, the Green function is therefore formally given by the Neumann
series

U =
∑
n∈N

Qn = (I − Q)−1 .

(ii) By Theorem 5.20Theorem 5.20, x is recurrent if and only if U(x , x) = ∞.

Proposition 5.32 If x ̸= y then

U(x , y) = Px(Hy < ∞)U(y , y) .

This is rather intuitive: to count the number of visits at y starting from x , one has to first
find the probability of going from x to y and then count the number of visits at y starting
from y ; in fact, this is an informal summary of the proof given below.
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Proof We compute

U(x , y) = Ex [Ny ]

= Ex [Ny1Hy<∞]

=
∑
n,k∈N

Ex [1Xk=y1Hy=n]

=
∑
n,ℓ∈N

Ex [1Xn+ℓ=y1Hy=n]

=
∑
n,ℓ∈N

P(Xn+ℓ = y | Hy = n,Xn = y)Px(Hy = n)

=
∑
n,ℓ∈N

P(Xℓ = y | X0 = y)Px(Hy = n)

= U(y , y)Px(Hy < ∞) ,

where in the fourth step we set k = n + ℓ and used the definition of Hy , and in the sixth
step we used Theorem 5.15Theorem 5.15. □

By Theorem 5.31Theorem 5.31 (i)(i), U(x , y) > 0 is equivalent to Qn(x , y) > 0 for some n ∈ N. This
means that it is possible to go from x to y with positive probability in finite time. Does
this imply that U(y , x) > 0? In general, the answer is clearly no (think of an example!).
However, if x is recurrent, then the answer is yes.

Proposition 5.33 Let that x , y ∈ S such that x is recurrent. If U(x , y) > 0 then y is
also recurrent and

(5.11) Py (Hx < ∞) = 1 .

In particular, by Theorem 5.32Theorem 5.32, U(y , x) > 0.

Proof The main work of the proof is to show (5.115.11). We start by computing the probability
of going from x to y in time n and not returning to x between time n and n +m. Using
Theorem 5.15Theorem 5.15, it is

Px(Hy = n,Xn+1 ̸= x , ... ,Xn+m ̸= x)

= P(Xn+1 ̸= x , ... ,Xn+m ̸= x | Xn = y ,Hy = n)Px(Hy = n)

= Py (X1 ̸= x , ... ,Xm ̸= x)Px(Hy = n) .

Taking m → ∞ yields

Py (Hx = ∞)Px(Hy = n) = Px

(
{Hy = n} ∩

⋂
k∈N∗

{Xn+k ̸= x}

)
⩽ Px(Hy = n,Nx < ∞) .

Summing over n ∈ N yields

Py (Hx = ∞)Px(Hy < ∞) ⩽ Px(Hy < ∞,Nx < ∞) ⩽ Px(Nx < ∞) = 0 ,

by Theorem 5.20Theorem 5.20. Since Px(Hy < ∞) > 0 by U(x , y) > 0 and Theorem 5.32Theorem 5.32, we con-
clude Py (Hx = ∞) = 0, which is (5.115.11). In particular, by Theorem 5.32Theorem 5.32 we also have
U(y , x) > 0.

What remains is to show thaty is recurrent. The idea how to show this is to useU(x , y) > 0

and U(y , x) > 0 to transport the question of recurrence of y to the recurrence of x . More
precisely, because U(x , y) > 0 there exists n ∈ N such that Qn(x , y) > 0, and because
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U(y , x) > 0 there exists m ∈ N such that Qm(y , x) > 0. Now for any k ∈ N we have, by
definition of matrix multiplication,

Qn+k+m(y , y) ⩾ Qm(y , x)Qk(x , x)Qn(x , y) ,

which implies

U(y , y) ⩾
∑
k∈N

Qn+k+m(y , y) ⩾ Qm(y , x)

(∑
k∈N

Qk(x , x)

)
Qn(x , y) .

The first and third terms on the right-hand side are strictly positive, while the second
term is simply U(x , x) = ∞, by recurrence of y . We conclude that U(y , y) = ∞ and
hence y is recurrent. □

We conclude this section a notion that describes the connectedness of states in a Markov
chain. Consider the following somewhat silly example. Take two Markov chains on the
disjoint state spaces S1 and S2, with transition matrices Q1 and Q2 respectively. Combine
these two chains into one on the combined the space S = S1 ∪ S2, where the transition
matrix is given by

Q(x , y) =


Q1(x , y) if x , y ∈ S1

Q2(x , y) if x , y ∈ S2

0 otherwise .
These two sub-chains evolve without any knowledge of each other, and one can never go
from S1 to S2. More precisely, U(x , y) = 0 if x and y belong to differents sets S1 and S2.
Such a chain is reducible, in the sense that we can break it apart into two chains without
changing anything in its behaviour. The following definition precludes precisely this kind
of behaviour.

Definition 5.34 A Markov chain is irreducible if U(x , y) > 0 for all x , y ∈ S .

Equivalently, the chain is irreducible if for any x , y ∈ S there exists n ∈ N such that
Qn(x , y) > 0. In other words, irreducibility means that one can go with positive probab-
ility from any state to any other state in finite time.

Remark 5.35 If a chain is irreducible and has a recurrent state, then, by
Theorem 5.33Theorem 5.33, all states are recurrent. In this case we call the whole chain recurrent.

Definition 5.36 Let x and y be recurrent states. We say that they communicate if
U(x , y) > 0.

Note that this definition is unambiguous in the sense that the conditions U(x , y) > 0

and U(y , x) > 0 are equivalent by Theorem 5.33Theorem 5.33. Thus, x and y communicate if and only
if there exists n ∈ N such that Qn(x , y) > 0.
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5.6 Existence and uniqueness of stationary measuresWEEK 10

In this section we give an explicit general formula for a stationary measure of a recurrent
Markov chain, provided that it has a recurrent state. Moreover, under an obviously
necessary irreducibility condition, we show that this measure is the unique stationary
measure. The construction of this measure is very natural: its value at y is simply the
expected number of visits at y during the first excursion from some fixed reference state
x back to x .

Proposition 5.37 Suppose that x ∈ S is recurrent. Then the measure

νx(y) := Ex

[
Hx−1∑
k=0

1Xk=y

]
is stationary. Moreover, νx(y) > 0 if and only if x and y communicate.

Proof The main idea of the proof is to condition on the value z just before the chain
visist y . Since X0 = XHx = x , we find

νx(y) = Ex

[
Hx∑
k=1

1Xk=y

]

=
∑
z∈S

Ex

[
Hx∑
k=1

1Xk−1=z1Xk=y

]
=
∑
z∈S

∑
k∈N∗

Ex

[
1k⩽Hx1Xk−1=z1Xk=y

]
=
∑
z∈S

∑
k∈N∗

Px

(
k ⩽ Hx ,Xk−1 = z ,Xk = y

)
=
∑
z∈S

∑
k∈N∗

Px

(
Xk = y | k ⩽ Hx ,Xk−1 = z

)
Px(k ⩽ Hx ,Xk−1 = z)

=
∑
z∈S

∑
k∈N∗

Q(z , y)Ex

[
1k⩽Hx1Xk−1=z

]
=
∑
z∈S

Q(z , y)Ex

[
Hx∑
k=1

1Xk−1=z

]
=
∑
z∈S

Q(z , y) νx(z) ,

where in the sixth step we used the Markov property from Theorem 5.15Theorem 5.15 combined with
the remark that the event

{k ⩽ Hx} = {X1 ̸= x , ... ,Xk−1 ̸= x}

depends only on the values of X up to time k − 1. We have shown that νx = Qνx , i.e.
that νx is stationary.

To show the final assertion, note first that if x and y do not communicate then Ex [Ny ] =

U(x , y) = 0, and hence νx(y) = 0.

Next, suppose that x and y communicate, and let us show that 0 < νx(y) < ∞. First,
since there exists n ∈ N such that Qn(x , y) > 0, we conclude that

1 = νx(x) =
∑
z∈S

νx(z)Q
n(z , x) ⩾ νx(y)Q

n(y , x) ,
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from which we deduce that νx(y) < ∞. Second, since there exists m ∈ N such that
Qm(y , x) > 0, we conclude that

νx(y) =
∑
z∈S

νx(z)Q
m(z , x) ⩾ νx(x)Q

m(y , x) = Qm(y , x) ,

from which we deduce that νx(y) > 0. □

Is the stationary measure νx unique, i.e. is it independent of the choice of x? In general,
the answer is clearly no. There are two reasons for this, both of which turn out to be “silly”.
First, if the Markov chain is not irreducible, as in the example preceding Theorem 5.34Theorem 5.34,
choosing x in S1 or in S2 will clearly yields two measures that are supported on different
disjoint sets. Let us therefore assume that our chain is irreducible. Even then, because
of the obvious constraint νx(x) = 1 for all x , for each x we get in general a different
measure. However, it turns out that this dependence on x is only via a multiplicative
positive constant. Up to this constant, the measure νx is indeed unique for any irreducible
recurrent chain.

Proposition 5.38 If the Markov chain is irreducible and recurrent, then it has (up to a
multiplicative constant in (0,∞)) a unique stationary measure.

Proof Suppose that µ is a stationary measure. We shall show, by induction on p ∈ N,
that for all x , y ∈ S we have

(5.12) µ(y) ⩾ µ(x)Ex

[
p∧(Hx−1)∑

k=0

1Xk=y

]
.

