MCQ 1

A linear map \(f:\mathbb{K}^n\to\mathbb{K}^m\) cannot be surjective if \(n<m.\)

  • True
  • False
MCQ 2

A linear map \(f:\mathbb{K}^n\to\mathbb{K}^m\) cannot be injective if \(n>m.\)

  • True
  • False
MCQ 3

If \(\mathcal S\) is a generating set of \(V\) and \(f:V\to W\) is an injective linear map, then \(f(\mathcal S)\) is a basis of \(W.\)

  • True
  • False
MCQ 4

If \(\mathcal S\) is a generating set of \(V\) and \(f:V\to W\) is an injective linear map, then \(f(\mathcal S)\) is a generating set of \(W.\)

  • True
  • False
MCQ 5

If \(\mathcal S,\mathcal T\) are generating sets of \(V\) with finitely many elements, then \(\operatorname{Card}(\mathcal S) = \operatorname{Card}(\mathcal T).\)

  • True
  • False
MCQ 6

If \(\mathcal S,\mathcal T\) are bases of \(V\) with finitely many elements, then \(\operatorname{Card}(\mathcal S) = \operatorname{Card}(\mathcal T).\)

  • True
  • False
MCQ 7

A set of vectors \({v_1,\dots,v_n}\in V\) is linearly independent if its span is \(n\)-dimensional.

  • True
  • False
MCQ 8

The dimension of a subspace \(U\) of \(\mathbb{K}^n\) is equal to the number of vectors in a basis for it.

  • True
  • False
MCQ 9

The kernel space of an \(m \times n\) matrix is contained in \(\mathbb{K}^m.\)

  • True
  • False
MCQ 10

The image of an \(m \times n\) matrix is contained in \(\mathbb{K}^n.\)

  • True
  • False
MCQ 11

If \(\mathbf{A}\in M_{m,n}(\mathbb{K}),\) then \(\operatorname{Ker}(\mathbf{A})=\operatorname{Ker}(\mathbf{A}^T).\)

  • True
  • False
MCQ 12

If \(\mathbf{A}\in M_{m,n}(\mathbb{K}),\) then \(\operatorname{dim}(\operatorname{Ker}(\mathbf{A}))=\operatorname{dim}(\operatorname{Ker}(\mathbf{A}^T)).\)

  • True
  • False
MCQ 13

If \(\mathbf{A}\in M_{m,n}(\mathbb{K}),\) then \(\operatorname{Im}(\mathbf{A})=\operatorname{Im}(\mathbf{A}^T).\)

  • True
  • False
MCQ 14

Let \(V\) be a finite-dimensional \(\mathbb{K}\)-vector space. If \(U,W\subset V\) are subspaces such that \(\operatorname{dim}(U)<\operatorname{dim}(W),\) then \(U\subset W.\)

  • True
  • False
MCQ 15

Let \(V\) be a finite-dimensional \(\mathbb{K}\)-vector space. If \(U,W\subset V\) are subspaces such that \(U\subset W,\) then \(\operatorname{dim}(U)\leqslant \operatorname{dim}(W).\)

  • True
  • False

Home

Contents

Exercises

Lecture Recordings

Quizzes

Study Weeks