Note first that if x = y then (5.125.12) is trivially true (with an equality) for all p. Suppose
therefore that x ̸= y and let us show (5.125.12) by induction on p. By stationarity of µ and
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the induction assumption (5.125.12) for p, we get

µ(y) =
∑
z∈S

µ(z)Q(z , y)

⩾ µ(x)
∑
z∈S

Ex

[
p∧(Hx−1)∑

k=0

1Xk=z

]
Q(z , y)

= µ(x)
∑
z∈S

p∑
k=0

Ex

[
1k⩽Hx−11Xk=z

]
Q(z , y)

= µ(x)
∑
z∈S

p∑
k=0

Px

(
k ⩽ Hx − 1,Xk = z

)
Q(z , y)

= µ(x)
∑
z∈S

p∑
k=0

Px

(
k ⩽ Hx − 1,Xk = z

)
Px

(
Xk+1 = y | k ⩽ Hx − 1,Xk = z

)
= µ(x)

∑
z∈S

p∑
k=0

Px

(
Xk+1 = y , k ⩽ Hx − 1,Xk = z

)
= µ(x)

∑
z∈S

p∑
k=0

Ex

[
1Xk+1=y1k⩽Hx−11Xk=z

]
= µ(x)Ex

[
p∧(Hx−1)∑

k=0

1Xk+1=y

]

= µ(x)Ex

[
(p+1)∧Hx∑

k=1

1Xk=y

]

= µ(x)Ex

[
(p+1)∧(Hx−1)∑

k=0

1Xk=y

]
,

where in the fifth step we used the Markov property from Theorem 5.15Theorem 5.15 combined with

{k ⩽ Hx − 1} = {X1 ̸= x , ... ,Xk ̸= x} ,

and in the last step we used that x ̸= y . We have therefore shown (5.125.12) for p + 1, and
the proof of (5.125.12) is hence complete.

Taking p → ∞ in (5.125.12), we get by monotone convergence

µ(y) ⩾ µ(x)Ex

[
Hx−1∑
k=0

1Xk=y

]
= µ(x)νx(y) .

By stationarity of µ and of νx (see Theorem 5.37Theorem 5.37), we therefore find for any n ∈ N∗

µ(x) =
∑
z∈S

µ(z)Qn(z , x) ⩾
∑
z∈S

µ(x)νx(z)Q
n(z , x) = µ(x)νx(x) = µ(x) .

The inequality is therefore an equality, and we have∑
z∈S

µ(z)Qn(z , x) =
∑
z∈S

µ(x)νx(z)Q
n(z , x) .

Since µ(z) ⩾ µ(x)νx(z) we conclude that µ(z) = µ(x)νx(z) whenever Qn(z , x) > 0. By
irreducibility, for any x and z there exists n ∈ N∗ such that Qn(z , x) > 0. We conclude
that

µ = µ(x) νx

for any x . □
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5.7 Positive and null recurrence

It is now easy to show the following remarkable result about recurrent Markov chains.
Recall that recurrent means that Hx < ∞ a.s. under Px . In this case, the expectation
Ex [Hx ] may be finite or infinite, which leads to an imporant refinement of the notion of
recurrence.

Proposition 5.39 Consider an irreducible and recurrent Markov chain.
(i) Either there exists a stationary probability measure µ, in which case Ex [Hx ] =

1
µ(x) for all x ;

(ii) or any stationary measure has infinite total mass, in which case we haveE[Hx ] =

∞ for all x .

Definition 5.40 In case (i)(i) we say that the chain positive recurrent and in case (ii)(ii)
we say that it is null recurrent.

Proof of Theorem 5.39Theorem 5.39 By Theorem 5.38Theorem 5.38, the stationary measure µ is unique up to a
constant, and we can choose it to be either a probability measure (case (i)(i)) or a measure
of infinite total mass (case (ii)(ii)). Either way, for any x ∈ S we can write µ = Cνx for some
constant C depending on x .

In case (i)(i), we have
1 = µ(S) = Cνx(S) ,

which implies C = 1
νx (S)

and hence

µ(x) =
νx(x)

νx(S)
=

1

νx(S)
.

On the other hand, by Fubini’s theorem,

(5.13) νx(S) =
∑
y∈S

Ex

[
Hx−1∑
k=0

1Xk=y

]
= Ex

[
Hx−1∑
k=0

1

]
= Ex [Hx ] ,

as claimed.

In case (ii)(ii), νx(S) = ∞, so that (5.135.13) implies Ex [Hx ] = ∞. □

Clearly, if S is finite then any recurrent chain is always positive recurrent. Thus, null
recurrent chains can only occur on an infinite state space.

Example 5.41 (Examples 5.115.11 and 5.215.21 continued) In Theorem 5.21Theorem 5.21, we saw that
the simple random walk on Zd is recurrent for d ⩽ 2. Moreover, in Theorem 5.23Theorem 5.23,
we saw that that counting measure on Zd is a stationary measure. Since the total
mass of the counting measure on Zd is infinite, we conclude that the simple random
walk on Zd is null recurrent for d ⩽ 2.

Let us suppose that an irreducible Markov chain has a stationary probability measure.
Theorem 5.39Theorem 5.39 tells us that if the chain is recurrent then it is in fact positive recurrent.
What if we do not a priori know that it is recurrent? It turns out that this assumption is in
fact not needed.
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Proposition 5.42 If an irreducible Markov chain has a stationary probability measure,
then it is recurrent (and hence positive recurrent).

Proof Let µ be a stationary probability measure and let y ∈ S satisfy µ(y) > 0. Then,
by Theorem 5.32Theorem 5.32,

µ(S)U(y , y) =
∑
x∈S

µ(x)U(y , y)

⩾
∑
x∈S

µ(x)U(x , y)

=
∑
n∈N

∑
x∈S

µ(x)Qn(x , y)

=
∑
n∈N

µ(y)

= ∞ .

Since µ(S) = 1, we conclude that U(y , y) = ∞, so that y is recurrent. The claim now
follows from Theorem 5.35Theorem 5.35. □

Note that the existence of a stationary measure with infinite mass does not imply anything
about the recurrence of the chain. For instance, in Theorem 5.23Theorem 5.23 we saw that the simple
random walk on Zd has the counting measure as a stationary measure, but it is recurrent
for d ⩽ 2 (see Theorem 5.21Theorem 5.21) and transient for d ⩾ 3.

Now that we have worked hard in deriving the theory behind stationary measures, let us
see some applications.

Propositions 5.395.39 and 5.425.42 gives a very powerful tool for computing Ex [Hx ] whenever it
is finite. Indeed, it suffices to find a stationary probability measure µ, in which case we
know that Ex [Hx ] =

1
µ(x) .

Example 5.43 (Random chess) A rook moves randomly on a chessboard: at each
step, it makes uniformly at random any legal move (motion along rows or columns).
How many moves on average does it take to return to its inital square?
This problem is a random walk on a finite graph in disguise (Examples 5.135.13 and 5.285.28).
The vertex set is the set of squares on the chessboard, S = {1, ... , 8}2. There is an
edge between x = (x1, x2) and y = (y1, y2) if and only if x1 = y1 or x2 = y2, under
the additional constraint x ̸= y . Clearly, the chain is irreducible, and we already
worked out the stationary measure in Theorem 5.28Theorem 5.28: µ(x) = CDx , where C > 0 is a
normalization constant that ensures that µ is a probability measure. Since a rook
can move from any square to any of 14 squares, we find that Dx = 14 for all x ∈ S .
We have the condition

1 =
∑
x∈S

µ(x) = C · 14 · 64 ,

from which we deduce that C = 1
14·64 , and therefore

Ex [Hx ] =
1

µ(x)
=

1

CDx
=

14 · 64
14

= 64 .

Suppose now that instead of a rook we play with a king, which can move to any of
the eight squares sharing an edge or a corner with the original square. In this case,
Dx depends on x . We consider three types of squares:

(c) corner: Dx = 3
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(e) edge but no corner: Dx = 5

(b) neither edge nor corner: Dx = 8.
There are 4 squares of kind (c), 24 squares of kind (e), and 36 squares of kind (d).
Thus we find

1 =
∑
x∈S

µ(x) = C (4 · 3 + 24 · 5 + 36 · 8) = C · 420.

We conclude that Ex [Hx ] is 420
3 = 140 for x of kind (c), 420

5 = 84 for x of kind (e), and
420
8 = 52.5 for x of kind (b).

Example 5.44 (Asymmetric random walk onN) Let us consider a random walk onN.
It is asymmetric in the sense that the probability p of taking a step to the right may
be different from the probability 1− p of taking a step to the left. Unlike the random
walk on Z studied in Examples 5.115.11 and 5.215.21, this walk has a reflecting barrier at 0.
The precise definition is as follows. Let 0 < p < 1. For x ∈ N∗ set

Q(x , x + 1) := p , Q(x , x − 1) := 1− p ,

and moreover Q(0, 1) = 1. (All other entries of Q vanish.) It is clear that Q is a
stochastic matrix. It describes a p-asymmetric random walk on N, which bounces
off 0 back to the right whenever it hits it.
This chain is clearly irreducible. Let us look for a stationary measure. As usual, it is
much easier to look for a reversible measure. The detailed balance equations from
Theorem 5.24Theorem 5.24 read

µ(x)p = µ(x + 1)(1− p) for x ⩾ 1

µ(0) = µ(1)(1− p) ,

which cen be easily solved by induction to yield

(5.14) µ(x) = C

{
1− p if x = 0(

p
1−p

)x−1 if x ⩾ 1 ,

where C is a normalization constant. For p < 1
2 the measure µ is finite (and hence

can be chosen to be a probability measure). By Theorem 5.42Theorem 5.42, we conclude that for
p < 1

2 the chain is positive recurrent.
What about p ⩾ 1

2? In that case the stationary measure is infinite, and we cannot
conclude anything about recurrence or transience from it (all that we can say is that
the chain is not positive recurrent).
Instead, we shall use a coupling argument that relates, or couples, the chain Xn to
a suitable random walk on Z, which can be more easily analysed. We consider the
cases p = 1

2 and p > 1
2 separately.

p = 1
2 Let (Yn) be the simple random walk on Z (see Theorem 5.11Theorem 5.11). Then we claim that
Xn := |Yn| is a simple random walk on N with transition matrix Q . To show this,
let y , x0, ... , xn ∈ S and abbreviate

B := {|Y0| = x0, ... , |Yn−1| = xn−1} .

Consider first the case xn = 0, so that, by the Markov property from Theorem 5.15Theorem 5.15,

P(|Yn+1| = y | |Yn| = xn, ... , |Y0| = x0)

= P(|Yn+1| = y | Yn = 0,B)

= 1y=1

= Q(0, y) ,
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as desired.
Next, if xn ̸= 0 we get

P(|Yn+1| = y | |Yn| = xn, ... , |Y0| = x0)

= P(|Yn+1| = y | |Yn| = xn,B)

= P(|Yn+1| = y | Yn = xn,B)
P(Yn = xn,B)

P(|Yn| = xn,B)

+ P(|Yn+1| = y | Yn = −xn,B)
P(Yn = −xn,B)

P(|Yn| = xn,B)
.

The first factor of each term on the right-hand side is 1
21|y−xn|=1 = Q(xn, y) by

Theorem 5.15Theorem 5.15 and the definition of Yn (note that this is only correct because
p = 1

2 ). Thus we conclude that

P(|Yn+1| = y | |Yn| = xn, ... , |Y0| = x0)

= Q(xn, y)

(
P(Yn = xn,B)

P(|Yn| = xn,B)
+

P(Yn = −xn,B)

P(|Yn| = xn,B)

)
= Q(xn, y) ,

as desired.
We conclude that

E0

[∑
n∈N

1Xn=0

]
= E0

[∑
n∈N

1|Yn|=0

]
= E0

[∑
n∈N

1Yn=0

]
= ∞ ,

where the last step follows from the recurrence of the simple random walk on
Z (Theorem 5.21Theorem 5.21). Hence, for p = 1

2 the chain (Xn) is recurrent. Since it has a
stationary measure (5.145.14) of infinite total mass, from Theorem 5.39Theorem 5.39 we conclude
that it is null recurrent.

p > 1
2 For p > 1

2 , the previous coupling argument does not work because of the lack of
symmetry. However, a somewhat different coupling to the asymmetric random
walk on Z does work. Let (Yn) be the asymmetric random walk on Z starting from
0 from Theorem 5.27Theorem 5.27. It has the transition matrix

P(Yn+1 = y | Yn = x) = p1y=x+1 + (1− p)1y=x−1 .

The idea of the argument is to define a walk Xn on N in terms of Yn by imposing
that Xn takes a step to the right whenever Yn does, and Xn takes a step to the left
whenever Xn does, unless Xn = 0, in which case Xn takes a step to the right even
if Yn takes a step to the left.

More formally, X0 := 0 and

(5.15) Xn+1 := Xn +

{
Yn+1 − Yn if Xn > 0

1 if Xn = 0 .

From the definition and a simple induction argument, we get that

(5.16) Xn ⩾ Yn , ∀n ∈ N .

Moreover, we claim that (Xn) thus defined is a Markov chain with transition matrix
Q . To show this, let y , x0, ... , xn ∈ S and abbreviate

B := {X0 = x0, ... ,Xn = xn} .

By the definition (5.155.15), the vector (X0, ... ,Xn) is a deterministic function of the
vector (Y0, ... ,Yn), and hence we can also writeB = {(Y0, ... ,Yn) ∈ A} for some
set A ⊂ Sn+1. Now if xn = 0 we have

P(Xn+1 = y | Xn = xn, ... ,X0 = x0) = 1y=1 = Q(0, y) ,
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as desired. On the other hand, if xn > 0, we get

P(Xn+1 = y | Xn = xn, ... ,X0 = x0)

= P(Xn+1 = y | B)
= P(Yn+1 = Yn + y − xn | B)

=
∑
z∈S

P(Yn+1 = z + y − xn | Yn = z ,B)
P(Yn = z ,B)

P(B)

=
∑
z∈S

Q(xn, y)
P(Yn = z ,B)

P(B)

= Q(xn, y) ,

where in the fourth step we used the Markov property Theorem 5.15Theorem 5.15 for the Markov
chain (Yn). We conclude that (Xn) is indeed a Markov chain with transition matrix
Q .

To conclude the analysis, we note that the strong law of large numbers from
Theorem 3.27Theorem 3.27 implies that

lim
n→∞

Yn

n
= 2p − 1

almost surely, because each step of the random walk (Yn) has expectationE[Y1−
Y0] = 2p − 1. Since 2p − 1 > 0, we conclude that, almost surely, Yn → +∞ as
n → ∞. From (5.165.16) we decude that almost surely Xn → +∞ as n → ∞, and
therefore (Xn) is transient.

We summarise: the random walk on N is
• positive recurrent for p < 1

2 ,
• null recurrent for p = 1

2 ,
• transient for p > 1

2 .
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5.8 Asymptotic behaviour WEEK 11

In this section we study the following important question. Suppose that we take an
irreducible and recurrent Markov chain. In Section 5.6Section 5.6 we saw that the chain has a unique
stationary measure µ. Let f be a nonnegative function on S . How are the time average∑n

i=0 f (Xi ) and the space average
∫
f dµ related? The following result says that for large

n they coincide almost surely (up to a rescaling), no matter where the chain starts from.
Such results are usually known as ergodic theorems.

Proposition 5.45 Consider an irreducible and recurrent Markov chain with stationary
measure µ. Let f , g : S → [0,∞) such that 0 <

∫
g dµ < ∞. Then, for all x ∈ S , we

have Px -a.s. ∑n−1
i=0 f (Xi )∑n−1
i=0 g(Xi )

−→
∫
f dµ∫
g dµ

as n → ∞.

As a consequence (taking g = 1), if the chain is positive recurrent, i.e. it has a stationary
probability measure, the space average can be computed as the almost surely limit of
the time average.

Corollary 5.46 If the Markov chain is irreducible and positive recurrent with station-
ary probability measure µ, then, for all x ∈ S , we have Px -a.s.

(5.17)
1

n

n−1∑
i=0

f (Xi ) −→
∫

f dµ

as n → ∞.

Proof of Theorem 5.45Theorem 5.45 First, by monotone approximation, we may suppose that
∫
f dµ <

∞. (Otherwise, consider a sequence of functions fm supported on finite subsets of S , that
converges from below to f , and use the monotone convergence theorem.)

The main tool of the proof is the sequence of random times Tk , corresponding to the kth
return of the chain to x . That is,

T0 := 0 , T1 := Hx = inf{n > 0 : Xn = x} , Tk+1 := inf{n > Tk : Xn = x} .

Since (Xn) is recurrent, Tk < ∞ a.s. for all k ∈ N.

For k ∈ N we define the sum over the kth excursion,

Zk :=

Tk+1−1∑
n=Tk

f (Xn) .

The main observation is that (Zk)k∈N are independent identically distributed random
variables. Intuitively, this is clear from the Markov property, since each excursion from
x back to x is a fresh start, the chain forgetting everything about its past except that it
starts at x again.
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More formally, by Theorem 3.12Theorem 3.12, it suffices to show that for any bounded and measureable
functions g0, ... , gk we have

(5.18) Ex

[
k∏

i=0

gi (Zi )

]
=

k∏
i=0

Ex [gi (Z0)] .

We show (5.185.18) by induction on k . The case k = 0 is obvious. For the induction step, we
condition on Tk and Tk+1 to get

Ex

[
k∏

i=0

gi (Zi )

]

=
∑

m,n∈N∗

Ex

[
gk(Zk)1Tk+1=n+m1Tk=n

k−1∏
i=0

gi (Zi )

]

=
∑

m,n∈N∗

Ex

[
gk

(n+m−1∑
l=n

f (Xl)

)
1Tk+1=n+m1Tk=n

k−1∏
i=0

gi (Zi )

∣∣∣∣Xn = x

]
Px(Xn = x)

=
∑

m,n∈N∗

Ex

[
gk

(m−1∑
l=0

f (Xl)

)
1Hx=m

]
Ex

[
1Tk=n

k−1∏
i=0

gi (Zi )

∣∣∣∣Xn = x

]
Px(Xn = x)

=
∑

m,n∈N∗

Ex

[
gk(Z0)1Hx=m

]
Ex

[
1Tk=n

k−1∏
i=0

gi (Zi )

]

= Ex [gk(Z0)]Ex

[
k−1∏
i=0

gi (Zi )

]
,

where in the third step we used Theorem 5.16Theorem 5.16 combined with the observation that on
the event {Tk = n} we have

{Tk+1 = n +m} = {Xn+1 ̸= x , ... ,Xn+m−1 ̸= x ,Xn+m = x} ,

and in the fourth step we used that Xn = x on the event {Tk = n}. Now (5.185.18) follows by
induction.

Next, by Propositions 5.375.37 and 5.385.38, we have µ = µ(x)νx and νx(x) = 1. Hence,

Ex [Z0] = Ex

[
Hx−1∑
n=0

∑
y∈S

f (y)1Xn=y

]
=
∑
y∈S

f (y)νx(y) =
1

µ(x)

∫
f dµ .

By independence of the family (Zk)k∈N and the law of large numbers22 we therefore
conclude that

(5.19)
1

n

n−1∑
k=0

Zk −→ 1

µ(x)

∫
f dµ

Px -a.s.

What remains is to go from such an average over an integer multiple of excursions to an
average over a given time. To that end, for n ∈ N we denote by Nx(n) the number of
returns to x before time n, i.e.

TNx (n) ⩽ n < TNx (n)+1 .

Then we clearly have
TNx (n)−1∑

i=0

f (Xi ) ⩽
n−1∑
i=0

f (Xi ) ⩽

TNx (n)+1−1∑
i=0

f (Xi ) ,

2In general we need the optimal version from Theorem A.5Theorem A.5, since, as just shown, we only know that Z0 has a
finite expectation, i.e. is in L1.
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i.e.
Nx (n)−1∑

k=0

Zk ⩽
n−1∑
i=0

f (Xi ) ⩽
Nx (n)∑
k=0

Zk .

Dividing by Nx(n) and using (5.195.19) yields

1

Nx(n)

n−1∑
i=0

f (Xi ) −→
1

µ(x)

∫
f dµ

Px -a.s.

The claim now follows by replacing f with g and dividing the two results. □

Remark 5.47 From Theorem 5.45Theorem 5.45 and Theorem 5.46Theorem 5.46, we deduce by choosing
f (y) = 1x=y that for an irreducible positive recurrent chain with arbitrary initial
distribution and stationary probability distribution µ we have a.s. for all x ∈ S

1

n

n−1∑
i=0

1Xk=x −→ µ(x)

as n → ∞. (A similar argument shows that if the chain is null recurrent then the
limit is 0.) Taking the expectation and using dominated convergence yields

1

n

n−1∑
i=0

P(Xk = x) −→ µ(x) .

In words, the time averages of the laws converge to µ. It is natural to ask whether
this holds without averaging over time: does the law of Xn converge to µ for any
irreducible positive recurrent chain? In other words, does the measure µn(x) :=

P(Xn = x) converge to µ in some sense?
It is easy to see that in general the answer is no. Consider the very simple example
S = {1, 2} and Q =

(
0 1
1 0

)
. This chain is clearly irreducible and positive recurrent.

Taking for instance an initial distribution δ2, we clearly have

P(Xn = x) = 1x−n is even .

In other words, the chain jumps between 1 and 2.
The problem with the above example is periodicity: the chain has a period of two,
meaning that one can only return to the initial state in an even number of steps.
It turns out that if in addition we impose that the chain is aperiodic, i.e. has no
nontrivial period, then µn indeed converges to µ in the total variation distance. We
shall not go into further details in this course.

5.9 Markov chain Monte Carlo and the Metropolis–Hastings
algorithm

We conclude this chapter with a remarkable application of the theory of Markov chains.
It is the original and most important algorithm in so-called Markov chain Monte Carlo
(often abbreviated as MCMC). MCMC methods are some of the most important numerical
algorithms ever devised, and they are used in countless applications, from fundamental
sciences to economics and weather forecasts.

Suppose that we are given a large finite setS and a probability measureµ onS . We would
like to compute the average of some function f , i.e. find

∫
f dµ. In most applications
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of interest the set S is huge and the measure µ might also be hard to evaluate, thus
rendering any simple-minded numerical evaluation of the integral hopeless.

The idea behind Monte Carlo methods is to draw a sample of random variables X0,X1, ...

that on average reproduce the law µ, and hence we can hope that

(5.20)
1

n

n−1∑
i=0

f (Xi ) −→
∫

f dµ

as n → ∞. A simple way to guarantee convergence in (5.205.20) is to take the variables Xn

to be independent with law µ, in which case (5.205.20) clearly holds a.s. by the law of large
numbers. However, in practice, even this is often either extremely difficult or impossible.
Let us consider a typical and celebrated example.

Example 5.48 (Ising model) The Ising model is the simplest and most famous model
of ferromagnetism, the remarkable property of certain materials to exhibit spontan-
eous magnetisation (as used e.g. in fridge magnets). Despite being over a hundred
years old, it is still actively studied and many important questions about it remain
unsolved. Although seemingly simple, it is known to exhibit a remarkably intricate
behaviour, in particular a host of phase transitions – abrupt transitions from one
phase of matter to another – which can be studied theoretically (both analytically
and numerically).
Let (V ,E ) be a finite connected graph on the vertex set V . Typically, one should
think of V being a subset of the lattice Zd such as V = {0, ... , L − 1}d , and two
elements u, v ∈ V are adjacent if and only if they are nearest neighbours. At every
vertex v sits a so-called spin, which can point up +1 or down −1. More formally,
we consider a spin configuration x = (xv )v∈V ∈ S := {±1}V . With each spin
configuration x ∈ S we associate the energy

H(x) := −J
∑

{u,v}∈E

xuxv −
∑
v∈V

hvxv ,

whereh ∈ RV is called an external magnetic field. (The physical intuition behind this
definition is that, if J > 0, neighbouring spins like to align: each pair of neighbouring
spins that are aligned lowers the energy by 1, while each pair of neighbouring spins
that point in opposite directions increases the energy by 1. The material is called
ferromagnetic. If J < 0 the the opposite behaviour is true, and neighbouring spins
favour opposite orientations. The material is called antiferromagnetic. An external
magnetic field introduces a bias in the orientation favoured by the spins.)
The probability of the spin configuration σ is given by the Boltzmann-Gibbs distribu-
tion from statistical mechanics:

µ(x) :=
1

Z
e−βH(x) , Z :=

∑
x∈S

e−βH(x) ,

where β > 0 is a fixed parameter that has the physical interpretation of the inverse
temperature. (The physical intuition behind this definition is that configurations of
low energy occur with higher probability than configurations of high energy. The
stronger this imbalance between high and low energies is, the lower the temperature
of the system. In fact, this parameter β can be regarded as one possible mathemat-
ically rigorous definition of the rather mysterious physical notion of temperature in
statistical mechanics.)
One is typically interested in quantities such as the magnetisation at a given vertex
v ∈ V ,

(5.21)
∫

xv µ(dx) ,
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as well as the two-point correlation function at two vertices u, v ,

(5.22)
∫

xu xv µ(dx) ,

The size of the setS is 2|V |, which means that any direct numerical evaluation of such
an integral is utterly hopeless for large V , no matter the computing power at one’s
disposal. Hence, some kind of Monte Carlo is required for the numerical evaluation
of (5.215.21) and (5.225.22). However, there is no known effective way of generating random
samples X with law µ.

Instead of trying to generating independent samples with law µ, which is typically im-
possible, the remarkable idea is the following.

Definition 5.49 (MCMC) Let µ be a probability measure on a finite set S . In Markov
chain Monte Carlo, one constructs an irreducible Markov chain with stationary meas-
ure µ.

If we have constructed such a chain, then we can use it to sample the measure µ through
(5.175.17), choosing a large enough n to obtain a good enough aproximation. (Indeed, by
Theorem 5.42Theorem 5.42, the chain is positive recurrent and we can apply Theorem 5.46Theorem 5.46.)

How to construct such a chain? The original and most famous, still widely used, algorithm
is the following.

Definition 5.50 (Metropolis-Hastings algorithm) Let µ be a probability measure on
a finite set S . Suppose that µ(x) = Cρ(x) for some constant C > 0 (which does not
need to be determined) and a known function ρ > 0.

(i) Choose the initial state X0 in some arbitrary fashion.
(ii) Choose a stochastic matrix G on S satisfying the following conditions:

G (x , x) = 0 for all x ; the associated Markov chain is irreducible; G (x , y) > 0 if
and only if G (y , x) > 0. This matrix is called the proposal function.

(iii) Construct the chain by defining inductively Xn+1 as a function of x = Xn as
follows.
• Choose a candidate y randomly according to the law G (x , ·).
• Calculate the acceptance ratio

(5.23) A(x , y) := 1 ∧ ρ(y)G (y , x)

ρ(x)G (x , y)
.

• SetXn+1 := y with probabilityA(x , y) (acceptance of proposal) orXn+1 := x

with probability 1− A(x , y) (rejection of proposal).

In practice, the latter step is performed by drawing a random variable U with uniform
law on [0, 1], and then setting

Xn+1 :=

{
y if U ⩽ A(x , y)

x otherwise .

Explicitly, the transition matrix Q of the Metropolis-Hastings chain is

Q(x , y) =

{
G (x , y)A(x , y) if x ̸= y

1−
∑

z∈S G (x , z)A(x , z) if x = y .
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For many applications, it is crucial that the Metropolis-Hastings algorithm only requires
the knowledge of ρ(x) and not of the constant C (and hence of the actual measure µ);
the latter can be prohibitively difficult to determine, while ρ is often known and simple.
See for instance Theorem 5.52Theorem 5.52 below.

Proposition 5.51 The Metropolis-Hastings algorithm is an instance of MCMC: it
defines an irreducible Markov chain with reversible measure µ.

Proof Let us first show that the chain is irreducible. By the irreducibility assumption
on G , for any two x , y ∈ S there exists n such that G n(x , y) > 0. Since A(x , y) > 0

whenever G (x , y) > 0, by assumption on ρ and G , we hence conclude that we also have
Qn(x , y) > 0, and the chain is irreducible.

What remains is to verify that µ is reversible. The detailed balance equations (5.95.9) for the
matrix Q read

µ(x)Q(x , y) = µ(y)Q(y , x)

for all x ̸= y , which are equivalently writtten as

ρ(x)G (x , y)A(x , y) = ρ(y)G (y , x)A(y , x)

for all x ̸= y . This is equivalent to the condition

(5.24)
A(x , y)

A(y , x)
=

ρ(y)G (y , x)

ρ(x)G (x , y)

for all x , y satisfying G (x , y) > 0. For the choice (5.235.23), we always have A(x , y) = 1 or
A(y , x) = 1, and hence it satisfies (5.245.24). □

It is common to choose the proposal function to be symmetric, G (x , y) = G (y , x), in
which case the acceptance ratio (5.235.23) simplifies to

(5.25) A(x , y) = 1 ∧ ρ(y)

ρ(x)
.

Example 5.52 (Theorem 5.48Theorem 5.48 continued) Let us apply the Metropolis-Hastings al-
gorithm to the Ising model. In this case, we have

ρ(x) = e−βH(x) .

Note that computing the constant C = 1
Z (and hence determining the measure µ) is

practially impossible (it is a sum over 2|V | terms), but the function ρ itself is simple
and easy to compute numerically.
We have a lot of freedom in choosing the proposal function, and different choices
lead to different versions of the algorithm. We shall consider the simplest choice:
choose a vertex v uniformly at random and flip the corresponding spin. That is, we
map x 7→ x(v), where x(v) is the configuration of spins obtained from x by flipping
the spin at v : x(v)u = (−1)δuv xu . More formally,

G (x , y) =

{
1

|V | if y = x(v) for some v ∈ V

0 otherwise .

It is easy to check that G is irreducible and symmetric and satisfies G (x , x) = 0 for
all x . The acceptance ratio (5.255.25) is

A(x , x(v)) = 1 ∧ eβH(x)−βH(x(v)) = 1 ∧ e−2βJ
∑

u∈V 1{u,v}∈E xuxv−2βhv xv .

Note that the right-hand side is trivial to evaluate numerically, as it involves just a
sum over over the neighbours of v .

88



CHAPTER 6

Introduction to statistics WEEK 12

In this final chapter we give an introduction to statistics. The goal of statistics is of an
entirely different kind from that of probability, and indeed of any area of mathematics. In
contrast to mathematics, which can be regarded as reasoning based on axioms and logic,
entirely unconcerned with any physical reality, statistics is an empirical and pragmatic
science whose goal is to understand the real world by analysing data from empirical
observations. Very briefly, this difference can be summarised as follows.

• In probability, one is given a probability measure and random variables, and one
studies their behaviour.

• In statistics, one is given a collection of observations obtained by repeating a random
experiment, and one wishes to determine the law of the underlying random variable.

In practice, as in this course, the study of statistics is often combined with that of probab-
ility because it relies heavily on the tools and language of probability.

6.1 Estimators

We suppose that the observations are obtained from repeated experiments that are
performed independently under the same conditions. This leads to the following notion.

Definition 6.1 An n-sample drawn from P is a family X1, ... ,Xn of independent
random variables with law P.

In parametric statistics, we suppose that the probability measure P ≡ Pθ depends on a
parameter θ in some parameter set Θ. The goal is to estimate the parameter θ ∈ Θ from
an n-sample drawn from Pθ. Put differently, the rules of the game are the following.

• Known: an n-sample (the observation).
• Unknown: the parameter θ of Pθ.

The choice of the parametrisation θ 7→ Pθ is a subjective decision to be made by the stat-
istician, depending on various constraints and her insight into the nature of the questions
she is investigating. As such, for a given question and n-sample of observations, there is
usually no right or wrong parametrisation, although there are certainly reasonable and
less reasonable choices. One has to appeal to common sense. Here are some examples
along with reasonable choices of Pθ.
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Example 6.2
• A yes/no opinion poll among n individuals. We choose Pθ to the Bernoulli distri-

bution on {0, 1} with parameter θ ∈ [0, 1] = Θ.
• The lifetime of an appliance. We choose Pθ to be the exponential distribution on

[0,∞) with parameter θ ∈ (0,∞) = Θ.
• The size of an individual in a homogeneous population. We choose Pθ to be the

normal distribution with meanm and varianceσ2, i.e. θ = (m,σ2) ∈ R×[0,∞) =

Θ.

We seek to determine the parameter θ from the observed n-sample, or, more generally,
any function f (θ) of the parameter.

Definition 6.3
(i) A statistic is a measurable function of an n-sample.

(ii) Let f be a function on Θ. An estimator of f (θ) is a statistic with values in f (Θ).

Note that an estimator can only depend on the sample (which is observable) and not on
the parameter θ (which is unknown). It is customary in statistics to denote estimators with
decorated symbols, such as f̂ , f̃ , f̄ , to distinguish them from (unknown) deterministic
functions of θ.

A good estimator f̂ = F (X1, ... ,Xn) of f (θ) should with high probability be close to f (θ)

provided that the underlying n-sample was drawn from Pθ. This leads to the following
condition.

Definition 6.4 For each n ∈ N∗, let f̂n = Fn(X1, ... ,Xn) be an estimator of f (θ)
depending on an n-sample X1, ... ,Xn drawn from Pθ. The family of estimators f̂n is
called consistent if for all θ ∈ Θ we have

f̂n
P−→ f (θ)

as n → ∞.

Example 6.5 (Empirical mean) The empirical mean

X̄n :=
1

n
(X1 + · · ·+ Xn)

is a consistent estimator of the mean f (θ) := Eθ[X1], by the law of large numbers.

A classical characteristic of an estimator is its bias.

Definition 6.6 The bias of an estimator f̂ of f (θ) is Eθ[f̂ ]− f (θ). If the bias is zero
for all θ ∈ Θ, the estimator is called unbiased. Otherwise, it is called biased.

Being unbiased can be a desirable property for an estimator. However, in practice it is not
always a good idea to insist on a lack bias: it can indeed happen that a biased estimator
performs better than an unbiased one. We shall examples of this later on. What one
almost always will require, however, is that for large values of n the bias tends to zero.
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Definition 6.7 A family of estimators f̂n of t(θ) is asymptotically unbiased if for all
θ ∈ Θ we have

lim
n→∞

Eθ[f̂n] = f (θ) .

Example 6.8 (Theorem 6.5Theorem 6.5 continued) The empirical mean X̄n from Theorem 6.5Theorem 6.5 is
an unbiased estimator of the mean f (θ) := Eθ[X1].

Example 6.9 (Empirical variance) We would like to estimate the variance

σ2 = f (θ) := Varθ(X1) = Eθ[X
2
1 ]− Eθ[X1]

2

of the sample. A natural way to come with an estimator is to replace Eθ with an
empirical average over the n-sample:

σ̃2 :=
1

n
(X 2

1 + · · ·+ X 2
n )−

(
1

n
(X1 + · · ·+ Xn)

)2

.

By the law of large numbers, σ̃2 is a consistent estimator of σ2.
Is it biased? Let us find out:

E[σ̃2] = Eθ[X
2
1 ]−

1

n
Eθ[X

2
1 ]−

n − 1

n
Eθ[X1]

2 =
n − 1

n
σ2 ,

so that the bias is −σ2/n. Hence, σ̃2 is biased bu asymptotically unbiased. The bias
can be removed by considering the slightly modified estimator

S2
n :=

n

n − 1
σ̃2 =

1

n − 1

n∑
i=1

(Xi − X̄n)
2 ,

which is usually called the empirical variance. It is a consistent and unbiased estim-
ator of the variance.

We saw a few examples of estimators that we defined essentially by guessing. In general,
how does one find estimators? There is no general formula or algorithm, but there are
some general recipies that are a good place to start. We discuss the two most common
methods: the method of moments and the maximum likelihood estimator.

We have already used the method of moments in the Examples 6.56.5 and 6.96.9. In general, for
f (θ) = Eθ[g(X1)] for some function g , we can estimate f (θ) using the estimator

f̂ :=
1

n
(g(X1) + · · ·+ g(Xn)) ,

which is unbiased and consistent (by the law of large numbers). A classical choice, giving
the method its name, is g(x) := x r for some exponent r ∈ R, which allows to estimate
θ = h(Eθ[X

r
1 ]) using the estimator

θ̂ := h

(
1

n
(X r

1 + · · ·+ X r
n )

)
.

This estimator is consistent by the law of large numbers, but in general biased.

Example 6.10 If Pθ is the exponential law with parameter θ, then we have Eθ[X1] =

1/θ, and therefore
θ̂ = 1/X̄n

is a consistent estimator of θ.
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The maximum likelihood estimator is somewhat more subtle and based on a simple but
powerful idea: given a realisation x1, ... , xn of an n-sample, we look for θ ∈ Θ for which
the probability of observing x1, ... , xn is the highest. Informally, we look for the θ that
best explains the observed sample. We shall construct an estimator based on this idea.
For its definition, it is necessary to distinguish the discrete and continuous cases.

Definition 6.11 (Likelihood)
(i) Let Pθ discrete. The likelihood at x1, ... , xn is the function

L(θ; x1, ... , xn) :=
n∏

i=1

Pθ(Xi = xi ) .

(ii) LetPθ(dx) = fθ(x) dx be continuous with density fθ. The likelihood at x1, ... , xn
is the function

L(θ; x1, ... , xn) :=
n∏

i=1

fθ(xi ) .

In each case, L should be regarded as a function of θ, with x1, ... , xn acting as fixed
parameters.

Definition 6.12 (Maximum likelihood estimator) The maximum likelihood estimator
of θ is the estimator

θ̂ := argmaxθ L(θ;X1, ... ,Xn) ,

where argmax denotes theaa value of θ ∈ Θ at which the function L attains its max-
imum.
aNote that such a maximum might not exist or, if it exists, it might not be unique. Hence, the operator
argmax is rarely used in mathematics, but it is very useful in statistics, where such questions of existence
and uniqueness are always understood to be solved by common sense (e.g. choosing one of the maxima
in some prescribed way in case the maximum is not unique.)

Example 6.13 If Pθ is the exponential law with parameter θ and x1, ... , xn ⩾ 0 is a
realisation of an n-sample, then

L(θ; x1, ... , xn) =
n∏

i=1

θe−θxi .

The maximising argument is easily determined by differentiationaa in θ:

θ̂ =
n

X1 + · · ·+ Xn
,

which coincides with the estimator from Theorem 6.10Theorem 6.10 found using the method of
moments.
aHere, and in many other situations, the following remark is helpful: because the function log is strictly
increasing, maximising L is equivalent to maximising log L. The derivative of the latter is often easier to
compute. For this reason, one often consider the log-likelihood instead of the likelihood.

Example 6.14 If Pθ is the uniform law on [0, θ] and x1, ... , xn ⩾ 0 is a realisation of
an n-sample, then

L(θ; x1, ... , xn) =
1

θn
1x1⩽θ · · · 1xn⩽θ =

1

θn
1maxixi⩽θ .
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The maximum likelihood estimator is therefore

θ̂ = max
i

Xi .

We conclude this section by quantifying the quality of an estimator. Since one can often
find several estimators for the same quantity, it is important to be able to quantify their
accuracy and compare them.

Definition 6.15 Let f̂ be an estimator of f (θ). The quadratic risk of f̂ is

Rf̂ (θ) := Eθ[(f̂ − f (θ))2] .

Remark 6.16 By writing f̂ − f (θ) = f̂ − Eθ[f̂ ] + Eθ[f̂ ] − f (θ) and expanding in
Theorem 6.15Theorem 6.15, we obtain

(6.1) Rf̂ (θ) = Varθ(f̂ ) + (Eθ[f̂ ]− f (θ))2 .

In particular, if f̂ is unbiased then

Rf̂ (θ) = Varθ(f̂ ) .

Definition 6.17 If f̂ and f̃ are estimators of f (θ), we say that f̂ is better than f̃ if, for
all θ ∈ Θ,

Rf̂ (θ) ⩽ Rf̃ (θ) .

The relation (6.16.1) shows that the quadratic risk can be viewed as a sum of the variance
and the square of the bias. In general, in order to minimise the quadratic risk, it can
sometimes be advantageous to introduce a bias provided this sufficiently reduces the
variance.

Example 6.18 (Theorem 6.14Theorem 6.14 continued) Let Pθ be the uniform law on [0, θ]. The
estimator

θ̄ =
2

n
(X1 + · · ·+ Xn)

is an unbiased estimator of θ. Its quadratic risk is

(6.2) Rθ̄(θ) =
4

n
Varθ(X1) =

θ2

3n
.

Let us compare θ̄ to the maximum likelihood estimator θ̂ = maxi Xi from
Theorem 6.14Theorem 6.14. Clearly, θ̂ is biased because Eθ[θ̂] < θ. To compute the quadratic risk
of θ̂, let us first compute its cumulative distribution function

Pθ(θ̂ ⩽ x) = Pθ(X1 ⩽ x , ... ,Xn ⩽ x) = P(X1 ⩽ x)n =

(
x

θ

)n

for x ⩽ θ. Differentiating in x , we deduce that the density of the law of θ̂ is

fθ̂(x) =
n

θn
xn−110⩽x⩽θ .

We deduce that
Eθ[θ̂] =

∫
x fθ̂(x) dx =

n

n + 1
θ ,
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so that θ̂ is asymptotically unbiased. For the quadratic risk, we obtain

(6.3) Rθ̂(θ) =

∫
(x − θ)2 fθ̂(x) dx =

2θ

(n + 1)(n + 2)
.

Comparing (6.26.2) and (6.36.3), we conclude: for n ⩾ 3 the estimator θ̂ is better than θ̄,
despite being biased. (Note that the bias of θ̂ can be removed by considering the
estimator n+1

n θ̂.)

6.2 Confidence intervals

Suppose that we have a sample drawn from Pθ and we wish to estimate f (θ) ∈ R. Often
one not only wishes to estimate f (θ) but one would also like to have a notion of how
likely it is that this estimate is close to the true value f (θ). Thus, we seek an interval I ,
depending only on the sample (and hence random), such that we know that f (θ) ∈ I

with a certain confidence.

Definition 6.19 (Confidence interval) Let 0 < γ < 1. Let X1, ... ,Xn be an n-sample
drawn from Pθ. Let f : Θ → R. An interval I = I (X1, ... ,Xn) is a confidence interval
for f (θ) with confidence level γ if

Pθ(f (θ) ∈ I ) ⩾ γ , ∀θ ∈ Θ .

If there is equality, we call the I a strictaa confidence interval.

aWe note that there is no universal convention in the literature regarding this terminology, and both ⩾

and = are commonly used in the definition of confidence intervals.

Example 6.20 Suppose that Pθ is the normal distribution with mean θ and variance
one. Let

I := [X̄n − a, X̄n + a] .

We know that
√
n(X̄n − a) =: Z is normal with mean zero and variance one. The

condition of a strict confidence interval for θ reads

γ = Pθ(θ ∈ I ) = Pθ(|X̄n − a| ⩽ a) = P(|Z | ⩽ a
√
n) .

The right-hand side is an explicit function of the standard normal distribution can
be easily computed numerically. For instance, for the confidence level γ = 90% we
have

I =

[
X̄n −

1.64√
n
, X̄n +

1.64√
n

]
.

Example 6.21 Suppose that Pθ is the uniform distribution on [0, θ]. We use the
estimator θ̂ = maxi Xi from Theorem 6.14Theorem 6.14. Clearly, θ̂ ⩽ θ. Consider the interval

I = [θ̂,C θ̂]

for C > 1. The condition of a strict confidence interval for θ reads

γ = Pθ(θ ∈ I ) = Pθ(θ ⩽ C θ̂) = 1− Pθ

(
θ̂ <

θ

C

)
= 1− 1

C n
,
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where in the last step we used the law of θ̂ computed in Theorem 6.18Theorem 6.18. We conclude
that the strict confidence interval with confidence level γ is

I =

[
θ̂,

(
1

1− γ

)1/n

θ̂

]
.

In the previous examples, thanks to a rather special form of the lawPθ, we could compute
the probability Pθ(f (θ) ∈ I ) exactly, and hence obtain stric confidence intervals. In
general, such an exact computation is not possible and one is reduced to finding non-
strict confidence intervals.

Example 6.22 Suppose that Pθ has variance Eθ[X
2
1 ] = σ2 and expectation µ =

Eθ[X
2
1 ]. We would like to estimate µ. As an estimator, we use the empirical mean

X̄n. From Chebyshev’s inequality we get

Pθ(|X̄n − µ| < δ) ⩾ 1− σ2

nδ2
,

from which we conclude that

(6.4) I :=

[
X̄n −

σ√
n(1− γ)

, X̄n +
σ√

n(1− γ)

]
is a confidence interval for µ with confidence level γ.

If n is large, by the Central Limit Theorem the estimate from the previous example is
highly wasteful, as X̄n is asymptotically Gaussian. The following definition is sometimes
used to capture this phenomenon.

Definition 6.23 (Asymptotic confidence interval) Let 0 < γ < 1. Let X1, ... ,Xn be
an n-sample drawn from Pθ. Let f : Θ → R. An interval In = In(X1, ... ,Xn) is an
asymptotic confidence interval for f (θ) with confidence level γ if

lim
n→∞

Pθ(f (θ) ∈ In) ⩾ γ , ∀θ ∈ Θ .

If there is equality, we call the In a strict asymptotic confidence interval.

Example 6.24 (Theorem 6.22Theorem 6.22 continued) Let us return to Theorem 6.22Theorem 6.22. By the
Central Limit Theorem,

lim
n→∞

Pθ

(
X̄n ∈

[
µ− aσ√

n
,µ+

aσ√
n

])
= P(|Z | ⩽ a) ,

whereZ is a standard Gaussian random variable. Givenγ, choosea such thatP(|Z | ⩽
a) = γ. In that case the interval

(6.5) In :=

[
X̄n −

aσ√
n
, X̄n +

aσ√
n

]
is an asymptotic confidence interval for µ with confidence level γ. Note that, if one
aims for high confidence levels, where γ is close to 1, the interval (6.56.5) is much
smaller than (6.46.4), because of the strong Gaussian decay of Z .
For instance, suppose that I am measuring the mean size µ of a population. The
average uncertainty is σ = 0.73. How many samples do I need to determine µ with
an accuracy of 0.1? To answer the question, I first have to choose a confidence level;
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this is a choice to be made by the statistician based on personal preferences and
needs. Let us say that I would like γ = 99%. This yields a ≈ 2.58 and hence

In =

[
X̄n −

1.88√
n
, X̄n +

1.88√
n

]
.

I need to choose n such that 1.88√
n
> 0.1, i.e. n ⩾ 355.
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6.3 Hypothesis testing WEEK 13

Example 6.25 Someone gives you a coin and you would like to determine whether
it is fair. You do so by flipping it many times and recording the results. From the
observed results you would like to determine which of the following hypotheses is
true.

(H0) The coin is fair (heads or tails occur with equal probability).
(H1) The coin is biased (heads or tails occur with different probabilities).

The hypothesis (H0) is called the null hypothesis, while the hypothesis (H1) is called the
alternative hypothesis.

How to choose the null hypothesis is an art and requires insight and experience on the
part of the statistician. In general, the null hypothesis describes the default or standard
scenario, where the statistical phenomenon or effect one is looking for is absent (in the
above example, a bias in the coin). The alternative hypothesis describes the scenario
where, on the contrary, the phenomenon or effect is present.

Example 6.26 A defendent is accused of a crime. In most modern systems of justice,
the null and alternative hypotheses are:

(H0) The defendent is innocent.
(H1) The defendent is guilty.

In this example, the effect one is looking for is the guilt of the defendent.

The goal of statistical tests is to determine whether the observed sample provides suffi-
cient evidence to reject the null hypothesis (and hence conclude that the phenomenon
or effect one is investigating is present).

More formally, we consider an n-sample X1, ... ,Xn drawn from Pθ with unknown θ ∈ Θ.
We partition the parameter space in two:

Θ = Θ0 ∪Θ1 , Θ0 ∩Θ1 = ∅ .

We then define the hypotheses

(H0) : θ ∈ Θ0 (null hypothesis)

(H1) : θ ∈ Θ1 (alternative hypothesis) ,

and aim to determine, using the given n-sample, which of these two hypotheses is correct.

To that end, we follow the following test procedure for testing H0 versus H1:

(i) Define a rejection region, which is an event

D = D(X1, ... ,Xn) .

(ii) Reject H0 if and only if D holds.

There are two different kinds of errors that one can make:

• Error of first kind: H0 is true but we reject it.
• Error of second kind: H0 is false but we do not reject it.
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In Theorem 6.26Theorem 6.26, the error of first kind is to convict an innocent defendant, while the
error of second kind is to clear a guilty defendant.

The probabilities of commiting these two errors are quantified by the following definition.

Definition 6.27 Consider a statistical test determined by its rejection region D .
(i) The confidence of the test is

1− α := inf
θ∈Θ0

Pθ(D
c) .

We also call α the risk of the test.
(ii) The power of the test is

1− β := inf
θ∈Θ1

Pθ(D) .

Thus, α is the probability of making a mistake of first kind, while β is the probability of
making a mistake of second kind.

Example 6.28 Let I be a confidence interval for θ with confidence level 1 − α.
Suppose that θ0 ∈ Θ. We want to test the null hypothesis θ = θ0 versus the
alternative hypothesis θ ̸= θ0. Then the rejection region D = {θ0 /∈ I} yields a test
of H0 versus H1 with confidence at least 1− α. Indeed, by Theorem 6.19Theorem 6.19, we have

Pθ0(D
c) = Pθ0(θ0 ∈ I ) ⩾ 1− α .

Next, we consider a few concrete Gaussian examples.

Example 6.29 Let X1, ... ,Xn be an n-sample drawn from the Gaussian law with
mean µ and variance σ2. Let µ0 ∈ R. We want to test the null hypothesis µ = µ0

versus the alternative hypothesis µ ̸= µ0. To construct the rejection region, we use
the empirical mean X̄n (see Theorem 6.5Theorem 6.5).

(i) Suppose first that the variance σ2 is known and only the mean µ is unknown.
For C > 0 define

D :=
{
|X̄n − µ0| ⩾ C

}
.

We require a test with confidence at least 95%, which means

Pµ0(|X̄n − µ0| ⩾ C ) = 0.05 ,

which gives the condition C ≈ 1.96·σ√
n

(where we used that X̄n is Gaussian with
mean µ and variance σ2/n).

(ii) Suppose now that we know neither the mean µ nor the variance σ2. We use the
empirical mean X̄n and the empirical variance S2

n from Theorem 6.9Theorem 6.9, and set

D :=

{
|X̄n − µ0|

Sn
⩾ C

}
.

The law of the random variable

Tn−1 :=

√
n

Sn
(X̄n − µ)

is called Student’s t distribution with n degrees of freedom; it has an explicit
form that can be computed or found in the literature, which we shall not go
into here. We require a test with confidence at least 95%, which means

Pµ0(D) = P(|Tn−1| ⩾ C/
√
n) = 0.05 ,
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from which one can solve C ≈ 2.093√
n

. Thus, the rejection region for a test with
confidence 95% is

D =

{
|X̄n − µ0|

Sn
⩾

2.093√
n

}
.

Next, we consider testing of so-called simple, or binary, hypotheses, where Θ = {θ0, θ1}
consists of just two elements. The null hypothesis is θ = θ0 and the alternative hypothesis
is θ = θ1. A powerful (in fact, the most powerful, see Theorem 6.31Theorem 6.31 below) test in this
situation is the Neyman-Pearson test, defined as follows. Recall the likelihood L from
Theorem 6.11Theorem 6.11. Define the likelihood ratio

R(θ0, θ1; x1, ... , xn) :=
L(θ1; x1, ... , xn)

L(θ0; x1, ... , xn)
.

The Neyman-Pearson test is defined by the rejection region

D =
{
R(θ0, θ1;X1, ... ,Xn) > C

}
.

Intuitively, a larger valure of R indicates that θ1 is more likely than θ0, and hence a
rejection of the null hypothesis θ = θ0 should be more likely.

Example 6.30 A person has two coins. One is fair. For the other, the probability of
obtaining heads is twice that of obtaining tails. She chooses one of the coins, tosses
it 100 times and obtains 60 heads and 40 tails. Which coin did she pick?
We model this with an n-sample X1, ... ,Xn drawn from a Bernoulli distribution
with parameter p. The null hypothesis (fair coin) is p = 1/2 while the alternative
hypothesis (biased coin) is p = 2/3. The number of heads is K := X1 + · · · + Xn.
The likelihood for a sample with K = k is

L(p, k) = pk(1− p)n−k = (1− p)n
(

p

1− p

)k

.

The likelihood ratio R = R(1/2, 2/3) is

R(k) =

(
1− 2/3

1− 1/2

)n(
2/3

1/3

)k

=

(
2

3

)n

2k .

We use the Neyman-Pearson with rejection region

D = {R(K ) > C} = {K > C ′}

where we used that k 7→ R(k) is monotone increasing and we set C ′ = R−1(C ).
Suppose that we want a test with a confidence of 90%. This results in the condition

P1/2(K > C ′) = 0.1 .

The law of K for n = 100 can be evaluated numerically or approximated by the
Central Limit Theorem. This yields C ′ ≈ 54.6. Since we observed K = 60 > C ′ we
are in rejection region, and hence we reject the null hypothesis. Thus we can say,
with 90% confidence, that the person chose the biased coin.

We conclude this chapter with a remarkable theoretical result, known as the Neyman-
Pearson lemma, which states that, within the context of simple hypothesis testing, the
Neyman-Pearson test is the most powerful test at any given confidence level.

Proposition 6.31 (Neyman-Pearson lemma) The Neyman-Pearson test is the most
powerful test at any given confidence level. More precisely, let Θ = {θ0, θ1} and
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suppose that Pθ has a density for each θ ∈ Θ. Let 0 < α < 1. Suppose that the
constant C in the Neyman-Pearson rejection region

D = {R(θ0, θ1) > C}

is chosen to that the risk Pθ0(D) = α. Then for any rejection region B with risk
Pθ0(B) = α we have

Pθ1(B) ⩽ Pθ1(D)

with a strict inequality if Pθ1(D \ B) > 0.

Proof We use the notation x = (x1, ... , xn) and Pθ(dx1) · · ·Pθ(dxn) = fθ(x) dx . From
Pθ0(D) = Pθ0(B) = α we get∫

D\B
fθ0(x) dx = α−

∫
D∩B

fθ0(x) dx =

∫
B\D

fθ0(x) dx .

Since D \ B ⊂ D and B \ D ⊂ Dc , we therefore get, by definition of the event D .∫
D\B

fθ1(x) dx ⩾ C

∫
D\B

fθ0(x) dx = C

∫
B\D

fθ0(x) dx ⩾
∫
B\D

fθ1(x) dx ,

where the first inequality is strict if Pθ1(D \ B) > 0. Thus we conclude that

Pθ1(D) = Pθ1(D \ B) + Pθ1(D ∩ B) ⩾ Pθ1(B \ D) + Pθ1(D ∩ B) = Pθ1(B) ,

as claimed. □
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This is the end of this course. I hope you enjoyed it!

Now you know all of the fundamentals of probability. If you liked what you learned (as I
hope!), you are fully equipped to go on and learn about more advanced topics such as
martingales and Brownian motion.
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APPENDIX A

The strong law of large numbers

In this appendix we prove the strong law of large numbers under the optimal condition
on the random variables. Recall that we already proved the weak law of large numbers
in Theorem 3.24Theorem 3.24, which had the deficiency of establishing convergence in L2 instead of
almost surely, which led to issues explained in Theorem 3.26Theorem 3.26. This issue was remedied in
the strong law of large numbers in L4 in Theorem 3.27Theorem 3.27. But the latter result still required
the random variables Xn to lie in L4 instead of in the optimal space, L1. (This space is
optimal since we clearly want E[X1] to be well-defined and finite.)

We shall need the following tool from measure theory, which is a consequence of the
monotone class lemma.

Lemma A.1 For each i = 1, ... , n, let Ci ⊂ A be a collection of events stable under
intersections containing Ω. Define Bi := σ(Ci ). If for all C1 ∈ C1, ... ,Cn ∈ Cn we have

P(C1 ∩ · · · ∩ Cn) = P(C1) · · ·P(Cn) ,

then B1, ... ,Bn are independent.

Proof We use the monotone class lemma from Section 3.2Section 3.2, whose notations we also
take over. Fix C2 ∈ C2, ... ,Cn ∈ Cn, and define

M1 :=
{
B1 ∈ B1 : P(B1 ∩ C2 ∩ · · · ∩ Cn) = P(B1)P(C2) · · ·P(Cn)

}
.

By assumption, C1 ⊂ M1. Moreover, it is easy to verify that M1 is a monotone class.
Hence,

M1 ⊃ M(C1) = σ(C1) = B1 ,

where the second step follows from the monotone class lemma (Theorem 3.8Theorem 3.8). We con-
clude: for all B1 ∈ B1,C2 ∈ C2, ... ,Cn ∈ Cn, we have

P(B1 ∩ C2 ∩ · · · ∩ Cn) = P(B1)P(C2) · · ·P(Cn) .

We now continue in this fashion, moving on to the second argument. More precisely, fix
B1 ∈ B1,C3 ∈ C3, ... ,Cn ∈ Cn and define

M2 :=
{
B2 ∈ B2 : P(B1 ∩ B2 ∩ C3 ∩ · · · ∩ Cn) = P(B1)P(B2)P(C3) · · ·P(Cn)

}
.

As above, it is easy to see that M2 is a monotone class, and by the previous step we know
that C2 ⊂ M2. By the monotone class lemma, we find that M2 ⊃ B2. By repeating this
procedure n times we arrive at the claim. □

Our proof of the strong law of large numbers rests on the following fundamental result.
To state it, let (Xn)n⩾1 be a family of random variables. For n ⩾ 1 we define the σ-algebra

Bn := σ(Xn,Xn+1, ... ) = σ

(⋃
k⩾n

σ(Xk)

)
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as well as the tail σ-algebra

B∞ :=
⋂
n⩾1

Bn .

Proposition A.2 (Kolmogorov’s zero-one law) Let (Xn)n⩾1 be independent random
variables. Then B∞ satisfies a zero-one law in the sense that any tail event B ∈ B∞
satisfies P(B) = 0 or P(B) = 1.

Remark A.3 It is important to understand the meaning of the objects in
Theorem A.2Theorem A.2. Theσ-algebraBn contains all the information from time n onwards, i.e.
it discards all information up to time n− 1. The tail events in B∞ are precisely those
whose occurrence can be determined if an arbitrarily large but finite initial segment
of the variables Xk is discarded. For example {supn Xn ⩽ 1} is not in B∞, since it
clearly depends on all random variables Xn. But {lim supn Xn ⩽ 1} is in B∞, since it
depends only on the “distant future”, i.e. changing any finite number of variables Xn

does not change its occurrence.
Kolmogorov’s zero-one law is remarkable: it states that any tail event occurs almost
surely or its complement occurs almost surely. As we shall see, the tail σ-algebra is
rich (i.e. large) enough to make this statement very useful.

Proof of Theorem A.2Theorem A.2 DefineDn := σ(X1, ... ,Xn) (theσ-algebra containing the inform-
ation up to time n). Then we claim that Dn and Bn+1 are independent. This sounds intuit-
ively obvious, as Dn contains information up to time n, and Bn+1 information starting
from time n + 1. For a rigorous proof, we proceed in two steps.

• For any k ⩾ n + 1 we define Bn+1,k := σ(Xn+1, ... ,Xk). Define the collections

C1 :=
{
B1 ∩ · · · ∩ Bn : Bi ∈ σ(Xi ) ∀i

}
,

C2 :=
{
Bn+1 ∩ · · · ∩ Bk : Bi ∈ σ(Xi ) ∀i

}
.

Clearly, these collections are stable under finite intersections and Dn = σ(Cn) and
Bn+1,k = σ(C2). By Theorem A.1Theorem A.1 and independence of the random variables (Xn), we
therefore conclude that Dn and Bn+1,k are independent.

• Define the collections C1 := Dn and C2 :=
⋃

k⩾n+1 Bn+1,k , which are clearly stable
under finite intersections. Thus, σ(C1) = Dn and σ(C2) = Bn+1. By the previous step
and Theorem A.1Theorem A.1, we conclude that Dn and Bn+1 are independent, as desired.

Next, choose C1 :=
⋃

n⩾1 Dn and C2 := B∞. Since Dn and Bn+1 are independent for all n,
we conclude thatP(C1∩C2) = P(C1)P(C2) for allC1 ∈ C1 andC2 ∈ C2. By Theorem A.1Theorem A.1,
we deduce that σ(C1) = σ(X1,X2, ... ) = B1 and B∞ are independent. Since B∞ ⊂ B1,
we conclude that B∞ is independent of itself! This means that any tail event B ∈ B∞
satisfies P(B) = P(B ∩ B) = P(B)2, from which the zero-one law follows. □

At first sight, this proof seems quite strange. It is in fact nothing but a careful justification
of a simple fact: B∞ is independent of itself. Since we are working with rather abstract
σ-algebras, it is important to proceed slowly and carefully, as we tried to do above. The
zero-one law has deep implications in probability. The strong law of large numbers,
which we are about to state and prove, is one. The following remark is another one.
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Remark A.4 Let (Xn)n⩾1 be independent random variables. Clearly,

X+ := lim sup
k→∞

1

k
(X1 + · · ·+ Xk) = lim sup

k→∞

1

k
(Xn + · · ·+ Xk)

for any n ∈ N∗. Hence, X+ is Bn-measurable for all n ∈ N∗, which implies that X+ is
B∞-measurable. The same holds for X− where lim sup is replaced with lim inf. In
particular, the event{

1

k
(X1 + · · ·+ Xk) converges

}
= {X− = X+}

is B∞-measurable, and hence has either probability 1 or 0. In the former case, the
limiting random variable X− = X+ is B∞-measurable, and it is therefore almost
surely constant (exercise). In summary: averages of independent random variables
either diverge almost surely or converge almost surely to a constant.

We can now state and prove the strong law of large numbers.

Proposition A.5 (Strong law of large numbers) Let (Xn)n⩾1 be independent random
variables in L1 with the same law. Then

1

n
(X1 + · · ·+ Xn)

a.s.−→ E[X1] .

Proof Let Sn := X1+ · · ·+Xn and S0 := 0. Let a > E[X1] and defineM := supn∈N(Sn−
na). Thus, M is a random variable with values in [0,∞]. The core of the proof is to show
that

(A.1) M < ∞ a.s.

Let us suppose first that (A.1A.1) has been proved and use it to conclude the proof of the
strong law of large numbers. By definition of M we have Sn ⩽ na+M for all n and hence
(A.1A.1) implies, for all a > E[X1],

lim sup
n

Sn
n

⩽ a a.s.

This implies that

(A.2) lim sup
n

Sn
n

⩽ E[X1] a.s. ,

since

P
(
lim sup

n

Sn
n

⩽ E[X1]

)
= P

( ⋂
k∈N∗

{
lim sup

n

Sn
n

⩽ E[X1] +
1

k

})
= 1 ,

where we used that a countable intersection of events of probability one has probability
one.

Replacing Xn with −Xn we obtain

(A.3) lim inf
n

Sn
n

⩾ E[X1] a.s.

From (A.2A.2) and (A.3A.3) we conclude the strong law of large numbers.

What remains, therefore, is to prove (A.1A.1). First, we claim that {M < ∞} ∈ B∞. Indeed,
for all k ⩾ 0 we have

{M < ∞} =

{
sup
n⩾0

(Sn−na) < ∞
}

=

{
sup
n⩾k

(
(Sn−Sk)−na

)
< ∞

}
∈ σ(Xk+1,Xk+2, ... ) ,
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since Sn − Sk = Xk+1 + Xk+2 + · · · + Xn. By the zero-one law, Theorem A.2Theorem A.2, to prove
(A.1A.1), it therefore suffices to prove that P(M = ∞) < 1.

We proceed by contradiction and suppose that P(M = ∞) = 1. For all k ∈ N we define

Mk := sup
0⩽n⩽k

(Sn − na) , M ′
k := sup

0⩽n⩽k
(Sn+1 − S1 − na) .

Since Sn = X1 + · · ·+Xn and Sn+1 − S1 = X2 + · · ·+Xn+1, we conclude that Mk
d
= M ′

k

(recall (2.52.5)). Moreover, Mk and M ′
k are increasing sequences that converge from below

to their limits M and M ′. By Mk
d
= M ′

k , we conclude that M d
= M ′, since

P(M ′ ⩽ x) = lim
k→∞

P(M ′
k ⩽ x) = lim

k→∞
P(Mk ⩽ x) = P(M ⩽ x) .

Moreover,

Mk+1 = sup

{
0, sup

1⩽n⩽k+1
(Sn − na)

}
= sup

{
0, sup

0⩽n⩽k
(Sn+1 − (n + 1)a)

}
= sup{0,M ′

k + X1 − a}
= M ′

k − inf{a− X1,M
′
k} .

Hence,

(A.4) E[inf{a− X1,M
′
k}] = E[M ′

k ]− E[Mk+1] = E[Mk ]− E[Mk+1] ⩽ 0 ,

since the sequence (Mk) is nondecreasing. Moreover, since M ′
k ⩾ 0 we have

|inf{a− X1,M
′
k}| ⩽ |a− X1|

for all k , so that we may apply dominated convergence to (A.4A.4) to get

E[inf{a− X1,M
′}] ⩽ 0 .

Now if P(M = ∞) = 1 then also P(M ′ = ∞) = 1 and hence inf{a− X1,M
′} = a− X1.

But
E[a− X1] > 0

by assumption. This is the desired contradiction. □
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